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Abstract As robots begin to permeate the everyday
human workspace to collaborate in innumerable and
varied tasks, the robotic structure must adhere and
replicate human-like gestures for effective interaction.
Whether rehabilitation or augmentation, upper arm
human-robot interaction is some of the most preva-
lent and investigated forms of collaboration. However,
currently robotic control schemes fail to capture the
true intricacies of anthropomorphic motion and intent
during simple bi-manual manipulation tasks. This
paper focuses on the introduction of bio-inspired con-
trol schemes for robot manipulators that coordinate
with humans during dual arm object manipulation.
Using experimental data captured from human sub-
jects performing a variety of every-day bi-manual life
tasks, we propose a bio-inspired controller for a robot
arm, that is able to learn human inter- and intra-arm
coordination during those tasks. Using dimensional-
ity reduction techniques to make comprehensible the
linear correlations of both arms in joint space we fit
and utilize potential fields that attract the robot to
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human-like configurations. This method is then tested
using real experimental data across multiple bi-
manual tasks with a comparison made between the
bio-inspired and traditional inverse kinematic con-
trollers. Using a robotic kinematic chain identical to
the human arm, models are evaluated for anthropo-
morphic configurations.

Keywords Anthropomorphism · Inverse
kinematics · Human-robot cooperation · Bi-manual
manipulation · Potential fields

1 Introduction

During the last decade, there has been an increas-
ing demand for robots that can interact, commu-
nicate and collaborate with humans. Robots have
moved inside human’s leaving and working envi-
ronment, therefore their behavior must shift from
purely robotic to human-like. Application fields rang-
ing from service robotics (assistive devices, enter-
tainment robots, augmentation robots) to therapeutic
devices (orthotics, prosthetics, rehabilitation robots)
require human-likeness in robot movements and effi-
cient human-robot collaboration, in order to achieve
seamless robot integration in the human environment.
Robots have to move and act in environments designed
for humans, and more importantly use tools for exe-
cuting tasks designed for humans.
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Robot manipulation is a well studied field that has
seen remarkable developments in the last 30 years
[1, 11, 18, 33]. Moreover, dual-arm robot manipula-
tion has been widely investigated in the last decade
[4–6, 16, 19, 26, 29, 30, 34, 35, 42, 44]. Nevertheless,
it still belongs to the most demanding challenges in
robotics. Most importantly, this challenge gains more
interest if robots are to become useful in common
household settings which are tailored for human arms
and hands.

Interaction and collaboration with humans requires
human-like behavior from the robot side. Such behav-
ior will allow the human subject to be able to under-
stand robot’s intentions, correlate characteristics (e.g.
robot configuration) with task execution, and seam-
lessly collaborate with the robot. For this reason past
research has attempted to define laws for biomimetic
trajectory planning and robot inverse kinematics [28].
Approaches for mimicking the human arm movements
have been proposed [8] for everyday life tasks (e.g.
drawing, handwriting). There have been also efforts
to generate human-like motion by imitating human
arm motion as closely as possible. In [22], a method
to convert the captured marker data of human arm
motions to robot motion using an optimization scheme
is proposed. The position and orientation of the human
hand, along with the orientation of the upper arm,
were imitated by a humanoid robot arm. However, this
method was not able to generate human like motions,
given a desired three dimensional (3D) position for
the robot end-effector. Similarly, most of the previous
works on biomimetic motion generation for robots are
based on minimizing posture difference between the
robot and the human arm, using a specific recorded
data set [27]. Therefore, the robot configurations are
exclusively based on the recorded data set. In this way,
the method can not generate new human-like motion.
The latter is a major limitation for the kinematic con-
trol of anthropomorphic robot arms and humanoids,
because the range of possible configurations is limited
to the ones recorded from humans.

In order to model motion principles of human arm
movements, cost functions have been also used in the
past [10, 14, 41]. Hidden Markov Models (HMM)
have been used for modeling arm motion towards
robot imitation [7, 23, 24, 36, 38], as well as other
unsupervised learning techniques [13, 17, 40], how-
ever most of the works are based on cost functions and
optimization techniques that drive the robots based on

a finite recorded set, while the models are unable to
generalize. Finally, a partitioning of the human-like
motion generation problem has been proposed in the
past [3]. The upper arm joint values are first calculated
for positioning the robot elbow, and then using that,
the rest of the joints are evaluated. Such an approach
can not be easily applied to robots having a kinematic
structure different from that of the human upper limb
though.

Although some of the previous studies have inves-
tigated the human arm motion during bi-manual tasks,
inter-arm coordination has not been adequately under-
stood. From the neurophysiology point of view, there
are many studies that provide evidence that bi-manual
tasks are governed by coordination patterns encoded
in neural level [9, 12, 37, 39, 43]. However, a kine-
matic coordination model for bi-manual tasks is still
to be defined.

In this paper we focus on the inter-arm (between
the two arms), as well as the intra-arm (within one
arm) joint coordination during bi-manual tasks involv-
ing collaboration of the two arms. More specifically,
we model this coordination for a wide variety of every-
day life tasks. Then we use this model for defining
bio-inspired controllers for robots collaborating with
humans. Using data captured from human subjects
performing a variety of every-day life tasks employing
their two arms, we propose a bio-inspired controller
for a robot arm. This controller is able to learn human
inter- and intra-arm coordination during those tasks.
We embed human arm coordination in low-dimension
manifolds, and build potential fields that attract the
robot to human-like configurations. The method is
tested using a simulated robot arm that is identical in
structure to the human arm. A preliminary evaluation
of the approach is also carried out using an anthro-
pomorphic robot arm in bi-manual manipulation task
with a human subject.

2 Data Processing and Analysis

In order to track the motion of the upper limbs, we
choose to use the joint angles of the shoulder, elbow
and wrist. For doing so, we need to compute the
center of rotation of those joints (see Fig. 1). We
compute the centers of rotation using markers on the
rigid bodies of upper arm, forearm and palm respec-
tively. However, there are cases where some of the
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Fig. 1 Axes of modeled degrees of freedom and centers of
rotations of the two arms

markers placed on those rigid bodies are obstructed
from the camera’s view. To combat this issue, a marker
estimation process was created. It relied on the fact
that each element of the position suit created, com-
prised of a rigid body, and the markers attached to
this body would not shift with respect to each other.
Therefore by capturing one or two frames from the
data which had either all, or through both frames, a
combination of all markers of the rigid body, we can
build all the markers’ inter-relationships. These rela-
tionships can be used to estimate a missing marker
provided other markers from the same body are
visible.

2.1 Biological Joint Centers and Calibration

The centers of rotation of the rigid bodies upper arm,
forearm and palm, coincide with the biological joint
centers shoulder, elbow and wrist respectively [15].
We used a calibration experiment, which required the
human subject to attempt to move all joints simulta-
neously while capturing the position sensor data from
the suit of markers. Then using a least squares method
we were able to estimate the position of the biologi-
cal centers with respect to the rigid body that precedes
the kinematic chain of the arm. For example, we were
able to estimate the center of rotation of the forearm
(i.e. the elbow joint), with respect to the upper arm
rigid body. Once these points are computed, they are
projected into the base frame of reference located on
the humans shoulder. Having the 3-dimensional (3D)
position of the wrist and elbow, as well at the 3D posi-
tion and orientation of the rigid body of the palm, we
are able to analytically give a unique solution to the
inverse kinematic problem, and therefore compute the

Table 1 Arm model D-H parameters

i αi ai di θi

1 90◦ 0 0 q1

2 90◦ 0 0 q2 + 90◦

3 90◦ 0 L1 q3 + 90◦

4 90◦ 0 0 q4 + 180◦

5 90◦ 0 L2 q5 + 180◦

6 90◦ 0 0 q6 + 90◦

7 90◦ L3 0 q7 + 180◦

7 joint angles of the upper limb [31]. The Denavit-
Hartenberg (DH) parameters of the kinematic model
of the arm that we used are listed in Table 1, where L1,
L2, L3 are the length of the upper arm, forearm and
palm respectively.1

2.2 Subjects and Task Protocol

For human motion experimental observation, 5 sub-
jects in total were used. The subjects were four male,
one female, with ages ranging from early to late 20s.
There was a mixture of both self described right and
left handedness in the test group. The experiments
in bi-manual manipulation varied to encompass many
types of manipulation coupling of the arms and tasks.
The principal tasks were defined by a constant con-
tact between the subject’s hands and the object such
as: cleaning dishes, removing and replacing a jar
lid, stacking blocks, two handed pick and place, and
many more. In contrast to the rigid coupling of the
hands to the object, many tasks were chosen which
still involved bi-manual manipulation but with greater
freedoms for the subject to chose the configuration
and path taken during the task. Some of the tasks
were: tying shoe knots, fork and knife use while eat-
ing, using tools for mechanism assembly, placing and
removing tape stuck on an object, and more. In total
15 tasks were selected and repeated three times each
during the observation process. The reasoning behind
the selection of tasks was to ensure both arms would
be required for task completion but varied enough to
show complex, non-repetitive, movements during the
manipulation process.

1Offsets in θi are used for having the arm at rest position
(pointing down) when qi = 0, i = 1, . . . 7.
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3 Methods and Procedure

The idea of cost function minimization has been
prevalent in robotic control since its inception. By
penalizing the controller for unwanted manipulated
variable moves or controlled variable locations, the
designer may shape the profile and final output.
For the robotic kinematic structure in collabora-
tion with human users, the proposed solutions must
satisfy two necessary constraints: the desired end-
effector position and orientation to interact, but
also the mimicry of common human configura-
tion. Only when consideration for both is imple-
mented in the solution will the human counterpart
understand both the interactive approach and inten-
tion of the robotic device. The initial constraint
can be solved easily through common manipula-
tors with sufficient degrees of freedom. The second
presents the challenge of quantifying an abstraction in
anthropomorphism.

In order to achieve the desired anthropomorphic
configurations during human-robotic collaborative
tasks a method to shape the iterative inverse kine-
matic solution was devised. Potential minimization
was selected due to its ability to provide simple quan-
tification of success and robust functional description.
The initial step for creating the governing cost or
potential field is the experimental observation and
statistical analysis during bi-manual manipulation as
seen in the previous sections. However, the raw joint
angle data represents a daunting task for functional
analysis due to it’s high order dimensionality and
extreme non-linearities. In order transform the large
dataset into a intelligible format statistical processing
techniques were applied to reduce the data dimen-
sionality through linear correlation. Once the data had
been processed and molded into manageable form it
could be functionally fitted through probability anal-
ysis from low order mixture models. These models
would describe the full potential fields in a contin-
uous form which allows for driving forces through
vector gradients. The final step in the methodology is
to apply these driving forces in the common inverse
kinematic solution in order to achieve the overall
goal of a bio-inspired control strategy. The methodol-
ogy is summarized in Fig. 2. The following sections
detail each step in the method proposed and detail
pertinent modifications to common techniques when
necessary.

3.1 Dimensionality Reduction and Inference

The kinematic relationships present in joint space dur-
ing human bi-manual tasks are difficult to extract due
to the large dataset dimensionality. For the full two
arm human model a total of 14 separate and distinct
joint angles were observed. Let

Q = [
q1 q2 ... q14

]
(1)

represent the k × 14 matrix for the data set for all k

observations of the 14 joint angles during experimen-
tation. The observation matrix Q can also be grouped
as qR which represents the right arm joint angles in
columns one through seven (q1-q7) of Q and simi-
larly qL as left arm joints (q8-q14) respectively. To
obtain a reduced order, tangible model we use Princi-
pal Component Analysis (PCA) [20]. From the initial
raw joint angle data the correlation matrix was com-
puted on the zero-mean variance set from Q. The
PCA was then applied to the correlation matrix to
examine the dual arm relationships in a lower dimen-
sional form. After the deletion of non-contributing
dimensions from the joint dataset, n dimensions are
retained to describe a satisfactory variance descrip-
tion close to the original data. This transform
is shown as

σLR = WQ (2)

where σLR is a n-dimensional vector to describe the
dual arm variability, W is the n × 14 matrix with
columns of n principal eigenvectors computed through
the PCA. Similarly σL and σR can be defined by
selecting the columns of W to extract the appropri-
ate components, for describing inter-arm coordination,
from the joint observations: σL = WLqL a low-
dimensional representation of the human left arm
configuration.

The choice of components kept, for both dual arm
and intra arm observation, were selected as to max-
imize the variance explanation while discarding as
many components as possible. This was performed so
that not only could the density functions be visual-
ized but also the computational effort in the controller
be reduced as it is a function of the retained princi-
pal components. Figure 3 shows three subject’s left
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Fig. 2 Procedure overview: from joint observation to the creation of a lower dimensional space(σ ). Utilizing Guassian mixture models
to build PDFs and in turn potential functions U . Then by taking the gradient of the potential functions return joint velocities q̇

arm joint variance explanation as a function of the
retained components. No absolute method guarantees
appropriate explanation percentage so the number was
selected from visual inspection on convergence. In
the case of left arm component retention, four were
selected explaining around 85 % of original variance.
For the dual arm (left-right) data it was found that
a total of 8 dimensions could describe from 80 to
90 % variability across subjects. For more details of
the application of the PCA in motion data the reader
should refer to [2].

3.2 Characterization of Inter- and Intra-arm
Coordination

The correlation among joints of the same arm, as well
as across arms, is shown in the correlation matrix in
Fig. 4. As it can be seen, many joints are correlated
with each other, and correlations are evident across
arms as well. Using the PCA method from above
the low dimensional data for both dual arm σLR and
single arm σL coordination lends itself to statistical
analysis. Examining the configuration frequency of

Fig. 3 Variance
explanation VS. component
selection for left arm QL

observations on three
subjects
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Fig. 4 Correlation matrix across all joints of both arms. Data
from one representative subject are used

the human arm allows the construction of probabil-
ity density functions (PDF). The dual arm correlation
function for the left arm is described simplistically
from:

P(σL|σR) = P(σL ∩ σR)

P (σR)
, (3)

which states that the probability of a left arm joint
configuration given a right arm configuration σR

is given by the joint probability for both arms.
Equation (3) represents the inter-arm coordination
density field while the intra arm P(σL) holds only
the information of internal configuration likeliness.
For visual representation only, Fig. 5 shows the PDFs
which describe the two-dimensional representation of
intra-arm coordination across all performed tasks for
three subjects. These PDFs were fitted using exper-
imental data across all trials for a given subject. To
find the functional description of the PDFs for both
the inter and intra-arm coordination the method of
Gaussian Mixture Model (GMM) [25, 32] was uti-
lized. This allowed for a continuous representation
of the low dimensional dataset to allow for further
manipulation, e.g. differentiation.

3.3 Potential Fields Through Probability Analysis

Driving a robot arm to configurations that were fre-
quently observed in the human experiments would
mean that we need to command the robot arm with

a set of joint angles that lie on the region of high-
probability of the PDF defined above. In order to do
that, we transformed the probability density functions
f (σ) to potential fields U (σ), where:

U (σ) = −f (σ) + fmax (σ ) (4)

where fmax (σ ) is the global maximum of the PDF.
Potential fields have been used in robotics for a vari-
ety of reasons, especially in obstacle avoidance cases
[21]. Here they are used to drive the robot configu-
rations to regions that were observed in the human
experiments. The way this is done is explained in the
next sections.

3.4 Robot Inverse Kinematics

The main goal in controlling the robot to collaborate
with the human is not only to drive the end-effector of
the robot to a specific pose xd, but also impose a con-
figuration qL that will be anthropomorphic, or in other
words, obey the inter- and intra-arm coordination of
the human. For this reason, we choose to make use of
the robot arm redundancy and solve the inverse kine-
matics iteratively using the block diagram described in
Fig. 6. The robot arm angular velocity vector is given
by

q̇R = J†
AKe +

(
I − J†

AJA

)
q̇a +

(
I − J†

AJA

)
q̇b (5)

where JA is the analytic Jacobian of the robot arm, J†
A

its pseudoinverse, K is a diagonal 7 × 7 gain matrix,
e = xd − x is the pose error between the desired
pose xd and the current one x. The terms q̇a, q̇b
will cause internal motion of the robot arm, i.e. joint
motion that would not affect the robot end-effector
pose. This is due to the fact that they are multiplied

with
(

I − J†
AJA

)
that will project the motion to the

null space of the robot Jacobian [31]. These terms
are going to be used for imposing anthropomorphic
characteristics based on the inter- and intra-arm coor-
dination modeled using the PDFs defined above. It
must be noted that for simplicity we assume that the
robot arm has the same kinematics with the human
arm it is replacing, and that the robot arm replaces the
left human arm and collaborates with the right human
arm.
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Fig. 5 Probability density
functions, projected in a
two-dimensional space
computed using the PCA
for single (inter-arm) σL

coordination across three
subjects

Both q̇a and q̇b terms are computed using the
potential fields UL (σL) and ULR (σLR). The poten-
tial fields are computed using Eq. 4 for the PDFs
describing arm coordination respectively.

In order to capture the intra-arm (right arm)
and inter-arm (right and left arms) coordination

Fig. 6 Block diagram for iterative inverse kinematics using
the pseudo-inverse Jacobian method and additional null space
terms

characteristics of the human, the robot is controlled
using Eq. 5, where the terms q̇a and q̇b are given by:

q̇a = −ka∇UL (σL) , q̇b = −kb∇ULR (σLR) (6)

where ka , kb are positive gains. Equation (6) makes
use of the robot redundancy in order to drive the
robot arm to configuration that not only resemble the
replaced left arm (q̇a term), but also coordinate with
the right human arm for bi-manual tasks (q̇b term).

The novelty of the additional joint velocities is con-
sidering this extra input of the right arm configuration
for the joint velocities. In both the internal and external
functions which output additional joint velocities sev-
eral issues arise when the current location in σ space is
in either a point of almost no probability i.e. P(σ) � 0
or near an area of minimum potential. In the first case
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the gradient terms have virtually no output as the gra-
dient of the density functions (6) with outlier inputs is
minuscule. The other case is when the joint configu-
rations are near an ideal position in σ space, meaning
they are close to a point of zero potential. This causes
the gradients terms to become so large that overshoot
and oscillation around a minimum point is inevitable.
Therefore the gain term ka and kb in Eq. 6 must: over
amplify in cases of low probability to have noticeable
joint velocity contribution, and dampen when gradient
terms would output high velocities. These conflict-
ing conditions were combated by having the gain a
function of the probability from the applicable density
function as:

k = C

P(σ)
(7)

With k representing terms ka or kb and C being a con-
stant gain multiplier. Another issue facing the final
result of the inverse kinematic solution is θ4, elbow
flexion-extension, has no mapping onto the null space

of
(

I − J†
AJA

)
. So an artificial perturbation term,

for the elbow joint velocities, was included into the
inverse kinematic controller (5). Using these modi-
fications along with the standard inverse kinematic
control led to the realization of a bio-inspired control
strategy for the robotic manipulator.

4 Results and Discussion

Initially we tested whether the null space terms and
the formulation of the potential fields could drive
the robot arm to anthropomorphic configurations, that
would coincide with local minima of the potential
functions. For this reason, we started the robot from
3 distinct configurations, represented them in the low-
dimensional space σL, and observed how the term q̇a
resulted to robot motion in the null space. Figure 7
shows the path of the robot in those 3 cases, where it is
shown that the robot was successfully reconfigured in
joint space to regions of low potential, therefore high
probability based on the human experimental data.

The proposed inverse kinematic method was tested
alongside the traditional, error only, inverse kinematic
(IVK) solution. The controller was given information
on the right arm joint configuration and end effec-
tor pose for the left arm from experimental data in

Fig. 7 Robot motion in the null space where robot arm is
re-configured to meet anthropomorphic configurations. Rep-
resentation in the low-dimensional space, using the poten-
tial field. Three cases with different initial conditions are
shown

bi-manual object manipulation. The human joint com-
parison data was from a subject not used in building
the potential function. The controllers were tested
over a 2 second span during a bi-manual manipula-
tion experiment. The results are shown in Fig. 8. This
figure demonstrates, seen from the mean squared error
of all joint angles, that the bio-inspired controller,
without information on: joint limits, singularity, etc,
outperformed the traditional pseudo-inverse Jacobian
method for solving the robot inverse kinematics. It
also demonstrates the bio-inspired controller’s ability
to drive the arm configuration to mimic the human
one whereas the traditional controller has a con-
stant offset. To examine the average error in both
controllers several hundred trials were run to com-
pare the final joint difference between the human
data and that of the final configuration for the bio-
inspired and traditional controller. As seen in Fig. 9 the
proposed controller outperforms the traditional one
substantially.

However, it must be noted that the goal of the pro-
posed method is not to always drive the robot arm to
specific configurations that were observed during the
human motion data collection. In fact, our main goal
is to create a method that would guarantee anthro-
pomorphism in the robot arm motion, and would be
able to generalize to motion not seen during the train-
ing phase with the human subject. Using the proposed
potential field formulation, we drive the robot arm to
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Fig. 8 Robot joints over 2 second continuous motion using
the proposed method (bio-inspired controller) and the tra-
ditional pseudo-inverse Jacobian method for solving the

inverse kinematics [31], compared to real motion of the replaced
human arm. Root-mean-squared error (RMSE) values are
reported
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Fig. 9 Average RMSE error over entire experimental set com-
paring controllers to human joint data

anthropomorphic configurations, as these are charac-
terized by the fitted PDFs. To find a representative
quantification on the bio-inspired controllers success
driving the arm to an anthropomorphic(high proba-
bilistic) configuration an examination of the final joint
values were tested in the probability function P(σL).
The distribution of the output from P(σL) is shown
in Fig. 10. The plot, created from 300 distinct trials,

Fig. 10 Distribution for P(σL) -anthropomorphic
quantification- given final joint outputs of traditional and
bio-inspired controllers

shows the distribution comparison between the tradi-
tional controller and the proposed one for a final con-
figuration’s anthropomorphism. Human joint configu-
ration is also plotted to compare with the bio-inspired
method. The plot shows the traditional controller inep-
titude at achieving anthropomorphic configurations
while the bio-inspired method’s distribution is quite
comparable to real human data.

The traditional inverse kinematics drives each joint
without consideration of any human-like behavior:
joint limits, manipulability, or even anthropomor-
phic intent. The controller based on the proposed
method would encompass all those constraints with-
out explicit acknowledgement. This fact can be made
evident from Fig. 11 showing how, given the right
arm configuration, both controllers converge on a
perfect solution in end-effector pose. However, the tra-
ditional controller has solved it in a way as can be
deemed non-anthropomorphic. The traditional method
would drive the robot arm to collision with the
model from elbow to forearm which not only results
in non-anthropomorphic configuration but human
apprehension from unwarranted physical human-

Fig. 11 Model joint comparison of inverse kinematic methods
for bio-inspired and traditional controller solutions



J Intell Robot Syst (2015) 78:21–32 31

robot contact. The bio-inspired controller drives the
robot configuration to human-like posture during bi-
manual tasks, which promotes more efficient inter-
action and collaboration between the robot and the
human arm.

5 Conclusion

The future for human-robot interaction holds com-
plicated and varied challenges in control in such an
unstructured, unpredictable environment specifically
in human-robot dual arm coordination. In this paper
we introduced a bio-inspired controller for a robot arm
that would drive the arm to anthropomorphic configu-
rations in bi-manual human-robot collaboration tasks.
As shown, the inverse kinematic controller uses real
experimental data to produce human arm behavior
for the robot in not only one arm (intra-arm coordi-
nation), but also mimics the inter-arm coordination
of two collaborating human arms. The reduced order
potential field also lends itself to arm configuration
generality: allowing for a multitude of unseen tasks
to still efficiently drive the inverse kinematic solution
while maintaining its anthropomorphic integrity. An
anthropomorphic quality metric for final arm configu-
rations was introduced and tested for both controllers
alongside real human data. The apparent downfalls of
the traditional inverse kinematic methods were exem-
plified in comparison to the bio-inspired controller
through human kinematic models during dual arm
object manipulation.
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