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Deriving Humanlike Arm Hand
System Poses
Robots are rapidly becoming part of our lives, coexisting, interacting, and collaborating
with humans in dynamic and unstructured environments. Mapping of human to robot
motion has become increasingly important, as human demonstrations are employed in
order to “teach” robots how to execute tasks both efficiently and anthropomorphically.
Previous mapping approaches utilized complex analytical or numerical methods for the
computation of the robot inverse kinematics (IK), without considering the humanlikeness
of robot motion. The scope of this work is to synthesize humanlike robot trajectories for
robot arm-hand systems with arbitrary kinematics, formulating a constrained optimiza-
tion scheme with minimal design complexity and specifications (only the robot forward
kinematics (FK) are used). In so doing, we capture the actual human arm-hand kinemat-
ics, and we employ specific metrics of anthropomorphism, deriving humanlike poses and
trajectories for various arm-hand systems (e.g., even for redundant or hyper-redundant
robot arms and multifingered robot hands). The proposed mapping scheme exhibits the
following characteristics: (1) it achieves an efficient execution of specific human-imposed
goals in task-space, and (2) it optimizes anthropomorphism of robot poses, minimizing
the structural dissimilarity/distance between the human and the robot arm-hand systems.
[DOI: 10.1115/1.4035505]

1 Introduction

Since the beginnings of robotics, mapping of human to robot
motion was necessary for a series of applications that range from
teleoperation and telemanipulation studies, to closed-loop, anthro-
pomorphic grasp planning. In particular, the extraction of anthro-
pomorphic robot motion is useful for robots that collaborate,
interact, and co-exist with humans in dynamic and/or human-
centric environments. Anthropomorphism is derived from the
Greek words anthropos (human) and morphe (form). A robot may
be characterized as anthropomorphic or humanlike if it mimics
the human form. According to Epley et al. [1], the purpose of
anthropomorphism is “to imbue the imagined or real behavior of
nonhuman agents with humanlike characteristics, motivations,
intentions, and emotions.” Regarding the different classes of
anthropomorphism, a clear distinction between functional and per-
ceptional anthropomorphism was recently proposed in Ref. [2].
Functional anthropomorphism has as its first priority to guarantee
the execution of a specific functionality in task-space and only
after accomplishing such a prerequisite to optimize anthropomor-
phism of structure (minimizing a “distance” between the human
and robot poses). Perceptional anthropomorphism concerns all
synergistic motions, behaviors, decisions, and emotions that can
be perceived by the humans, as humanlike.

An important question is: why has anthropomorphism become
significant and necessary? Nowadays, we experience an increas-
ing demand for human robot interaction (HRI) applications. We
believe that anthropomorphism of robot motion is important in
these applications as it increases safety in human and robot inter-
actions and facilitates the establishment of a solid social connec-
tion between the human and the robots. More precisely, regarding
social connection, the more humanlike a robot is in terms of
motion, appearance, expressions, and perceived intelligence, the
more easily it will manage to create meaningful “relationships”
with human beings as robot likeability is increased [3]. Regarding

safety in HRI scenarios, when robots move anthropomorphically,
users can more easily predict their motion and comply with their
activity, thus avoiding injuries. Gielniek et al. [4] support this
idea, discussing in their work that: “humanlike motion supports
natural human–robot interaction by allowing the human user to
more easily interpret movements of the robot in terms of goals.
This is also called motion clarity.”

In this respect, anthropomorphism increases robots’ motion
expressiveness, which may be critical for scenarios in which
humans and robots cooperate advantageously, in order to execute
specific tasks. Beetz et al. [5] first elaborated the idea of creating
legible and predictable robot motions, while the idea of the legi-
bility of robot motion goes back to Alami et al. [6]. Dragan and
Srinivasa [7] proposed a methodology based on gradient optimiza-
tion techniques for autonomously generating legible robot motion
(e.g., motion that communicates its intent to a human observer).
More precisely, the proposed algorithm optimizes a legibility met-
ric inspired by the psychology of action interpretation in humans,
deriving robot motion trajectories that better express intent. The
motivation behind this study comes from the fact that when
humans are able to predict the outcome/intent of robot motions,
they may comply with their motion and avoid injuries or enhance
collaborations. Similarly, deriving anthropomorphic robot
motions can be significant not only for aesthetic but also for prac-
tical reasons.

Over the last decades, numerous schemes have been proposed
that map human to robot hand motion. The most well known
methodologies are: (1) the fingertips (point-to-point) mapping, (2)
the joint-to-joint (angle-to-angle) mapping, (3) the functional pose
mapping, and (4) the object-specific mapping. Fingertips mapping
appears in Ref. [8] and is based on the computation of forward
and inverse kinematics for each human and robot finger, in order
to achieve same fingertip positions in 3D space. The linear joint-
to-joint mapping is a one-to-one, angle-to-angle mapping where
the joint angle values of the human hand are directly assigned to
the corresponding joints of the robot hand [9]. In joint-to-joint
mapping, the replicated by the robot postures are identical to the
human hand postures, as human and robot finger links attain same
orientations. Functional pose mapping [10] places both the human

1Corresponding author.
Manuscript received May 30, 2016; final manuscript received December 10,

2016; published online January 9, 2017. Assoc. Editor: Marcia K. O’Malley.

Journal of Mechanisms and Robotics FEBRUARY 2017, Vol. 9 / 011012-1Copyright VC 2017 by ASME

Downloaded From: http://mechanismsrobotics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmroa6/935905/ on 02/03/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



and the robot hand in a number of similar functional poses, and
then a relationship between each human and robot joint is found
(e.g., using the least squares fit method). Finally, the object-
specific mapping [11] provides a mapping approach between the
human and robot hand configurations that takes into consideration
a specific object to be grasped. In Ref. [12], authors extended the
object-based approach, to map synergies from human to robot
hands with dissimilar kinematics.

Regarding arm motion mapping, most previous studies focused
on a forward-inverse kinematics approach that achieves same
position and orientation for human and robot arm end-effectors,
without guaranteeing humanlikeness of robot motion. In Ref.
[13], neural networks and quadratic programming methods were
utilized to solve the inverse kinematics of redundant manipulators.
A biomimetic approach for a 7 degrees of freedom (DOF) redun-
dant robotic arm was presented in Ref. [14]. In that study, the
authors used human arm motions to describe and model the
dependencies among the human joint angles via a Bayesian net-
work. Subsequently, an optimization problem was formulated that
utilized the extracted model for the computation of the robot
arm’s inverse kinematics. Chirikjian and Burdick [15] proposed
an inverse kinematics computation method for hyper-redundant
robot arms. In Ref. [16], the authors used a control approach for
hyper-redundant arms, formulating a constrained optimization
problem. In Ref. [17], the process of manipulating the pose of an
articulated figure was approached as a nonlinear, constrained opti-
mization problem. Finally, in Ref. [18], the authors proposed a
method that solves the inverse kinematics problem of highly
articulated figures, utilizing methods of nonlinear programming. It
should be noted that although nonlinear programming algorithms
may terminate at local minima, the aforementioned studies have
inspired numerous researchers over the last years.

Regarding anthropomorphism of robot motion, a recent study
[19] focused on the extraction of humanlike robot arm-hand sys-
tem configurations using a criterion from ergonomics. In Ref.
[20], a combination of bio-inspired optimization principles was
incorporated in an optimization problem, to compute humanlike
robot reaching trajectories. In Ref. [21], a model-free control
scheme was proposed that provides humanlike, smooth motion,
and compliance properties to redundant arms. In Ref. [22], the
authors formulated a nonlinear optimization problem using obsta-
cle constraints between the robot arm-hand system and the envi-
ronment, in order to generate humanlike movements. In Ref. [23],
the authors proposed a methodology for planning the motion of
dual-arm anthropomorphic systems, reducing the computational
cost of the planning process, and deriving humanlike robot move-
ments. In particular, they adopted the synergies of the dual-arm
anthropomorphic system to reduce the dimension of the search
space, preserving the humanlikeness of the robot motions. Finally,
Gielniak and Thomaz [24] proposed a method for making the
robot motion more humanlike, by optimizing with respect to a
nonlinear spatiotemporal correspondence (STC) metric for distrib-
uted actuators.

In this paper, we propose a generic human to robot motion map-
ping scheme of low-complexity and computational cost that
derives humanlike robot poses and trajectories. The proposed
scheme can be employed for any type of robot arms, hands, and
robot arm-hand systems and for an arbitrary number of DOF (e.g.,
redundant or even hyper-redundant robot arms and multifingered
robot hands). More specifically, a constrained optimization prob-
lem is formulated that (1) achieves certain human-imposed task
goals (e.g., same position and orientation for human and robot
end-effectors) and (2) derives humanlike robot poses, utilizing
certain metrics of anthropomorphism [2,25]. The proposed meth-
odology employs only the forward kinematics of the examined
robots and does not require complex inverse kinematics or Jaco-
bian computations. Three geometric metrics are proposed that
quantify anthropomorphism of robot poses, assessing structural
dissimilarity between human and robot configurations. In particu-
lar, human to robot motion mapping is solved for (1) the arm, (2)

the hand, and (3) the overall arm-hand system (considering as
end-effectors the robot fingertips). Finally, regarding m-fingered
robot hands (where m 6¼ 5), we assign human thumb fingertip posi-
tion as a goal position for one of the robot fingers, and we use
splines to interpolate between the rest of the human fingertip posi-
tions and compute the goal fingertip positions.

The rest of the document is organized as follows: Sec. 2
presents the experimental equipment, the data collection sessions,
and the kinematic models, Sec. 3 focuses on the formulation of
the mapping scheme as a constrained optimization problem,
Sec. 4 validates the efficiency of the proposed methods through
extensive simulated and experimental paradigms, and Sec. 5 con-
cludes the paper.

2 Apparatus, Data Collection, and Kinematic Models

2.1 Motion Capture Systems. To capture the human arm
kinematics, the Liberty (Polhemus, Inc., Colchester, VT) magnetic
motion capture system was used. It consists of a reference system
and four magnetic position sensors. Three of these sensors were
placed on the human shoulder, the elbow, and the wrist. The
acquisition frequency of this system is 240 Hz, and it provides
high accuracy in both position and orientation (0.000762 m and
0.002617 rad, respectively). The human hand kinematics were
captured by the CyberGlove II (Cyberglove Systems, San Jose,
CA) motion capture system. This dataglove has 22 sensors meas-
uring 20DOF of the human hand and 2DOF of the human wrist.
More specifically, the abduction–adduction and flexion–extension
of the wrist, the flexion–extension of the proximal, metacarpal,
and distal joints of each finger, as well as the abduction between
the fingers were measured. The acquisition frequency of the
Cyberglove II is 90 Hz, and the nominal accuracy is 0.01745 rad.

2.2 Kinematic Model of the Human Arm-Hand System. A
7DOF model that consists of 3DOF for the shoulder (abduction/
adduction, flexion/extension, and internal/external rotation),
2DOF for the elbow (flexion/extension and pronation/supination),
and 2DOF for the wrist (flexion/extension and abduction/adduc-
tion) was adopted for the human arm kinematics. The human hand
kinematic model was inspired by the location of Cyberglove II
flex sensors. The model of the hand consists of 15 joints and
20DOF. More precisely, for the index, middle, ring, and pinky fin-
gers, we used 3DOF for flexion/extension and 1DOF for abduc-
tion/adduction, while for the thumb we adopted 2DOF for flexion/
extension, 1DOF for abduction/adduction, and 1DOF to model the
opposition. To compute the forward kinematics of the human
hand, we need to know the human hand digit lengths and the posi-
tions and orientations of the finger base frames. However, in this
paper, to diminish the complexity of the proposed methodology,
we adopted a set of parametric models derived from hand anthrop-
ometry studies [26]. Finally, it should be noted that the proposed
methodology can be used with a more sophisticated human hand
model, as the one proposed in Ref. [27], in case where all DOF
are measurable.

2.3 Kinematic Models of the Simulated Robot Arm-Hand
Systems. In this subsection, we present the kinematic models of
the robot arm-hand systems used in the simulated paradigms.
More precisely, we created hyper-redundant robot arms with
nDOF that consist of n=3 spherical joints and n=3 links of equal
length. In case that a robot arm is created with nDOF and n is not a
multiple of three, then the last one or two DOF contribute only to
the orientation of the end-effector. In this paper, we created robot
arms with 9, 18, 20, 21, 23, 27, and 44 DOF that have a total length
less than, equal to, or greater than the mean human arm length
(from 80% to 130% of the total length), to prove that our method-
ology can deal with arbitrary kinematics. Additionally, we adopted
as a common human arm length the mean value of the 50th percen-
tile of men and women, as reported in Ref. [28]. Moreover, since
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the proposed methodology can be utilized for m-fingered robot
hands with arbitrary number of DOF or phalanges per finger, we
also considered three, four, five, and six-fingered robot hands.

Although hyper-redundant robot arms have been an active
research topic for the last several decades [15], their applications
are still limited in practice. In this work, we considered hyper-
redundant robot arms and multifingered hands, to demonstrate
that our methodology can deal with arbitrary kinematics. Notice
that for such robots the analytical inverse kinematics computation
methods fail owing to the multiplicity of their solutions and the
complexity involved in their extraction. Thus, constrained optimi-
zation schemes are well suited for these robots.

2.4 Data Collection. In order to formulate the proposed
methodology and validate the efficiency of the proposed methods,
two different data collection sessions were held. The first session
involved five subjects and focused on offline data collection of
human arm-hand system kinematics. The subjects gave informed
consent, and the procedures were approved by the Institutional
Review Board of the National Technical University of Athens. All
subjects performed the experiments with their dominant right
arm-hand system. During the experiments, each subject was
instructed to perform repeated, random reach to grasp movements
in 3D space. During the reach to grasp motions, the subjects were
instructed to imagine that they were trying to grasp different
objects of different sizes in order to impose a significant variabil-
ity in the finger trajectories. The first session was used for the ini-
tial extraction of the proposed metrics. The second session
focused on the real-time teleoperation of simulated robot arm-
hand systems and involved only one subject. The second session
was used to validate the efficiency of the proposed methods for
real-time teleoperation studies. More details regarding the second
session can be found in Sec. 4.

2.5 Mitsubishi PA10–DLR/HIT II Arm-Hand System. In
this paper, we also used a real robot arm-hand system that consists
of a Mitsubishi PA10 robot manipulator that has 7DOF and a
DLR/HIT II five-fingered robot hand equipped with 15DOF. The
Mitsubishi PA10 is a redundant robotic manipulator, which has
2DOF located at the “shoulder,” 2DOF at the “elbow,” and 3DOF
located at the “wrist” (end-effector). DLR/HIT II is a dexterous
robot hand, jointly developed by German Aerospace Center
(DLR) and Harbin Institute of Technology (HIT). DLR/HIT II has
five kinematically identical fingers with 3DOF per finger, two for
flexion/extension, and one for abduction/adduction. The most dis-
tal joint of each finger is mechanically coupled to the middle one,
via a steel wire.

3 Mapping Human to Robot Motion Methods

In this section, we propose a series of metrics of functional
anthropomorphism, and we formulate the mapping of human to
robot motion, as a constrained optimization problem that requires
only the Denavit-Hartenberg parameters of the robot artifact to
solve the robot forward kinematics (no complex IK or Jacobian
computation is needed). We have experimentally verified that the
problem is well formed (a solution exists even if it is local and the
convergence is strong for different initial configurations), and
even when the algorithm terminates at a local minimum, the solu-
tion suffices for our purposes (typical strategy in related studies
[18]). In the sequel, the mapping of human to robot motion is
solved for (1) the arm, (2) the hand, and (3) the overall arm-hand
system. In all cases, the multiple goals (i.e., position, orientation,
and humanlikeness) are combined into a composite objective func-
tion, adopting appropriate weight factors. The proposed metrics
relate to static poses, and the robot motion is indirectly derived
and inherits the temporal characteristics of the human motion.

Task goals (e.g., identical poses for the human and robot end-
effectors) are incorporated in the objective function and not

imposed via equality constraints in the optimization problem,
since otherwise the problem would probably become infeasible.
Such approach allows the user to adjust the position and orienta-
tion accuracies by selecting appropriate weights (e.g., high values
of the weight of anthropomorphism may favor robot motion
humanlikeness during a free space motion, whereas low values
may lead in accurate positioning of the robot end-effector).

3.1 Deriving Humanlike Robot Arm Poses

3.1.1 Position and Orientation Goals. Let xRA ¼ fRA qRAð Þ
denote the forward kinematics mapping from joint to task-space
for a robot arm with nDOF, where qRA 2 IRn is the vector of the
joint angles, and let xRAgoal 2 IR3 denote the desired robot end-
effector position (i.e., human end-effector position). We may
define a metric of success under position goals, as follows:

dRAx
qRAð Þ ¼ kxRA � xRAgoalk2

(1)

Let hc¼ (ac, bc, cc, dc) and hg¼ (ag, bg, cg, dg) denote the current
and the desired (i.e., human) end-effector orientation, expressed in
the quaternions representation in order to avoid geometric singu-
larities. Their distance in S

3 is

�dRAo hc; hgð Þ ¼ cos�1 acag þ bcbg þ cccg þ dcdgð Þ (2)

Hence, considering the antipodal points in S
3

[29], we propose
a proper S

3 distance metric

dRAo hc; hgð Þ ¼ minf�dRAo hc; hgð Þ; �dRAo hc;�hgð Þg (3)

Thus, a combined metric under position and orientation goals may
be defined as follows:

Fxo
RA qRAð Þ ¼ wRAxdRAx

qRAð Þ þ wRAodRAo hc; hgð Þ (4)

where wRAx and wRAo are weights that adjust the relative impor-
tance of the position and orientation goals.

3.1.2 Metrics of Anthropomorphism. In this subsection, we
present a series of geometric metrics of anthropomorphism, which
quantify the structural dissimilarity between the human and the
robot (see Fig. 1). All the metrics proposed quantify the distance
between the human and the robot kinematic chains, if we hypothe-
size that during the comparison the two chains share a common
base frame. This distance relates to (1) the sum of distances
between the human and robot joints (metric A), (2) the areas of
the possible triangles that can be created by the human and robot
joints (metric B), and (3) the volume of the space enclosed
between the human and the robot joints that can be approximated
with a convex hull/polytope (metric C).

Fig. 1 Illustrations of the proposed metrics of anthropomor-
phism. Human arm is the right kinematic chain that consists of
two links, while the hypothetical robot arm is the left kinematic
chain that has 5 links.
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(A) Joint positions distance metric
The metric in this case is the sum of distances between
human and robot joint positions in 3D space. For the case
of a robot arm, this metric uses the human elbow position
as a reference. Hence, let shelbow

2 IR3 be the position of the
human elbow in 3D space, and sj, j¼ 1,…, n be the posi-
tion of each robot joint in 3D space (see Fig. 1). Subse-
quently, the distance between the robot joints and the
human joints (excluding the shoulder and the end-effector)
is given by

D ¼
Xn

j¼1

kshelbow
� sjk2

(5)

(B) Joint positions triangles area metric
Another metric, that quantifies anthropomorphism of robot
poses, is the sum of the areas of the triangles defined by
the human and robot joints in 3D space. For a n-link
robotic arm, we interpolate extra “virtual” joints in both
human and robotic arms, according to the normalized
length along their links, from the common base to the end-
effector. In this respect, both arms possess equal number of
virtual joints, which all have the same normalized length.
Selecting one of the arms (e.g., the human arm), we quan-
tify structural dissimilarity/distance as the sum of the areas
of all facet triangles that are formed, by joining every inter-
nal joint of the human arm (except the common base and
the end-effector) with the corresponding and subsequent
joint of the robot arm (see Fig. 1). An efficient way to cal-
culate the area of the formed triangles is by employing the
Heron’s formula

T¼1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþbþcð Þ a�bþcð Þ aþb�cð Þ �aþbþcð Þ

p
(6)

where a, b, and c are the side lengths of each triangle. The
aforementioned metric obtains a minimum value of zero,
when all triangle areas are zero and consequently when all
triangles vertices are collinear. When the metric reaches
its minimum, the human arm coincides with the robot.

(C) Joint positions convex hull volume metric
The third metric, that quantifies anthropomorphism of
robot poses, is based on the volume of the convex hulls
created by the human and robot joint positions in 3D space.
The convex hulls are computed for subsequent subsets of
joint positions as depicted in Fig. 1, such that the human
shoulder and wrist are not connected. The final volume is
the sum of the individual convex hulls volumes. If we
include also the line connecting the human shoulder and
wrist, then for those robot configurations that lie inside the
convex hull (e.g., for a smaller robot arm) the metric has
exactly the same value. In the 3D space, the convex hull is
the minimal convex polyhedron/polytope that contains all
set points. In the general planar case, the convex hull
becomes a convex polygon, while when the points lie on a
line, the convex hull is the line segment joining the outer-
most points. Structural dissimilarity once again diminishes,
when this metric becomes zero (e.g., human and robot
links are coincident). The convex hull of a set of points S
in 3D space is the intersection of all convex sets containing
S. For n points s1, s2,…, sn, the convex hull C is defined as
follows:

C �
Xn

k¼1

aksk : ak � 0 for all k and
Xn

k¼1

ak ¼ 1

( )
(7)

In the 3D case, the volume of a polytope P is computed via a
decomposition into simplices that relies on the volume formula of
a simplex. A simplex is a basic geometric element in a Euclidean
space and is considered a generalization of the notion of a triangle

or a tetrahedron to arbitrary dimensions. A k-simplex is a
k-dimensional polytope, thus, a 0-simplex is a point, a 1-simplex
is a line, a 2-simplex is a triangle, a 3-simplex is a tetrahedron,
etc. The volume formula of a simplex is given by

Vol D s0;…; snð Þ
� �

¼

����det s1 � s0;…; sn � s0ð Þ
����

n!
(8)

where det() is the determinant, D(s0,…, sn) denotes the simplex in
IRn with vertices s0;…; sn 2 IRn, and each column of the nxn
determinant is the difference between the vectors representing
two vertices (v0,…, vn). When the triangulation method is used for
the decompositions, then the volume of P is simply the sum of the
simplices’ volumes

Vol Pð Þ ¼
XN

i¼1

Vol D ið Þð Þ (9)

For the computation of the convex hull, we use the quickhull algo-
rithm [30]. Details regarding the decompositions of the convex
hulls and their volumes can be found in Refs. [31] and [32]. Illus-
trations of the various metrics proposed herein are given in Fig. 1.
More detailed results and comparisons of the metrics can be found
in Refs. [33] and [34].

3.1.3 Problem Formulation. Combining the position/orienta-
tion metrics defined in Eq. (4) with any of the proposed metrics of
anthropomorphism, we deduce the composite objective function

FRA qð Þ ¼ Fxo
RA qRAð Þ þ wAA qRAð Þ (10)

where wA is the weight that adjusts the relative importance of the
anthropomorphic metric, and A(qRA) is the value of the selected
metric (e.g., A is defined either by Eq. (5), (6), or (9)). Hence, the
mapping problem is formulated as

minimize FRA qRAð Þ (11)

subject to the inequality constraints of the joints’ limits

q�RA < qRA < qþRA (12)

where q�RA; qþRA are the lower and upper limits of the joints.

3.2 Deriving Humanlike Robot Hand Postures. Having dis-
cussed the arm, we now turn to the hand. For an m-fingered robot
hand, let xRHi

¼ fRHi
qRHið Þ be the forward kinematics mapping of

the ith finger with n DOF, where qRH 2 IRn is the vector of the

finger’s joint angles, and let xRHgoali 2 IR3 denote the correspond-

ing desired fingertip position. Furthermore, let dRHoi
hci
;hgið Þ

denote the distance between the current and the desired orienta-
tion (expressed in quaternions) for each robot hand fingertip simi-
larly to Eq. (3). The position, orientation, and anthropomorphism
goals may be encapsulated in the following objective function:

FRH qRHð Þ ¼ wRHx

Xm

i¼1

kxRHi
� xRHgoalik

2

þwRHo

Xm

i¼1

dRHoi
hci
;hgið Þ þ wRHa

Xm

i¼1

Ai

(13)

where qRH 2 IRm�n is the vector of the joint angles of the m-
fingered robot hand, Ai denotes the score of anthropomorphism
for each finger (i.e., Ai is defined either by Eq. (5), (6), or (9) simi-
larly to the arm case), and wRHx; wRHo; wRHa are weights that
favor the corresponding goals. Hence, the mapping problem is
formulated as follows:
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minimize FRH qRHð Þ (14)

subject to the inequality constraints of joints’ limits

q�RH < qRH < qþRH (15)

where q�RH; qþRH are the lower and upper limits of the joints,
respectively. Moreover, for each finger, we may also adopt equal-
ity constraints that encapsulate possible joint couplings.

However, a common robot hand may have less than five fingers
[35]. In such case, in order to employ the fingertips mapping
methodology [8,36], we first need to define the robot fingertip
goal positions. Previous studies used the virtual finger approach
[37], computing the virtual fingertip position of a robot hand, as a
linear combination of the fingertip positions of the less significant
fingers of the human hand (e.g., ring and pinky fingers) [38]. In
this paper, we assign human thumb fingertip position as a position
goal for one of the robot fingers (the one that we choose to corre-
spond to the human thumb). Subsequently, we use splines2 to cal-
culate the remaining robot fingertip positions, by interpolating
between the other four (index, middle, ring, and pinky) fingertips
of the human hand and selecting m� 1 equally distant points on
the extracted curve (where m is the number of the robot fingers).
Robot thumb (the finger that is chosen to correspond to human
thumb) is not taken into account in the fingertips selection proce-
dure, as it should definitely achieve same position and orientation
with the human thumb.

Remark 1. In this paper, we deal with precision, pinch grasps
but the proposed methodology does not assure that the robot hand
will grasp the object with a stable, force closure grasp without
crushing it. Toward this direction, the proposed methodology
could be combined with appropriate controllers that adjust the fin-
gers’ stiffness upon contact employing tactile sensing, as dis-
cussed in Refs. [39] and [40]. A video presenting such an
approach can be found in the footnote below.3

3.3 Deriving Humanlike Robot Arm-Hand Poses. Typi-
cally, the motion of a human arm-hand system may need to be
mapped to robots with quite different dimensions in terms of arm
link lengths, palm size, finger sizes, phalanges sizes, finger base
frames coordinates, etc. Hence, sometimes the solution of the
mapping problem may be infeasible. In such cases, however, the
dimensional differences may be compensated via a wrist and base
offset [2]. In the sequel, we address human to robot motion map-
ping as a unified optimization problem for the overall arm-hand
system. Therefore, we consider the robot fingertips as end-
effectors of our system, thus compensating for possible dimen-
sional differences and guaranteeing the execution of specific task
goals (e.g., to achieve same position and/or orientation with the
human fingertips). The objective function for the arm-hand system
is defined as follows:

FRAH qRAHð Þ ¼wRAHx

Xm

i¼1

kxRAHi
� xRAHgoalik

2

þwRAHo

Xm

i¼1

dRAHoi
hci
;hgið ÞþwRAHa

a
AþwRAHh

a

Xm

i¼1

Ai

(16)

where wRAHx and wRAHo are weights that adjust the relative
importance of the position and orientation goals, and
wRAHa

a
; wRAHh

a
are weights that adjust the relative importance of

the anthropomorphic metric for the arm and the hand, respec-
tively. Hence, the mapping problem becomes

minimize FRAH qRAHð Þ (17)

subject to the inequality constraints of joints’ limits

q�RAH < qRAH < qþRAH (18)

4 Results

In order to verify the efficiency of the proposed methods, both
simulated and experimental paradigms are provided. In all cases,
the “joint positions distance” metric is used, as it is the most com-
putationally efficient. In order to prepare the simulated paradigms,
the MATLAB robotics toolbox [41] was employed. It must be noted
that the proposed scheme is of low-complexity and can easily be
implemented in real-time, using the Cþþ based, open-source
NLOPT library for nonlinear, constrained optimization [42]. The
NLOPT code provides the first solution of the optimization problem
in 10 ms and the subsequent solutions at a frequency of 5 kHz
(every 0.2 ms). We should also note that we have experimentally
verified that the problem is well formed (a solution exists even if
it is local and the convergence is strong for different initial config-
urations). Thus, even when the algorithm terminates at a local
minimum, the solution suffices for our purposes. This is a typical
strategy in optimization studies [18].

4.1 Real-Time Teleoperation. In order to demonstrate the
efficiency of the proposed methods in performing in real-time, we
conducted different teleoperation experiments. Pictures of the
conducted experiments can be found in Fig. 2. The first example
(Fig. 2(a)) focuses on the teleoperation of a simulated Mitsubishi
PA10–DLR/HIT II robot arm-hand system. The optimization
problem was solved online, and a new humanlike robot pose was
being derived every 0.2 ms, while the position and orientation
tracking errors were always less than 1 mm and 1 deg, respectively
(for different poses and terms’ weights). The second example
focused on the teleoperation of a simulated arm-hand system that
consists of a 21DOF robot arm and the DLR/HIT II robot hand.
For the hyper-redundant robots, the computation of humanlike
robot poses takes more time (10–50 ms). In both cases, the robot
arm-hand systems execute the user imposed task goals (e.g., end-
effector position and orientation goals), attaining humanlike
poses. A video where the proposed scheme is used for real-time
teleoperation of the Mitsubishi PA10–DLR/HIT II robot arm-hand
system model in the OPENRAVE simulation environment [43] can be
found in the footnote below.4

4.2 Autonomous, Anthropomorphic Grasp Planning. The
third example (Fig. 2(c)) involves the Mitsubishi PA10–DLR/HIT
II robot arm-hand system performing anthropomorphic reaching
and grasping, with humanlike trajectories derived using the pro-
posed mapping scheme. The optimization problem was solved off-
line for the complete arm-hand system, considering the robot
fingertips as the system’s end-effectors. A video demonstrating
the experiment conducted with the Mitsubishi PA10–DLR/HIT II
robot arm-hand system can be found in the footnote below.5

4.3 Comparison of Various Mapping Methodologies. In
this subsection, we present a comparison between different human
to robot motion mapping methodologies for the case of the Barrett
WAM robot arm. More precisely, the proposed methodology
using the joint positions distance metric of anthropomorphism is
compared with the “joint-to-joint” mapping and the simple inverse
kinematics mapping. Results are depicted in Fig. 3. The proposed
methodology derives highly anthropomorphic solutions, while the
other two methodologies either do not guarantee the task require-
ments or result in nonanthropomorphic configurations. More2Splines are low-degree polynomial functions that are sufficiently smooth at the

places where the polynomial curves connect (i.e., knots) and yield smaller errors
than linear interpolation.

3http://www.youtube.com/watch?v=6jI5d1vaAW8.

4http://www.youtube.com/watch?v=iKNIJTMlcCA.
5http://www.youtube.com/watch?v=wsN23y1oCQQ.

Journal of Mechanisms and Robotics FEBRUARY 2017, Vol. 9 / 011012-5

Downloaded From: http://mechanismsrobotics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmroa6/935905/ on 02/03/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://www.youtube.com/watch?v=6jI5d1vaAW8
http://www.youtube.com/watch?v=iKNIJTMlcCA
http://www.youtube.com/watch?v=wsN23y1oCQQ


precisely, the joint-to-joint mapping derives a robot pose that
seems humanlike, but the end-effector position tracking error is
66.65 mm (the robot end-effector should have reached the goal
position denoted by the gray sphere but it tracks instead only the
desired orientation). The inverse kinematics mapping provides
excellent trajectory tracking (same position and orientation of the
end-effectors) but the poses are typically nonhumanlike.

4.4 The Case of m-Fingered Robot Hands. In this subsec-
tion, we focus on m-fingered hands, in order to demonstrate that
the proposed approach can also deal with nontrivial kinematics.
Simulated paradigms can be found in Fig. 4. Four simulated robot
hands are examined, a hand with three fingers, a hand with four

fingers, an anthropomorphic robot hand with five fingers, and the
extreme case of a hand that has six fingers. The desired robot fin-
gertip positions (crosses) are selected from the human fingertips
positions (circles) using splines interpolation as discussed in Sec.
3.2. In all cases, the robot hands manage to attain the desired fin-
gertip positions.

In the case of the five-fingered robot hand, the human and robot
fingertips attain exactly the same positions. The fingertips position
tracking error during the mapping process is less than 1 mm for all

Fig. 2 Mapping human to robot motion experiments. The proposed methodology has been
used to extract humanlike robot poses for three different applications. (a) The real-time teleop-
eration of a simulated Mitsubishi PA10–DLR/HIT II arm-hand system. (b) The teleoperation of a
simulated arm-hand system that consists of a hyper-redundant robot arm (21DOF) and the
DLR/HIT II robot hand. (c) An example of autonomous, anthropomorphic grasp planning using
the Mitsubishi PA10–DLR/HIT II arm-hand system.

Fig. 3 Comparison of different mapping methodologies for the
case of the Barrett WAM robot arm [44]. The left kinematic chain
for all cases is the Barrett WAM robot arm which is longer that
then human arm (right kinematic chain). The two kinematic
chains are depicted with an offset in the x-axis of their base
frames, in order to facilitate comparisons. The sphere denotes
the desired end-effector position for the robot arm. For all
cases, the human arm pose is the same.

Fig. 4 Deriving humanlike poses for m-fingered robot hands
with size equal to the 110% of the human hand size. The selec-
tion of the desired robot fingertip positions (crosses) is per-
formed via interpolation between the human fingertips
positions (circles).
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the robot hands examined. It must be noted, though, that the robot
fingertips are not able to attain the same orientations with the
human fingertips, as they do not have the required redundancy
and they are 1.1 times bigger.

4.5 The Case of Hyper-Redundant Robots. The proposed
methodology can also efficiently derive humanlike robot poses for
hyper-redundant arms and arm-hand systems. In Fig. 5, a series of
simulated paradigms are presented. More specifically, humanlike
robot trajectories are derived for (1) a 18DOF hyper-redundant
arm and (2) an arm-hand system that consists of a 44DOF hyper-
redundant arm and a five-fingered hand with size equal to the
110% of the human hand size. In all instances, the final configura-
tion appears clearly, while the initial configuration is blurred. In
Fig. 6(a), a trajectory tracking example for the end-effector
position and orientation of a 20DOF hyper-redundant robot arm
executing the human-imposed task goals (i.e., achieve same end-
effector position and orientation) is presented. The mean error in
position (for all axes) is 0.2 mm, and the mean error in orientation
is 0.10 deg. In Fig. 6(b), a trajectory tracking example for the fin-
gertip positions of a hyper-redundant robot arm-hand system is
presented. The mean error for all the fingertip positions is less
than 1 mm, for all axes and fingers. The fingertips position errors
are bigger than those of the arm end-effectors, as typically the
robot fingers do not have the kinematic redundancy of the arms
that simplifies the tracking problem. More details regarding the
effect of the redundancy in the tracking errors can be found in
Table 1, where we compare the end-effector position and orienta-
tion tracking errors for humanlike trajectories derived by the pro-
posed methodology, for various hyper-redundant arms. More
specifically, simulated robot arms with 6, 7, 9, 18, and 27 DOF
are considered that have sizes 0.9, 1, 1.15, and 1.3 times the size
of the examined human arm. Arms that are smaller than the

human arm have the biggest tracking errors, since they cannot
reach the desired position and orientation (the goals may be out-
side their reachable workspaces). Moreover, an increase in the
number of DOF decreases the tracking errors, since redundancy is
exploited. In most cases, the position error is less than 1 mm, and
the orientation error is less than 1 deg.

Fig. 5 Deriving humanlike robot poses for (1) a 18DOF hyper-
redundant arm and (2) an arm-hand system that consists of a
44DOF arm and a five-fingered hand

Fig. 6 (a) A trajectory tracking example that involves a 20DOF hyper-redundant robot arm, the end-effector of which should
attain same position and orientation with the human arm end-effector. (b) A trajectory tracking example that involves a
hyper-redundant robot arm-hand system that consists of a 23DOF hyper-redundant arm and a five-fingered hand with size
equal to the 110% of the human hand size. For this example, the robot fingertips should track the human fingertip positions.
The lines denote the human trajectories, and the markers the derived robot trajectories.

Fig. 7 Mapping human to robot motion for hyper-redundant
robot arms with 21DOF and total length equal to the 80%, 90%,
100%, 110%, and 120% of the total human arm length. HA is the
human arm.

Table 1 End-effector tracking errors (p—position and o—ori-
entation) for hyper-redundant robot arms. The scaling factor
presents how much bigger than the human arm the robot arm
is.

p (mm) o (deg) p (mm) o (deg)
#DOF Scale: 90% Scale: 100%

6 0.493 15.5959 0.241 10.9367
7 0.178 13.5371 0.103 9.1192
9 2.430 13.2628 0.021 0.1684
18 2.736 10.6899 0.042 0.1792
27 2.842 8.9306 0.082 0.6010

Scale: 115% Scale: 130%
6 0.152 5.2978 0.007 0.4466
7 0.042 4.1737 0.013 0.2819
9 0.011 0.5697 0.025 1.1485
18 0.030 0.2309 0.022 0.0536
27 0.063 0.2025 0.052 0.1793
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In Fig. 7, we present various examples of mapping human to
robot motion for hyper-redundant robot arms with 21DOF and total
length equal to the 80%, 90%, 100%, 110%, and 120% of the total
human arm length. For the 80% case, the length of the robot arm is
not sufficient in order for our scheme to achieve both the position
and the orientation goals, while for the 90% case there is a signifi-
cant error in the derived orientation, caused once again by the size
limitations. These results are in accordance with the tracking errors
presented in Table 1, as these errors increase for robot arms that are
smaller than the human arm. For example, a 27DOF arm with total
length 0.9 times the length of the human arm has more than 2 mm
end-effector position tracking error and more than 8 deg orientation
tracking error, while an 27DOF arm with a total length 1.3 times the
human arm length has tracking errors 50 times smaller in position
(less than 0.1 mm) and orientation (less than 1 deg).

4.6 Effect of Optimization Terms. As we have already
noted, in this work, task goals (e.g., identical positions and orien-
tations for the human and robot end-effectors) are incorporated in
the objective function instead of being imposed as equality con-
straints, since otherwise the problem would become infeasible. By
doing this, we allow the user to adjust the position and orientation
accuracies by selecting appropriate weights. For example, high
values of the weight of the score of anthropomorphism may favor
humanlikeness of robot motion during a free space movement,
whereas low values may lead in accurate positioning of the robot
end-effector during tasks that require accuracy (e.g., telemanipu-
lation). In this subsection, we focus on the evaluation of the effect
of the different optimization terms in the derived solutions. In
Fig. 8, we present various “extreme” solutions of the optimization
problem adopting various combinations of the involved terms. A
hyper-redundant robot arm with 21DOF is considered. By
employing all the terms, the derived configuration is humanlike,
and the end-effector achieves same position and orientation with
the human arm end-effector (wrist). When only the position and/
or orientation terms are used, then the derived configurations are
typically nonhumanlike, but the robot’s end-effector achieves
small tracking errors. When only the anthropomorphism term is
used, all the robot joints are positioned near the human elbow in
order to minimize their distance from it. This example is provided
only for completeness, as in practice we would never use the
metric of anthropomorphism alone.

5 Discussion and Conclusions

In this paper, we proposed a generic methodology of low-
complexity for deriving humanlike robot trajectories and poses,

even for robot arm-hand systems with arbitrary kinematics. The
methodology requires only the Denavit-Hartenberg parameters of
the examined robots (to compute their forward kinematics), and
no complex inverse kinematics or Jacobian computation is neces-
sary. The problem was formulated, as a constrained optimization
problem incorporating in the objective function various metrics of
functional anthropomorphism. In particular, three geometric met-
rics were proposed, which are minimized when the structural dis-
similarity between the human and the robotic artifact diminishes.
The formulated approach guarantees the execution of specific
human-imposed task goals (e.g., same position and orientation for
the human and robot end-effectors), optimizing at the same time
the humanlikeness of robot poses. The proposed scheme can be
used for various HRI applications that require anthropomorphism,
ranging from learn by demonstration for autonomous grasp plan-
ning, to teleoperation and telemanipulation studies with robot
arm-hand systems.
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