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1. Introduction

In an effort to improve the quality of clinical neurology and 
rehabilitation, the aspiration of deciphering brain electrical 
signals to allow humans to directly interact with their environ-
ment has been an attractive research for the past decades. 
Originally developed to facilitate people with severe motor 
disabilities, the majority of research in brain–computer inter-
face (BCI) applications has been devoted to interpret and dis-
criminate motor imagery to control external devices, such as 
a wheelchair [1]. One fundamental drawback of using motor 
imagery as the control command is the limitation in the 
degrees of freedom (DoF). Most applications related to motor 
imagery rely on binary classification, such as classification of 
left versus right hand imagery, whereas the highest number of 
DoF is provided by four class classifications, e.g. left versus 

right hand, tongue and foot motion imagery. Another popular 
approach is to use visual evoked potentials. These are brain 
response signals that have the same frequency with a flick-
ering stimulus, such as a light blinking with a specific fre-
quency. In this way, we can create a ‘visual touchscreen’, i.e. 
screen on which the user will focus on a desired blinking spot 
that is associated to a specific command, such as the appli-
cation in [2]. This approach however requires a considerable 
attention time to the active stimuli which are also constrained 
by color, frequency band and spatial resolution [3].

In an attempt to push BCI application out of the rehabilita-
tion scope and make it useful for healthy individuals as well, 
the mentioned approaches become inadequate as it is much 
easier and accurate to use someone’s hands with a joystick 
or a touchscreen. In other words, an efficient BCI for normal 
situations should allow the user to use his hands and vision 
freely to interact with other devices, and provide additional 
functionalities and DoF for a more complex task. This demand 
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inspires our research in exploring the applicability of speech 
imagery as an alternative control signal for BCI. Moreover, 
silent communication is also desired in many circumstances 
where sound recognition is prohibited, such as in a noisy cor-
rupted surrounding or subjects with hearing or speaking dis-
abilities. In this work, we use electroencephalography (EEG) 
signals in order to extract the necessary features because it 
is noninvasive and its application does not require specific 
medical knowledge.

This paper is organized as follows. Section 2 summarizes 
the previous works and our research objectives and contrib-
ution. The proposed approach and theoretical background are 
presented in section 3. Section 4 describes the experimental 
procedure, and section 5 discusses the data analysis and the 
main results. Section  6 compares the performance of our 
methods with several representative works found in the litera-
ture, and provides further discussion on the possible impacts 
to the speech imagery paradigm. Section  7 concludes the 
paper and discusses future work.

2. Related work and research objective

In recent years, several efforts of extracting human abstract 
thinking have been investigated. For example, Esfahani and 
Sundararajan [4] attempt to classify primitive shapes, such 
as cube, sphere, cylinder, pyramid and cone, imagined by 
users. The reported results are encouraging, as the average 
accuracy across ten subjects is 30.6−37.6% compared to 20% 
accuracy by chance. In their report, the highest accuracy is 
actually 54.1%. In their following work [5], Contreras and 
Sundararajan are able to discriminate three shapes, e.g. cone, 
rectangle and cylinder, with 60% accuracy using the shapelet 
feature. Although these results are promising, performing 
visual imagery requires high concentration and is hard to 
maintain good performance throughout the task, as the authors 
were unable to find a repeated shapelet’s pattern.

In contrast to visual imagery and motor imagery, speech 
imagery is quite consistent between users and easier to per-
form and repeat without the requirement of initial training. 
In [6], Herff and Schultz conducted a review of techniques 
deciphering neural signals for automatic speech recognition. 
These techniques can be classified based on the methods of 
collecting neural signals, which include metabolic signals or 
electrophysiological signals. Functional magnetic resonance 
imaging (fMRI) and functional near infrared spectroscopy 
(fNIRS) are two main approaches to collect metabolic sig-
nals. However, they are limited to clinical environment only. 
To record electrophysiological signals, microarray, EEG, 
magnetoencephalography and electrocorticography are used. 
Among them, EEG is more suitable to daily activities as it is 
noninvasive and easy to setup, while the others either require 
a certain level of clinical treatments or are too bulky. Besides 
neural signals, silent speech can also be recognized based on 
electromyographic (EMG) activity in facial muscles, such as 
in the works conducted by Denby et al [7] and Schultz [8].

In this article, we are interested in deciphering imagined 
speech from EEG signals, as it can be combined with other 
mental tasks, such as motor imagery, visual imagery or speech 

recognition, to enhance the degree of freedom for EEG-based 
BCI applications. Furthermore, it can also be applied to 
locked-in patients where recording facial EMG activities is 
prohibited [9]. Interpreting imagined speech from EEG sig-
nals however is challenging and still an open problem.

Current research has investigated two possibilities, using 
phonemes or syllables, in which a user imagines saying 
vowels, e.g. /u/ or /a/, or words, e.g. left or right, without overt 
vocalization. In [10], Wester et al created a system apparently 
capable of recognizing imagined speech with high accuracy 
rate. However, Porbadnigk et  al [9] later revealed that the 
successful recognition accuracy in [10] is mainly due to the 
experiment process of collecting data, which accidentally 
created temporal correlation on EEG signals. That is, if the 
words are collected in a block, i.e. each word is repeated 20 
times before trying another word, the recognition rate is high. 
However, if the words are recorded in a random order, the 
accuracy dropped to the chance level.

D’Zmura et al [11] conducted a speech imagery experiment 
with four participants. Wavelet envelops in theta (3–8 Hz), 
alpha (8–13 Hz) and beta (13–18 Hz) bands were extracted 
as features by using Hilbert transform. The highest accuracy 
is reported in the range 62–87% with discriminant features in 
beta band. This is in contrast to the report of Kim et al [12], 
where alpha band is discovered as the most discriminant band 
based on ANOVA test and common spatial patterns (CSPs). 
In the work conducted by Brigham and Kumar [13], 7 par-
ticipants performed speech imagery with two syllables, /ba/ 
and /ku/. By using Hurst score, only 8–15 trials from total 
120 trials were selected as meaningful samples for classifica-
tion. The lowest and highest accuracy is reported as 46% and 
88% using 13 and 11 trials, respectively. The result however is 
not statistically persuasive. In [14, 15], DaSalla et al obtained 
68–79% accuracy when classifying three stages /a/, /u/, and 
rest, by using CSP. However, the results of CSP point out that 
the discriminant channels are Fz, C3, Cz, and C4. This in turn 
suggests that the results are mainly due to the activation of 
motor cotex rather than speech imagery. In a similar experi-
ment, Deng et al [16] used Huang–Hilbert transform (HHT) 
to perform adaptive frequency transform, as HHT is more suit-
able for non-stationary, nonlinear signal like EEG than Fourier 
transform or wavelet transform. Using the spectral power 
density in the frequency band 3–20 Hz as feature, the highest 
accuracy rate is reported at 72.6% of classifying /ba/ and /ku/  
vowels. Idrees and Farooq [17] proposed an approach, in which 
11 features are extracted, such as mean, variance, skewness, 
kurtosis, geometric mean, harmonic mean, inter-quartile range, 
energy sum, entropy, standard deviation and waveform length, 
and linear discriminant analysis (LDA) classifier is used on 
those features. Testing on the dataset published by DaSalla 
et al [14], the author obtained the classification accuracy from 
65–82.5% which is approximately 2–17.5% higher than that 
from DaSalla et al [14]. Other features, such as Gabor filter 
[18] and Mel frequency cepstral coefficients [19] have been 
also proposed and obtained encouraging results.

In terms of classifying speech imagery of words, the lit-
erature is more limited. For example, in [20] Suppes et al per-
formed an experiment with seven subjects in which they were 
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able to distinguish between seven words during an auditory 
comprehension task using EEG signals. Five of those subjects 
were also performing speech imagery during the task. Later, in 
[21], the authors were able to apply their methods on sentences 
heard by the subjects. In [22], Gonzalez-Castaneda et al were 
able to classify between five different imagined words, namely 
‘up’, ‘down’, ‘left’, ‘right’ and ‘select’. Utilizing appropriate 
frequency transform techniques, such as discrete wavelet 
transform or Bump model combined with the bag-of-words 
algorithm, the EEG signal can be treated as audio signal (soni-
fication) or sentences of words in a text (textification). Their 
analysis included 27 subjects and they were able to report 
classification accuracies of 83.34% on average when textifica-
tion techniques were used. In [23], Salama et al were able to 
distinguish between two imagined words, namely ‘Yes’ and 
‘No’, using different types of classifiers such as support vector 
machines (SVMs), discriminant analysis, self-organizing 
map, feed-forward back-propagation and by combining mul-
tiple classifiers. Their analysis produced average accuracies 
between 57% and 59% among seven subjects. In [24], Wang 
et al were able to distinguish between two Chinese characters 
that meant ‘left’ and ‘one’, respectively, and the rest state by 
using CSPs and SVMs. Their highest accuracies were between 
73.65% and 95.76% when comparing between each of the 
imagined words and the rest state. However, the accuracies of 
classification between the two words themselves was lower, 
e.g. 82.3% mean value. The interesting idea about their work 
is that they used two different electrode montages; one covered 
the whole brain area and included 30 channels, and another 
with 15 channels that covered Broca’s area and Wernicke’s 
area which lie on the left brain hemisphere. No specific effect 
on the classification acc uracy was reported from the choice of 
setup though. Finally, in [25], Mohanchandra et al were able to 
classify between five different words, namely ‘water’, ‘help’, 
‘thanks’, ‘food’ and ‘stop’, by combining a one-against-all 
multiclass SVM with the subset selection method which was 
based on a set of principal representative features in order to 
reduce the dimensionality of the EEG data. They achieved 
average accuracies that ranged from 60% to 92% for the rec-
ognized words.

The aforementioned works have indicated that speech 
imagery is a promising approach, and the accuracy can be 
improved by selecting appropriate features and classifiers. The 
reported results however are often applied to pairwise classi-
fication, while the simultaneous recognition of multiple states 
can be more challenging. Furthermore, the lack of public data-
sets makes it hard to replicate the results as well as develop 
and compare different algorithms. This analysis hence moti-
vates our research which leads to the following contributions:

 • We propose a novel method to classify speech imagery. 
The proposed method can perform multi-class recogni-
tion simultaneously, and significantly outperforms other 
methods found in the literature in terms of accuracy and 
sensitivity.

 • We investigate what are the important factors affecting the 
performance of classifying speech imagery. For example, if 
different words can be recognized accurately, is it because of 
the difference in their complexity, meaning or their sound? 

 • Our experimental data are analyzed to verify that they 
indeed correspond to speech imagery tasks, that can be 
discriminated with significant accuracy. The dataset is 
published2 to assist community further research in the 
field.

3. Proposed method

Our proposed method can be summarized in four main steps. 
First, we extract low level features from the preprocessed 
EEG signal. These features are extracted at each time instant 
and are considered as local features. Second, a covariance 
matrix descriptor is used to fuse them together in order to 
further boost their global discriminative power for the entire 
imagination period. Since the covariance matrix lies in the 
Riemannian manifold, appropriate metrics need to be used to 
discriminate them. Hence, in the third step, we extract their 
tangent vectors as the final high level features vector, which 
are consequently fed to a relevance vector machine (RVM) to 
classify their labels. The approach is described in more detail 
below.

3.1. Theoretical background

3.1.1. Notation. Let Rn be an n dimension real space, 1n ∈ Rn 
be a vector with all entries equal to 1, and In ∈ Rn×n is the 
identity matrix. E{x} is the expectation of x and diag(x) is the 
diagonal matrix constructed from x. X(i, :), X(:, j) and X(i, j) 
denote the row vector i, the column vector j and the entry (i, j) 
of matrix X, respectively. AT is the (conjugate) transpose of 
A, and vec(A) be the vectorizing operator on matrix A. If A is 
symmetric then vec(A) only takes an upper half of the matrix. 
Furthermore, we denote ∥ · ∥0 as the L0 (i.e number of non-
zero elements), and ∥ · ∥ as either L2 or Frobenius norm for 
vector or matrix respectively.

Definition 3.1. x|µ,α ∼ N (x|µ,α−1 ) denotes that 
the random variable x follows a Gaussian distribution 
with mean µ and variance σ2 = α−1, i.e, its probability 
P(x|µ,α) = N (x|µ,α−1 ).

Definition 3.2. An n × n matrix A is symmetric positive 
definite (SPD) if A = AT, xTAx > 0, ∀x ̸= 0. Equivalently, 
the eigenvalues of A, denoted as λ(A), are positive. An SPD 
matrix is considered as a point on Riemannian manifold de-
noted by Sym+

n [26].

Definition 3.3. Let F  be the Hilbert space associated with 
an inner product ⟨·, ·⟩. A feature map Φ : X !→ F , where X  
is the original space and F  is the feature space, defines a 
unique SPD kernel by K(x, y) = ⟨Φ(x),Φ(y)⟩. On the other 
hand, for a given SPD kernel and its corresponding reproduc-
ing kernel Hilbert space, there exists an associated feature 
map [27]. Hence, in machine learning, the kernel trick refers 
to constructing the kernel map K directly without explicit de-
fining the feature mapping Φ.

2 The database can be found at https://www.dropbox.com/s/01k9c75j0x3jfb9/
Dataset.zip?dl=0.
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Definition 3.4. Ak, exp(A) and log(A) of an SPD matrix 
A ∈ Rn×n are defined through its eigenvalues Λ and eigen-
vectors U  as [26]:

Ak ! Udiag([λk
1 , . . . ,λk

n])UT = UΛkUT,

exp(A) ! Udiag([eλ1 , . . . , eλn ])UT = UeΛUT,

log(A) ! Udiag([log(λ1 ), . . . , log(λn)])UT = U log(Λ)UT.

3.1.2. Covariance matrix descriptor. Let Rm×n, xi ∈ Rm×n, 
xi ∈ Rm be the set of m feature extracted from n samples in 
one trial with zero mean, i.e. X̄ = X − mean(X), COV matrix 
is constructed as

COV =
1

n − 1
X̄X̄T ∈ Sym+

m ,

3.1.3. Distance on Riemannian manifold. Since SPD matri-
ces are in Riemannian manifold, Euclidean distance is not 
effective to discriminate them. In [28], a detailed descrip-
tion and a comparison of the performance between different 
metrics on Sym+

n are conducted in the context of BCI appli-
cation. In this work, to measure the distance between two 
SPD matrices, we focus on using the distance between their 
tangent vectors. Although tangent vector flattens the mani-
fold and may not fully preserve the nonlinear discrimination 
of the original space Sym+

m, it is more computationally effi-
cient and yields almost equivalent performance with other 
metrics, such as log-det divergence or Kullback–Leibler 
divergence [28]. The tangent vector distance is summarized 
as follow.

 • The tangent vector T  of a point S at the reference point C 
is defined as.

T = logC S ! log(C− 1
2 SC− 1

2 ). (1)

 • The distance between two points S1 and S2 on the 
Riemannian manifold can be derived through the 
Euclidean distance between the tangent vectors as

d2
TS(S1 , S2 )C ! ∥T1 − T2 ∥2

F.

The reference point C can be simply selected as the identity 
matrix, or the geometric mean of all training data points. If the 
geometric mean is used, this process is called normalization. 
In this work, the geometric mean of the covariance matrices 
is obtained through the tangent vectors of the training set as 
described in algorithm 1.

Algorithm 1. Mean of covariance matrices using tangent vector.

Input: Training dataset {Si}N
i=1 ∈ Sym+

m .
Output: Mean of Si .
Procedure:
    1. Map each point to its tangent vector Ti = log(Si).

    2. Find the Euclidean mean T̄ = 1
N
∑N

i=1 Ti.
    3. Map the mean tangent vector to Sym+

m S̄ = exp(T̄).

3.1.4. Relevance vector machine. In this paper, we use the 
multi class RVM (mRVM)3 proposed by [29, 30], which is 
summarized as follows.

Let X = {xi}N
i=1 of N be a training set of N observations, 

each sample xi has m features {x( j)
i ∈ Xj}m

j= 1 in its original 
space Xj  and a corresponding label lj ∈ {1, . . . , C}, where 
C > 1 is the number of classes.

We aim to build a model consisting of a multi-class hyper-
plane W ∈ R(N+ 1)×C  and a multi-kernel weighted vector 
β ∈ Rm written as:

⎡

⎢⎢⎣

y1
...

yC

⎤

⎥⎥⎦

︸ ︷︷ ︸
y(x)∈RC

=

⎡

⎢⎢⎣

w10 w11 . . . w1N
...

...
...

...

wC0 wC1 . . . wCN

⎤

⎥⎥⎦

︸ ︷︷ ︸
WT∈RC×(N+1)

⎡

⎢⎢⎢⎢⎣

1 . . . 1
k1(x1, x) . . . km(x1, x)

...
...

...

k1(xN , x) . . . km(xN , x)

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
K(x)∈R(N+1)×m

⎡

⎢⎢⎣

β1
...

βm

⎤

⎥⎥⎦

︸ ︷︷ ︸
β∈Rm

where each element Kij(x) is the kernel function evaluated at 
the training sample xi using the feature x( j)

i . y(x) = WTK(x)β 
is the response of the model to a data sample x. For a training 
sample xi ∈ X, the response is

y(xi) = [y 1 . . . y c. . . y C]
T, y c =

{1 if l(x i) = c,
0 otherwise.

and for a new sample x, its label can be predicted as

l(x) = c, if yc(x) > yj(x) ∀j ̸= c. (2)

mRVM finds the optimal parameter W  and β using the 
Bayesian rule with the following probabilistic constraints.

First, the true label ti = l(x i) is assumed to be the measure 
of the prediction y(x) corrupted by a standardized normal 
noise ϵ ∼ N (0, 1), i.e l(x) = y (x) + ϵ, or

P(ti = c|xi, wT
c,β) = N (wT

cK(xi)β, 1 ). (3)

Second, only a few samples in the training set are repre-
sentative for its class, while the rest is redundant and safely 
ignored. This casts the sparsity on W , which automatically 
solves the model’s over-fitting problem and rejecting outliers. 
Hence, the model sparseness can be represented as

P(W|α) = N (W|0,α−1 ). (4)

Third, since some features are more important than the 
other, we can set 

∑m
i=1 βi = 1, βi > 0 , which implies a 

Dirichlet distribution of β, i.e.

P(β|ρ) = Dir(β|ρj). (5)

Hence, the maximal magnitudes of W  and β are controlled 
by α and ρ, which are also enforced to follow Gamma distri-
bution, i.e.

P(αci|τci, υci) = γ(αci|τci, υci), P(ρ|µ,λ) = γ(ρ|µ,λ).
 (6)

The parameter Ξ = [τ, υ, µ, λ] can be automatically tuned 
as the arguments maximizing the evidence approximation, 
which is the following marginal likelihood function

3 The Matlab code implementation of mRVM is published by the author 
Psorakis at https://github.com/ipsorakis/mRVMs.
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P(l(X)|X,Ξ) = P(l(X)|X, W,β)P(W|τ ,υ)P(β|µ,λ) (7)

where P(W|τ ,υ) = P(W|α )P(α |τ ,υ) and P(β|µ,λ) = 
P(β|ρ)P(ρ|µ,λ). Substituting (3)–(6) to (7), one can 
iteratively update Ξ by following the gradient descent 
∂P(l(X)|X,Ξ)/∂Ξ. For an updated Ξ, one can update 
the optimal parameters W∗ = argmax P(W|τ ,υ) and 
β∗ = argmax P(β|µ,λ). The process runs iteratively until 
reaching some convergence conditions.

Finally, for a new sample x, its label can be predicted by 
(2) with the confidence

P(l(x) = c|X, W∗,β∗) = Eϵ

⎡

⎣
∏

i≠c

Φ(ϵ+ (w∗
c − w∗

i ))
TK(x )β∗

⎤

⎦,

where Eϵ is the expectation along the variable ε.
Compared with SVMs, RVMs offer a number of merits, as 

an RVMs can be interpreted as an extension of an SVM based 
on the Bayesian optimal principle [31].

 • First, an RVM can classify multiple-label data simultane-
ously, while an SVM is an intrinsic binary classifier. Hence, 
in order to recognize multiple classes, an SVM needs to be 
implemented in a pairwise manner, i.e one-versus-all or 
one-versus-one. Hence, the number of classifiers increases 
at least proportionally to the number of classes.

 • Second, the output of an RVM is the probability of a 
sample belonging to a class, thus providing a prediction 
confidence. An SVM in contrast can only tell if a point is 
on the left or right of the decision boundary, i.e. true-or-
false prediction. Hence, when an SVM is used for multiple 
classes, there could be a situation that an SVM cannot 
make a decision. For example, three pairwise SVMs 
predict three different labels for a sample that can belong 
to one of three classes. Furthermore, voting mechanism 
does not yield authentic prediction probability.

 • Third, when using an SVM, one must confront the over-
fitting problem, i.e. the decision boundary fits perfectly 
to the training data but yields poor results on the testing. 
Therefore, the regularization parameter for an SVM must 
be tuned empirically, usually through a number of cross 
validations comparing all parameters. This tuning is bur-
densome especially in a multiple classes case. No optimal 
parameter is guaranteed though. The principle of an RVM, 
in contrast, is established based on an assumption that 
only a small subset of the training dataset is important to 
construct the boundary while the rest is safe to discard. 
The weights of these vectors, i.e. the relevance vectors, 
are optimized automatically based on the Bayesian prin-
ciple. Thus an RVM avoids the over-fitting problem in an 
elegant way without any tuning requirements.

 • Fourth, the sparsity of an RVM is obtained through the 
Bayesian principle, while sparsity of an SVM is obtained 
through a penalization term, i.e. typically by constraining 
the L1 or L2 norm of the parameters. Hence, the number 
of relevance vectors in an RVM is significantly smaller 
than that of an SVM. Thus, the prediction process of 

RVM is more efficient and faster than an SVM whilst 
maintaining comparable generalization error.

 • Lastly, the kernel in an RVM does need not to be posi-
tive definite, while the kernel in SVM must satisfy the 
Mercer’s condition [31]. In this work though, since we 
used the log-Euclidean with Gaussian kernel, the Merce 
condition is satisfied and this is not a clear advantage. 
However, an RVM can avoid this constraint if one wants 
to use other Riemannian distance metrics directly with 
the Gaussian kernel.

The principle disadvantage of an RVM is that it is com-
putationally expensive for training, since the optimization 
function is non-convex. The training time of an RVM is often 
longer than an SVM for a binary class case. However, for 
multiple classes, this difference is not noticeable, considering 
that a heavy cross-validation process of an SVM is needed in 
order to obtain a good performance. For testing, however, an 
RVM is significantly faster than an SVM, which we are more 
concerned about.

3.2. Proposed approach

3.2.1. Extracting low level features. In order to construct the 
covariance matrix, we first need to extract certain low level 
features. In this work, we investigate two ways to extract low 
level features:

 • Using the preprocessed signal from selected channels 
directly, i.e. X ∈ Rm×n, where m is the number of chan-
nels, and n is the number of samples in one epoch. This 
low level feature has been used successfully in motor 
imagery, such as in [32].

 • In order to exploit information from the frequency domain, 
we also extract wavelet coefficients using the Morlet 
wavelet for each channel. The features vector then is a 
concatenation of the channel index iChn, the raw data, and 
the wavelet coefficients of each channel, i.e. X ∈ Rd×L, 
where d = nwc + 2, nwc is the number of wavelet coef-
ficients at one instant time sample, and L = nm. Notice 
that although the variance of the channel index (diagonal 
element) is equal for all trials, its correlations to other 
features (off diagonal elements) vary among trials. Doing 
so allows us incorporating both spatial and spectral 
correlation while keeping the size of covariance matrix 
small, which also ensures that the covariance matrix is 
well defined, i.e. positive definite.

3.2.2. Main procedure. The main procedure of the proposed 
method is described in figure 1, which includes the following 
steps.

 • In the preprocessing step, we apply frequency and spatial 
filters to select the most corresponding frequency band 
and channels.

 • Low level features are then extracted as described in sec-
tion  3.2.1, and covariance matrices are computed. The 
mean of the covariance matrices is obtained from the 
training set as described in algorithm 1.
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 • This geometric mean matrix obtained from the training 
set is then used to normalize the whole dataset and com-
pute the tangent vectors according to (1). An RVM is used 
to train and classify the tangent vectors.

4. Experiments procedure

4.1. Main procedure.

In this work, 15 healthy subjects (S1–15, 11 males and 4 
females, ages 22–32) performed three different types of imag-
ined speech, namely imagined speech of short words, long 
words and vowels. All subjects were right-handed except sub-
ject S13. The aim was to investigate the mechanisms of imag-
ined speech and evaluate the suitability of each group for BCI 
applications. The group of short words included the words 
‘in’, ‘out’ and ‘up’, while the group of long words consisted 
of ‘cooperate’ and ‘independent’. These words were chosen in 
order to evaluate the effect of the meaning and the complexity 
of the words. In order to evaluate the effect of the sound, three 
phonemes were used, namely /a/, /i/ and /u/. Finally, in order 
to further analyze the effect of the complexity, i.e. the length 
and the different sounds, we performed an additional experi-
ment where the subjects had to imagine either one of the short 
words (‘in’) or one of the long words (‘cooperate’).

During the experiments, the subjects were instructed to 
pronounce these words internally in their minds and avoid any 
overt vocalization or muscle movements. The subjects were 
receiving instructions about the desired word/phoneme based 
on visual cues from a computer monitor. The exper imental 
setup is shown in figure 2, while figure 3 shows the exper-
imental procedure which is described in more detail below. 
The experimental protocol was approved by the ASU IRB 
(Protocols: 1309009601, STUDY00001345) and each partici-
pant signed an informed consent form before the experiment.

Each subject performed one to three sessions of imagined 
speech. Each session corresponded to one of the mentioned 
groups of speech imagery, e.g. three short words, and was 
conducted approximately in 1 h. A single experimental session 
was comprised of 100 trials per word or sound, which were 
shown randomly. During each trial, the subject would hear a 
beep sound that was repeated at period T. This helped create 
the rhythm that subjects should imagine pronouncing the 
words or phonemes. In more detail, the beep sound appeared 
firstly when the trial started and was repeated four more times. 
At the beginning of the trial, the subject was also prompted 
with a visual cue indicating the desired word to be imagined. 
The cue lasted for 7 × T  s. The subject was instructed to per-
form speech imagery at each beep sound and continue at the 
same rhythm until the visual cue disappeared. This resulted in 
the subject performing speech imagery for an additional three 
periods after the last beep sound. Finally, the trial ended with 
a rest period of approximately 2 s where no cue and no sounds 
were present. For short words and vowels, the period was 
T = 1 s, while for long words the period was T = 1.4 s. In the 
case of comparing between a short and a long word, T = 1.4 s  
was also chosen to render the comparison more accurate.  
The values for T were chosen empirically based on how long it 
would take the subjects to pronounce the words overtly.

Figure 1. Main procedure of the proposed method.

Figure 2. Experimental setup. The subject is wearing the cap 
with EEG electrodes and looks at a monitor a few inches away. 
The monitor shows the task that the subject must execute. In this 
illustrative figure, the subject was imagining pronouncing the  
word ‘in’.

Figure 3. Experimental procedure. The vertical arrows represent 
the time instants where the subject was expected to perform speech 
imagery, and T denotes the rhythm period.
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This experiment procedure is similar to the ones presented 
in D’Zmura [11] and Brigham [13]. It is important to notice that 
in our work, as in those experiments, the analyzed signals cor-
respond to a segment of the experiment where only a visual cue 
is present and any auditory cues have been stopped. The aim is 
to avoid any possible evoked brain activity related to the sound 
that may lead to misinterpretation of the data. Furthermore, we 
are interested in classifying different words or sounds imag-
ined in the same period, but not between different rhythms as 
investigated by Deng et al [16] and their related works.

4.2. Data acquisition and conditioning

The EEG signals were acquired using a BrainProducts 
ActiCHamp amplifier system from 64 electrodes placed 
according to the 10/20 international system [33]. The data 
were recorded at 1000 Hz and later they were downsampled at 
256 Hz. During preprocessing, a 5th order Butterworth band-
pass filter between 8–70 Hz was applied to remove any low-
frequency trends in the data as well as possible artifacts related 
to EMG activity. A notch filter at 60 Hz was also applied in 
order to remove line noise. Finally, an electro-oculogram artifact 
removal algorithm [34] was applied on the data to eliminate any 
eye blinking or eye movement artifacts.

5. Data analysis and results

5.1. Data analysis

We first analyzed the data to show that the collected signals 
were corresponding to speech imagery, and investigated sev-
eral techniques to select the corresponding channels. The first 
method was based on CSPs [35–37], as has been done in many 
related works. The CSP method was applied in two different 
ways. In the first case, we simply performed a binary class 

CSP analysis, where the first class contained signals during 
mental imagery and the second one contained signals during 
resting in the trial. The regularized CSP toolbox provided by 
Lotte et al [38] is used to perform CSP in this work. In the 
second method, the multi class CSP [39] was applied. This 
technique first performs independent component analysis 
(ICA) to obtain orthogonal channels, and selects the channels 
with the highest mutual information with the corresponding 
labels.

Figure 4 shows the first six CSP patterns for subject S3 
during imagination of short words using the first CSP method. 
The corresponding CSP analysis aims to distinguish between 
the mental task of speech imagery in general, i.e. irrespec-
tively of the imagined word, and the resting condition. In this 
binary analysis, the first and the last CSP patterns correspond 
one-by-one to the CSP filters that increase the variance of the 
speech imagery task and the resting condition, respectively. 
Since the aim is to reduce the number of channels for the fea-
ture extraction process, only those patterns that are related 
with the speech imagery task and not with the resting phase 
are considered and shown in figure 4.

On the other hand, figure 5 shows the CSP patterns for the 
same subject during short word imagination but following the 
second CSP method. As explained, the corresponding multi-
class CSP patterns produced by this method are ranked based 
on their mutual information scores with each mental task from 
highest to lowest. The first six of those hence contain the most 
information about the speech imagery and are selected to 
show in figure 5.

By examining the results of figure 4 and figure 5, we con-
clude that the brain activity during the experiment was indeed 
concentrated almost exclusively on the left frontal, middle 
and parietal sides of the brain which lie over Broca’s area, the 
motor cortex and Wernicke’s area. These areas are involved 
in speech production and recognition, as also acknowledged 

CSP 1 CSP 2 CSP 3 CSP 4 CSP 5 CSP 6

Figure 4. The first 6 CSP patterns for subject S3 during speech imagery of short words. These patterns correspond to the first CSP method 
which aims to distinguish between the mental task of speech imagery in general, i.e. irrespectively of the imagined word, and the resting 
condition. Here, only those patterns that increase the variance of speech imagery and reduce the one of resting are presented.

CSP 1 CSP 2 CSP 3 CSP 4 CSP 5 CSP 6

Figure 5. The first 6 CSP patterns for subject S3 during speech imagery of short words. These patterns correspond to the second CSP 
method which aims to differentiate between each of the individual classes/words. The method ranks the CSP patterns based on their mutual 
information. Here, only the first components are presented because they contain the most information about the mental task of speech 
imagery.
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in the related literature [12, 40, 41]. This is more evident 
in figure  5 (CSP1–CSP5) compared to figure  4 (CSP3 and 
CSP6). More specifically, in figure  4, we notice that some 
components (CSP2, CSP4) relate more to areas in the visual 
cortex. This is to be expected since during the main trial a 
visual cue was presented to the users while in the rest period 
the cue was absent. Thus, the CSP analysis just detects and 
shows that difference. However, this visual stimulus is present 
in all trials across all classes, therefore, its effect on the actual 
classification procedure is negligible.

To further verify the above conclusions, we performed an 
additional analysis that was based on the autocorrelation of the 
signals on each channel. In the experiments the subjects were 
instructed to perform speech imagery at specific time intervals 
defined by auditory cues at a certain rhythm. The basic premise 
is that this rhythm should also be visible in the autocorrelation 
function of the signals. We detected which channels exhibited 
such periodicity repeatedly across trials by analyzing the fast 
Fourier transform (FFT) of the autocorrelation function of each 
channel and scoring those channels whose highest peak in the 
FFT was close to the frequency of the auditory cue. We picked 
the ones that were exhibiting such periodicity in 70–80% or 
more of the trials (depending on the subject). The chosen chan-
nels for subjects S3, S5 and S6 are shown in figure 6. As it can 
be seen, this analysis also points more towards the same areas 
of the brain as in the CSP methods discussed previously which 
solidifies the validity of the data.

Among the three methods, the binary CSP provides the 
highest classification accuracy and is quite consistent in most 
of the cases. It is also the simplest method as it is unsupervised 
in our implementation, i.e. all mental tasks are considered as 
one class, e.g. involving speech imagery, instead of separated 
classes. The multi-class CSP occasionally yields better results 
than the first method, depending on the subjects and condi-
tions. Finally, selecting channels based on the autocorrelation 
method yields the least classification accuracy in our experi-
ment. Hence, in the later discussion, we only report the results 
using the CSP algorithms.

Furthermore, we also performed a time-frequency analysis 
on the data. Among the mentioned types of speech imagery, 
the frequency domain characteristics between a short word and 
a long word show some noticeable discrepancies. Specifically, 
figure 7 shows the time–frequency response of channels FC5, 
FC3, F5, FT7 (Broca’s area) and CP5, TP7, CP3 and P5 
(Wernicke’s area) for subject S14. Concretely, we first obtained 

the Morlet wavelet transform using a setting of eight octaves 
with 20 voices during a period of 8 s in each trial, which con-
sists of 2 s before the last beep, 4.2 s of the main trial, and 1.8 s 
of the pause period, i.e. resting. Then, we took the average of 
these wavelet magnitudes across all trials for each class.

In figure  7, we observe activity in the frequency range 
of 60–70 Hz, i.e. close to the line noise frequency of 60 Hz. 
However, in our signal preprocessing we applied a notch filter 
with a bandwidth of 3 Hz centered at 60 Hz , i.e. −3dB at  
58.5 Hz and at 61.5 Hz. Furthermore, the effect is not notice-
able in channels TP7, CP5, CP3 and P5. Thus, it is safe to reject 
line noise as the source. Similarly, there is also activity in the 
frequency band of 20–31 Hz at the channels of Broca’s area, 
which can be best observed in channels F5 and FC3. However, 
in both frequency ranges, i.e. 60–70 Hz and 20–31 Hz, the 
activity changes overtime and still persists during the resting 
state. This may indicate idling of the brain at these frequency 
ranges for the specific subject and channels of interest.

Furtheremore, the activity in Broca’s area mainly appears 
above 20 Hz, whereas that in Wernicke’s area appears below  
15 Hz. Figure 7 also points out that the brain activity remains high 
during resting, i.e. last 1.8 s, and decreases during mental imagi-
nation. In addition, the activity seems to be more suppressed in 
the short word case than the long word, especially in the high 
frequency band (31–70 Hz) and the channels of the Broca’s area.

5.2. Classification results

To evaluate the proposed method, we performed a 10-fold 
cross-validation procedure. The training and testing sets were 
partitioned randomly. For short words and vowels, we classi-
fied the data across three classes with 90% (270 trials) of the 
datasets used for training and 10% (30 trials) for testing. For 
long words and the comparison between a short and a long 
word, 80% (160 trials) of data are used for training and 20% 
(40 trials) for testing.

For short words and vowels, we extracted 4 s for each 
trial. The first 3 s correspond to the expected speech imagery. 
A period of 1 s after that was further added in order to cap-
ture mental activity that the subject might still perform after 
the visual cue disappeared. The total 4 s time period is fur-
ther divided into three epochs of 2 s with a 1 s overlap. For 
long words and the short-versus-long word comparison, we 
extracted 4.5 s per trial. This interval was also divided into 
three epochs of 2 s with a 1.25 s overlap.

S3 S5 S6

Figure 6. Scalp map of the thresholded autocorrelation score of the channels for subjects S3, S5, S6 performing short words imagery.
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The number of CSP components was chosen empirically 
and it varied between 6 and 14 depending on the subjects 
and testing conditions. In most of the cases, the binary CSP 
method is used to select the channels. In the last test described 
later, we occasionally found that the multi-class CSP would 
yield better results. In all cases, multiple Gaussian kernels are 
used for the mRVM. The multi kernel parameters were typi-
cally set to [20, 10, 1, 0.1, 0.05, 0.025, 0.01] with small adjust-
ments for each subject and each case.

When classifying short words, vowels, and long words, 
we found that incorporating frequency information did not 
provide any improvement, so that only the signals spatially 
filtered by CSP were used to compute the covariance matrix 
(method 1). In contrast, when classifying short versus long 
words, combination of the two features by simply concat-
enating the tangent vectors from two covariance matrices 
(method 2) can improve the results in most subjects. This 
suggests that the difference in the complexity of the words 
could create discriminative features across frequency bands. 
To extract the second type of low level features, Morlet 

wavelet transform using the function cwt provided by Matlab 
was used. The number of octaves and number of voices for 
Morlet wavelet transform are set to 8 and 10 respectively, 
which yields totally 80 (= 8 × 10) scales. Only the scales in 
the range [8, 40] are used to construct the low level feature 
vector, which in turn yields the low level feature vector in the 
dimension of 35 (= 33 subands  +1 raw signal  +1 channel 
index). Since the dimension of the tangent vector extracted 
from this covariance matrix is high, we apply PCA to reduce 
its dimension into 15–30 components. The highest accuracy in 
this case is obtained by using the multi-class CSP algorithm 
with 12–14 CSP components.

The classification results of all cases are presented in 
figure  8 and table  1, which show the mean, minimum and 
maximum values for each subject participating in each group. 
The two last groups in figure 8 represent the results of classi-
fying a short versus a long word using the first set of low level 
features (method 1), and the combination between the two 
kinds of features mentioned previously (method 2). To com-
pare the classification accuracy between groups of different 

Figure 7. Time-frequency response of channels F5, FT7, FC5, FC3 (Broca’s area) and TP7, CP5, CP3, P5 (Wernicke’s area) corresponding 
to speech imagery of a long word (class 1) and a short word (class 2) for subject S14. The left dotted line corresponds to the last beep, and 
the right denotes the end of the main trial in accordance to our experimental protocol.
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number of classes, we further compute the κ value, which is 
defined as

κ = 1 − 1 − P%
1 − C%

,

where P% is the prediction accuracy, and C% is the chance 
level, i.e. C% = 50% for two classes. The mean, minimum 
and maximum κ values for each subject participating in each 
group are presented in figure 9 and table 1. The averaged clas-
sification accuracies for all subjects in each group are reported 
in table 2, which is well above chance level.

6. Discussion

6.1. Comparing with previous approaches in the literature

In order to evaluate the performance of the proposed approach, 
we further compare the results with several works in the field 
using the datasets of vowels, short words and shot-long words.

We first compare with the standard baseline approach used 
in BCI applications, which commonly includes a CSP filter, 
followed by extracting log-variance as the feature and an 
LDA classifier [42]. To classify three different vowels or short 
words, in the training step, for each pairwise class, such as 

Figure 8. Mean, minimum and maximum classification accuracy (%) for different subjects in each mental task.

Table 1. Mean  ±   Std of the accuracy (%) and kappa values for all subjects and speech imagery types.

(a) Vowels

Subject S4 S5 S8 S9 S11 S12 S13 S15

Accuracy 47.0 ± 4.6 48.0 ± 7.2 51.0 ± 6.7 47.0 ± 5.5 53.0 ± 4.0 51.0 ± 6.3 46.7 ± 8.2 48.0 ± 7.2
κ value 0.21 ± 0.07 0.22 ± 0.11 0.27 ± 0.10 0.21 ± 0.08 0.30 ± 0.06 0.27 ± 0.09 0.20 ± 0.12 0.22 ± 0.11

(b) Short words

S1 S3 S5 S6 S8 S12

Accuracy 48.0 ± 6.1 49.7 ± 5.5 46.3 ± 8.2 54.0 ± 9.1 47.7 ± 9.8 54.7 ± 6.9
κ value 0.22 ± 0.09 0.25 ± 0.08 0.20 ± 0.12 0.31 ± 0.14 0.22 ± 0.15 0.32 ± 0.10

(c) Long words

S2 S3 S6 S7 S9 S11

Accuracy 70.0 ± 7.8 64.3 ± 6.6 72.0 ± 0.6 64.5 ± 5.5 67.8 ± 6.8 58.5 ± 7.4
κ value 0.40 ± 0.16 0.29 ± 0.13 0.44 ± 0.12 0.29 ± 0.11 0.36 ± 0.14 0.17 ± 0.15
(d) Short versus long words (method 1)

S1 S5 S8 S9 S10 S14

Accuracy 63.3 ± 2.9 65.8 ± 3.1 76.8 ± 3.0 69.4 ± 7.5 76.8 ± 6.2 87.5 ± 5.5
κ value 0.27 ± 0.06 0.32 ± 0.06 0.54 ± 0.06 0.39 ± 0.15 0.54 ± 0.12 0.75 ± 0.11

(e) Short versus long words (method 2)

S1 S5 S8 S9 S10 S14

Accuracy 70.3 ± 5.5 71.5 ± 5.0 81.9 ± 6.5 88.0 ± 6.4 79.3 ± 7.9 89.3 ± 3.5
κ value 0.41 ± 0.11 0.43 ± 0.10 0.64 ± 0.13 0.76 ± 0.13 0.59 ± 0.15 0.79 ± 0.07
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(1–2), (2–3), (3–1), we constructed a CSP filter. The log vari-
ance of the CSP filtered channels is then used as the feature. 
We tested with two to six CSP components, which yield the 
feature vector in dimension of 4 to 12 respectively. Next, the 
mean of the feature vectors in the training set is used to whiten 
the dataset, i.e. subtracting the data set by the mean, before 
calibrating the LDA classifier. The LDA’s regularization 
parameter is tested from 0.05 to 0.95 with 0.05 step. Hence, 
this training process yields totally three classifiers of a triplet 
(CSP matrix, mean vector, LDA). In the testing process, we 
applied three classifiers to each testing data point, i.e. applying 
CSP, computing log-variance, subtracted by the feature vector 
mean generated from the training process, and applying LDA 
classifier. In our tests, a number of CSP components between 
six to eight and a regularization parameter of 0.1 yield best 
results in most subjects. The same procedure to extract the time 
epoch from the recorded EEG as in our proposed approach is 
used. That is, a trial with 4 s is divided into three epochs, each 
has 2 s with 1 s overlap. The label of the tested trial is assigned 
by voting mechanism. Since each trial has three epochs and 
each epoch is tested against three classifiers, there is total nine 
predicted labels for each trial. The label that appears most fre-
quently and at least four times is assigned to that trial. The 
results are reported in table 3 by taking the best mean values 
among the mentioned parameter set. It can be seen that the 
accuracy is even below the chance level.

In [13], the authors study the dataset provided by [11] in 
order to classify two syllables, namely /ba/ and /ku/, whereas 
the experimental procedure in [11] is very similar to ours. 
According to their report [13], classification using the full 
dataset did not provide accuracy greater than chance. Thus, the 

Hurst exponent was used to select good trials. In our attempt 
to implement this method, the ICALAB toolbox [43] is used 
to perform ERICA algorithm, and the threshold (0.70–0.76) 
on Hurst exponent is set to select the independent components 
as in their report. In our case, there were many trials that were 
rejected from the dataset due to all independent components 
being rejected. For example, for subject S13, only 33, 23 and 
28 trials were deemed useful for each vowel, respectively. In 
our opinion, although the use of the Hurst exponent provides 
an automated method for rejecting bad channels/ICs which is 
critical in the BCI field, it might also be too restrictive for a 
BCI application for two reasons. First, especially compared to 
the number of 100 trials per class, the number of valid trials 
is too small for creating a training and a testing dataset that 
will result in a robust classifier and an accurate validation 
procedure. Second, this approach could be problematic for a 
user in a real-time scenario as most of the time the user would 
not have control of the system. As feedback is deemed very 
important during learning of a BCI system [44], this strict 
rejection would create significant issues during operation 
because the system would not respond. Our method on the 
other hand, does not involve any rejection but rather EEG arti-
fact correction which results in classification of EEG signals 
without interruptions.

We also compare our results with the method proposed by 
DaSalla et al [14]. In their approach, the first 500 ms of each 
trial are used to extract the features. Specifically, for each pair-
wise classification, four CSP channels are computed from the 
training sets and sequentially used to decompose the training 
and testing time series. The final feature vectors are obtained 
by concatenating the time series of the four channels without 

Figure 9. Mean, minimum and maximum of kappa (κ) value for different subjects in each mental task

Table 2. Average of mean  ±   Std of the accuracy (Acc) and kappa (κ) values.

Group Participants Acc (%) κ

Vowels S4,S5,S8,S9, 49.0 ± 2.4 0.23 ± 0.04
S11,S12,S13,S15

Short (S) Words S1,S3,S5,S6,S8,S12 50.1 ± 3.5 0.25 ± 0.05
Long (L) Words S2,S3,S6,S7,S9,S11 66.2 ± 4.8 0.32 ± 0.10
S & L (Method 1) S1,S5,S8,S9,S10,S14 73.3 ± 8.9 0.47 ± 0.18
S & L (Method 2) S1,S5,S8,S9,S10,S14 80.1 ± 8.0 0.60 ± 0.16
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further processing. The SVM with a radial basis functions 
kernel is used to classify the data. In our implementation, the 
sampling frequency is 256 Hz, which yields the feature vector 
of dimension 512(= 4 × 128). We use 90% of the dataset for 
training and 10% for testing, and perform 20 cross validations. 
The functions svmTrain and svmclassify provided by Matlab 
are used, where the penalizing parameter takes the values in 
the set {0.01, 0.1, 1, 10, 100} and the Gaussian kernel param-
eter takes the values in the range from 0.1 to 40 in increments 
of 0.2. The label of each trial is decided based on voting 
from each pairwise trained SVM classifiers. The results of 

applying their method on our data is reported in table 3 by 
taking the best mean values among the mentioned parameter 
set. However, the accuracy is low, in certain cases being even 
below chance level. This may be due to the difference between 
the two experimental procedures. In their experiments, sub-
jects were instructed to imagine vocalizing and mouthing 
the vowels. As mentioned by Brigham et al [13], the set of 
instructions proposed by Dasalla et al may be more related to 
motor imagery, where the CSP yields best results. In contrast, 
our experiment emphasizes on imagery of the sound, which is 
more related to speech imagery.

Table 3. Comparing mean  ±   std, min ÷ max accuracy between different methods for speech imagery.

(a) Comparing methods for Vowels data set

Subject S4 S5 S8 S9 S11 S12 S13 S15

Log  +  LDA 29.3 ± 9.9 30.6 ± 7.9 34.6 ± 11.8 40.3 ± 10.4 31.0 ± 8.5 37.3 ± 7.1 37.5 ± 8.1 31.0 ± 12.7
20.0 ÷ 50 20.0 ÷ 43.3 16.6 ÷ 60 13.3 ÷ 46.6 20.0 ÷ 46.6 30.0 ÷ 53.3 26.6 ÷ 53.3 10.0 ÷ 50.0

Dasalla et al [14] 32.3 ± 7.4 36.3 ± 2.9 36.7 ± 9.2 34.7 ± 7.7 33.7 ± 8.7 41.7 ± 5.7 38.7 ± 7.6 31.0 ± 7.4
26.7 ÷ 50 33.3 ÷ 43.3 30.0 ÷ 60 30.3 ÷ 53.3 23.3 ÷ 53.3 36.7 ÷ 56.7 30.3 ÷ 56.7 23.3 ÷ 46.7

Min et al [45] 35.8 ± 4.1 39.4 ± 4.6 46.5 ± 5.6 36.1 ± 4.4 36.0 ± 7.1 39.3 ± 9.4 34.3 ± 6.5 34.0 ± 8.3
30.0 ÷ 43.3 30.0 ÷ 46.7 36.7 ± 56.7 26.6 ÷ 43.3 30.0 ÷ 50.0 30.0 ÷ 60.0 23.3 ÷ 43.3 23.3 ÷ 46.7

Tangent  +  ELM 41.0 ± 13.3 44.6 ± 11.2 45.3 ± 8.9 46.0 ± 5.1 43.3 ± 7.9 48.6 ± 8.9 45.7 ± 7.2 46.7 ± 7.5
23.0 ÷ 66.7 30.3 ÷ 66.7 30.0 ÷ 56.7 36.7 ÷ 53.3 33.3 ÷ 53.3 36.7 ÷ 60.0 36.7 ÷ 63.3 36.7 ÷ 60.0

Tangent  +  RVM 47.0 ± 4.6 48.0 ± 7.2 51.0 ± 6.7 47.0 ± 5.5 53.0 ± 4.0 51.0 ± 6.3 46.7 ± 8.2 48.0 ± 7.2
40.0 ÷ 56.7 33.3 ÷ 56.7 43.3 ÷ 63.3 36.7 ÷ 53.3 46.7 ÷ 60 43.3 ± 63.3 33.3 ÷ 60.0 33.3 ÷ 56.7

(b) Comparing methods for short words data set

Subject S1 S3 S5 S6 S8 S12

Log  +  LDA 39.6 ± 7.6 32.6 ± 4.9 27.7 ± 9.8 33.7 ± 6.9 43.3 ± 7.0 27 ± 10.8
26.6 ÷ 53.3 26.6 ÷ 43.3 20.0 ÷ 50 23.3 ÷ 43.3 36.6 ± 53.3 13.3 ÷ 43.3

Dasalla et al [14] 42.3 ± 8.2 38.3 ± 5.3 35.3 ± 8.3 36.0 ± 5.2 38.3 ± 6.1 41.33 ± 6.7
33.3 ÷ 56.7 33.3 ÷ 50.0 30.0 ÷ 56.7 33.3 ÷ 50.0 33.3 ÷ 53.3 33.3 ÷ 53.3

Min et al [45] 41.0 ± 5.5 42.3 ± 8.0 48.3 ± 7.2 32.3 ± 8.0 34.7 ± 5.9 49.0 ± 6.7
46.7 ÷ 56.7 26.7 ÷ 56.7 36.7 ÷ 60.0 23.3 ÷ 43.3 26.7 ÷ 46.7 36.7 ÷ 56.7

Tangent  +  ELM 44.6 ± 10.3 45.3 ± 7.4 43.4 ± 7.7 46.3 ± 8.1 45.0 ± 8.5 55.0 ± 9.8
33.3 ÷ 60.0 33.3 ÷ 56.7 30.0 ÷ 56.7 36.7 ÷ 56.7 30.0 ÷ 56.7 40.0 ± 70.0

Tangent  +  RVM 48.0 ± 6.1 49.7 ± 5.5 46.3 ± 8.2 54.0 ± 9.1 47.7 ± 9.8 54.7 ± 6.9
40.0 ÷ 56.7 40.3 ÷ 56.7 36.7 ÷ 66.7 40 ÷ 70 36.7 ÷ 66.7 43.3 ÷ 66.7

(c) Comparing methods for short versus long words data set

Subject S1 S5 S8 S9 S10 S14

Log  +  LDA 50.5 ± 14.8 59.5 ± 5.7 36.9 ± 15.9 74.1 ± 16.6 64.3 ± 23.0 78.5 ± 6.3
30.0 ÷ 72.5 52.5 ÷ 70.0 21.9 ÷ 71.9 31.3 ÷ 87.5 20.0 ÷ 80.0 70.0 ÷ 90.0

Dasalla et al [14] 61.5 ± 12.0 61.5 ± 8.8 62.5 ± 8.3 58.1 ± 7.2 66.0 ± 11.5 54.5 ± 13.2
50.0 ÷ 85.0 50.0 ÷ 80.0 50.0 ÷ 81.3 50.0 ÷ 75.0 50.0 ÷ 85.0 45.0 ÷ 90.0

Min et al [45] 51.0 ± 8.4 59.5 ± 6.4 59.4 ± 11.5 51.9 ± 6.6 61.0 ± 9.7 54.0 ± 6.1
40.0 ÷ 65.0 50.0 ÷ 70.0 43.8 ÷ 81.3 43.8 ÷ 68.8 45.0 ÷ 75.0 50.0 ÷ 70.0

Tangent  +  ELM 73.5 ± 8.2 70.0 ± 6.2 80.6 ± 13.2 72.5 ± 12.2 75.5 ± 6.8 85.5 ± 6.8
60.0 ÷ 85.0 60.0 ÷ 80.0 62.5 ÷ 93.8 43.7 ÷ 87.5 65.0 ÷ 85.0 75.0 ÷ 95.0

Tangent  +  RVM 63.3 ± 2.9 65.8 ± 3.1 76.9 ± 3.0 69.4 ± 7.5 76.8 ± 6.2 87.5 ± 5.5
(Method 1) 60.0 ÷ 70.0 62.5 ÷ 70.0 71.8 ÷ 81.3 59.4 ÷ 81.3 67.5 ÷ 85.0 75.0 ± 92.5
Tangent  +  RVM 70.3 ± 5.5 71.5 ± 5.0 81.9 ± 6.5 88.0 ± 6.4 79.3 ± 7.7 89.3 ± 3.5
(Method 2) 62.5 ÷ 77.5 60.0 ÷ 80.0 75.0 ÷ 93.8 78.1 ÷ 96.9 70.0 ÷ 95.0 82.5 ± 95.0
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We also implemented the method proposed by Min 
et  al [45], which yields excellent results on their dataset. 
In their approach, each 3 s imagination trial is bandpass fil-
tered in [1, 70] Hz and partitioned into 30 segments of 0.2 s 
with 0.1 s overlap. Four features, namely mean value, vari-
ance, standard deviation, and skewness, are extracted from 
each segment. Concatenating of these features from a total 
of 60 channels yields the final feature vector of dimension  
240 (  =  4 × 60). Each segment is then treated as an inde-
pendent sub-trial. Sparse regression is then utilized to 
perform feature selection and reduce the dimension. The 
extreme learning machine (ELM) classifier is used to learn 
the boundary decision from the training set and classify the 
test samples. The final label of the trial is then determined by 
the labels mostly appearing from all sub-trials. In our imple-
mentation, the function lasso provided by Matlab is imple-
mented to perform sparse regression, where the regularization 
parameter λ takes the values from 0 to 0.2 in increments of 
0.01. The optimal λ is selected based on the smallest mean 
square approximation error MSE returned, as suggested in the 
original paper. The multi-class ELM4 with linear kernel pro-
posed by [46] is used in our implementation, since the linear 
kernel is the most suitable in term of sensitivity and specificity 
reported by Min et al [45]. The regularization parameter for 
ELM is set from 0 to 5 by increments of 0.5. The slight dif-
ference is that we used the multi-class version of ELM while 
Min et al only considered pairwise classification. The results 
are reported in table 3 by taking the best mean values among 
the mentioned parameter set using totally 20 cross validations.

To further verify the performance of Riemannian feature, 
we also replace the RVM by the ELM algorithm. Concretely, 
the tangent vectors are extracted using the same procedure 
described in figure 1, and the ELM with Gaussian kernel pro-
posed by [46] is used to classify the features. The regulariza-
tion parameter is tested from 0.01 to 5 with step 0.25, and the 
highest results are reported in table 3. In our test, this method 
also yields better results than other methods, which proves the 
effectiveness of the Riemannian feature. The training time of 
ELM is much smaller than that of the RVM. However, the result 
comparing with the RVM method is not stable, as sometimes 
the accuracy is very low, thus yielding a large standard devia-
tion. This instability could be due to the principle that ELM 
selects the weights of the first layer of the neural network ran-
domly. The result of RVM is more stable, and hence preferred 
in our approach. We further performed t-tests on the mean 
accuracies reported in table 3 (a), (b) and (c) at the 5% sig-
nificance level. For the vowels, the RVM (µ = 49.0,σ = 2.4) 
performed better than the ELM classifier (µ = 45.2,σ = 2.3 );  
(t(7 ) = 3.48, p = 0.01 ). For the short words, the RVM 
(µ = 50.1,σ = 3.5) also outperformed the ELM classifier 
(µ = 46.6,σ = 4.2 ); (t(5 ) = 3.26, p = 0.02). For the short 
versus long word case though, the performance of the RVM  
(µ = 73.3,σ = 8.9 ) and the ELM classifier (µ = 76.3,σ =  
5.8) was quite equivalent; (t(5 ) = 1.39, p = 0.16 ).

Gonzalez-Castaneda et al [22] proposed a method to clas-
sify imagery speech which is reported with very high acc-
uracy. However, their experiment protocol is problematic. 
According to their report [22], ‘imagined pronunciation of 
each word was repeated 33 times in succession’, and the sub-
ject was told which word to imagine before each block. This 
experimental procedure, which is similar to the experiment 
conducted by Wester [10], created temporal correlation arti-
facts as explained by Porbadnigk et al [9]. Thus, according 
to Porbadnigk et al [9], the algorithm seems to classify these 
temporal effects rather than the EEG signals.

To further verify the temporal correlation effects explained 
in [9], we invited subject S8 to reconstruct an experiment 
based on the protocol described in [22]. Concretely, the sub-
ject was told to imagine one of the three vowels, /a/, /i/, or 
/u/ 55 times consecutively in one section. Each section had 
five blocks, each block started with four beep sounds with 1 s 
interval between, and then the subject continued to imagine 
the vowel 11 times at the same rhythm. There was a 2 s break 
between two consecutive blocks, and a 90 s break between 
two sections. Thus, each block had 11 s of mental imagery, 
and we extracted 2 s epochs with 1 s overlap, which yielded 
10 epochs for each block. Hence, we obtained total 50 trials 
for each vowel. We applied our proposed algorithms, which 
include a MultiCSP preprocessing and Tangent Vector fea-
tures with RVM or ELM, on this dataset. The accuracy was 
(99.3 + /− 1.4)% with min 96.7% and max 100%, using 10 
cross validations and 20% evaluation, i.e. 10 testing samples 
for each class. It can be seen that the accuracy applied on this 
dataset is significantly higher, which proves that this experi-
ment protocol is inappropriate, and the high recognition rate 
is erroneously optimistic.

Using HHT to adaptively decompose the signal into the 
frequency domain, which has been used by Deng et al [16] to 
classify speech imagery, could potentially improve the acc-
uracy of our proposed method. However, HHT is very com-
putationally expensive, especially when we need to process 
a large number of multiple channels in parallel to align the 
frequency bands of the decomposed intrinsic mode functions 
(IMFs) across channels. Furthermore, one also needs to tune 
the noise-assisted channels to reduce the effects of noise to the 
IMF [47]. In contrast, our proposed method utilizes Morlet 
wavelet transform, which is much more computationally effi-
cient and also provide good time-frequency resolution.

In comparison with the mentioned approaches, our pro-
posed method, which is based on the covariance matrix 
descriptor to fuse the low level features, is not only easier to 
apply but also improves the discriminative power of the fea-
ture. The RVM is found to be more effective than the ELM in 
our study, as RVM is more robust to noise and outliers thanks 
to its Bayesian learning models. Finally, as shown in table 3 
and the paired t-test scores shown in table  4, our proposed 
method provides in most cases statistically and significantly 
better performance than the mentioned approaches found in 
the literature. The statistical test performed was a two-tailed 
paired t-test where it was assumed that the variances of the 
compared quantities were equal.

4 Available from the author Guang Bin Huang’s website: http://www.ntu.
edu.sg/home/egbhuang/elm_kernel.html.
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6.2. Advantages of Riemannian treatment

The Riemannian feature is a high level feature that has been 
used successfully in many applications, especially in comp-
uter vision, such as object recognition, object tracking and 
action recognition [48–50]. Recently, Riemannian feature has 
been adopted to the BCI concept, as in the works conducted 
by Barachant et al [32, 51, 52], Congedo et al [53], Yger et al 
[54]. As shown in section 6.1, the Riemannian feature is more 
discriminative comparing with the other features. There are 
two main advantages of Riemannian treatment.

First, Riemannian features provides a natural way to classify 
multi-mental tasks, while the conventional CSP is restricted to 
binary classes in general. By treating covariance matrix as a 
point on Riemannian space, we can utilize Riemannian geo-
metric distance to classify the data points. There are several 
distances to discriminate points on Riemannian space, such 
as log-Euclidean distance, Kullback–Leibler distance, Stein 
divergence, Von Neumann divergence [28, 55, 56]. In BCI 
contest, the spatial covariance matrix of the channels has 
been used to compute CSP. This spatial feature is effective 
for motor imagery, since right-left hands are controlled by dif-
ferent cortex areas. As pointed by Samek et al [57], the CSP 
and its invariants can be casted to a unifying framework based 
on Kullback–Leibler divergence between the class covariance 
matrices. However, the formulation of the classical CSP is 

mainly based on Reyleigh coefficient between the covariance 
matrices Σ1 ,Σ2  of two classes, i.e.

max
w

wT(Σ1 −Σ2)w
wT(Σ1 +Σ2)w

 (8)

which make it inefficient to extend to multiple classes. In 
contrast, by considering a covariance matrix as a point on 
Riemannian manifold, any dimension reduction techniques 
and classifiers, such as LDA or local preserve projection, can 
be applied by replacing the conventional Euclidean distance 
with Riemannian distance. Thus, the Riemannian approach 
generalizes and avoids the restriction to binary classes. For 
instance, the CSP incorporating within section  stationary 
regularization (divCSP-WS) proposed by Samek et al [57] is 
formulated as

max
V

L(V) =Dkl(VTΣ1V||VTΣ2V)

− λ
1

N1 + N2

2∑

c=1

Nc∑

i=1

Dkl(VTΣi
cV||VTΣcV)

which is equivalent to LDA in Riemannian space using 
Kullback–Leibler divergence. In this paper, we utilize the log-
Euclidean distance, which essentially approximates the true 
geometric distance on Riemannian Space by the Euclidean 
distance between their tangent vectors. This approach is more 
computationally efficient, and can be utilized directly by any 
well-established classifiers, i.e. the relevance vector machine 
with Gaussian kernel in our approach. Nevertheless, other dis-
tance, such as Kullback–Leibler or Stein divergence, can also 
be used. However, the optimization process are more complex 
due to the nonlinearity of Riemannian distance and computa-
tionally expensive [28].

The second advantage is that covariance matrix provides 
an effective way to fuse heterogeneous features together. Let 
X = [x (0 ), . . . , x (t), . . . x (T)] ∈ Rn×T  are the feature vectors 
collected from T data point samples, assuming zero mean. The 
covariance matrix can be simply obtained by XXT/T , regard-
less of the unit or range of each element in x (t). If x (t) is just 
the raw signals collected from channels, then applying LDA 
on Riemannian space using Kullback–Leibler divergence is 
equivalent to the regularized CSP. However, if mid-level fea-
tures are extracted from the channels, such as frequency fea-
ture and the channel index in our proposed approach, we can 
incorporate both spatial frequency to the high level feature. In 
our paper, when classifying short and long words, combining 
wavelet feature with spatial information has improved the 
results relatively to using the spatial covariance matrix alone.

The Riemannian feature however still has several limita-
tions. First, it is more computationally expensive than the 
conventional Euclidean feature vector. Since the distances 
on Riemannian manifold are computed through eigenvalue 
decomposition, the dimension of the matrix is preferred to 
be small. Second, the covariance matrix may be singular or 
semi-positive definite if the number of samples is small. To 
overcome these limitations, it is preferable to apply feature 
selection before computing covariance matrix. In our imple-
mentation, this process is obtained by applying CSP.

Table 4. Paired t-test score of the proposed methods and other 
methods at the 5% significance level. t(n) is the t statistic using n 
degrees of freedom and p is the p-value.

(a) Vowels

Proposed Log  +  LDA
Dasalla 
et al [14]

Min et al 
[45]

Tangent  +  RVM t(7) = 8.56 t(7) = 9.96 t(7) = 8.67
p = 6 × 10−5 p = 2 × 10−5 p = 5 × 10−5

Tangent  +  ELM t(7) = 10.09 t(7) = 9.38 t(7) = 4.77
p = 2 × 10−5 p = 3 × 10−5 p = 0.002

(b) Short words

Proposed Log  +  LDA
Dasalla 
et al [14]

Min et al 
[45]

Tangent  +  RVM t(5) = 4.67 t(5) = 6.86 t(5) = 2.71
p = 0.055 p = 0.001 p = 0.042

Tangent  +  ELM t(5) = 3.36 t(5) = 5.14 t(5) = 2.00
p = 0.020 p = 0.004 p = 0.102

(c) Short versus long words

Proposed Log  +  LDA
Dasalla 
et al [14]

Min et al 
[45]

Tangent  +  RVM t(5) = 2.09 t(5) = 2.79 t(5) = 4.64
(method 1) p = 0.091 p = 0.038 p = 0.006
Tangent  +  RVM t(5) = 3.62 t(5) = 4.28 t(5) = 5.82
(method 2) p = 0.015 p = 0.008 p = 0.002

Tangent  +  ELM t(5) = 2.41 t(5) = 4.59 t(5) = 6.83
p = 0.061 p = 0.006 p = 0.001
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6.3. Effects of meaning, sounds and complexity to  
classification accuracy

Based on the presented results, we observed that classification 
performance between three short words and three vowels is 
very similar, which suggests that we classified speech imagery 
based on the sound rather than the meaning.

Second, comparing the performance between classifying 
three short words and two long words, based on the κ values, 
indicates that the classification of long words provides better 
results. Thus, words with higher complexity can be more 
easily discriminated using EEG signals.

This is also supported by the fact that classification between 
one short and one long word also yielded the highest κ value. 
This further suggests that different complexity of the words 
add an extra degree to discriminate speech imagery.

Although speech imagery has been studied in recent 
years, to the best of our understanding, this is the first report 
examining different conditions affecting the speech imagery 
classification.

7. Conclusion

In this paper, we proposed a novel method to classify speech 
imagery, and investigated different conditions affecting clas-
sification performance. The proposed method is based on the 
covariance matrix descriptor, in which the low level features 
extracted from EEG signals are fused to provide more discrim-
inative high level features. The RVM classifier is adopted due 
to the fact that its Bayesian learning principle provides some 
important advantages required for BCI applications, such as 
robustness to large number of outliers and sparse representa-
tion. Comparison with other approaches from the literature 
proved that our method yields significantly better results in 
term of accuracy and robustness. Intensive study of different 
conditions related to speech imagery reveals that the sound 
and complexity of the imagined words are the main mech-
anisms behind the success of classifying speech imagery using 
EEG signals. In the future works, we would like to combine 
speech imagery with other modalities, such as motor and 
visual imagery to provide more degrees of freedom for BCI 
applications.
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