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a b s t r a c t 

This paper presents a framework to classify motor imagery in the context of multi-class Brain Computer 

Interface based on electroencephalography (EEG). Covariance matrices are extracted as the EEG signal de- 

scriptors, and different dissimilarity metrics on the manifold of Symmetric Positive Definite (SPD) matri- 

ces are investigated to classify these covariance descriptors. Specifically, we compare the performance of 

the Log Euclidean distance, Stein divergence, Kullback–Leibler divergence and Von Neumann divergence. 

Furthermore, inspired from the conventional Common Spatial Pattern, discriminant analysis performed 

directly on the SPD manifold using different mentioned metrics are proposed to improve the classification 

accuracy. We also propose a new feature, namely Heterogeneous Orders Relevance Composition (HORC), 

by combining different relevance matrices, such as Covariance, Mutual Information or Kernel Matrix un- 

der the Tensor Framework and Multiple Kernel fusion. Multi-Class Multi-Kernel Relevance Vector Machine 

is adopted to provide a sparse classifier and Bayesian confidence prediction. Finally, we compare the per- 

formance of total 16 methods on the dataset IIa of the BCI Competition IV. The results shows that the 

mentioned dissimilarity metrics perform quite equally on the original manifold, whereas the proposed 

discrimination methods can improve the accuracy by 3–5% on the reduced dimension manifold. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Brain Computer Interface (BCI) applications allow human to

ommunicate and control computer aided systems using electrical

ctivity recorded from the brain. A typical process of BCI system

s to capture and analyze the electrical brain signals, extract their

istinguished features and classify the mental tasks. 

Scalp Electroencephalography (EEG) is commonly used as a

oninvasive method to capture the brain’s electrical activity. Over

he past decade, a variety of EEG features has been proposed for

any specific BCI applications. Several important EEG features in-

lude amplitude values of EEG signals, band powers, power spec-

ral density, autoregressive and adaptive autoregressive parameters,

ixed time-frequency representations, time-frequency synthesized 

patial patterns, spatial deconvolution, inverse model-based fea-

ures, and extreme energy ratio, where details of the aforemen-

ioned features can be found from the publications reviewed

n [1–3] . 
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However, these aforementioned methods are sub-optimal ways

o extract the features. First, the energy of the scalp EEG signals is

imultaneously distributed in 3 domains: Time–Space–Frequency.

ence, their original feature space is a 3-dimensional tensor. Un-

ortunately, the classical approaches in one way or another ex-

ract the feature descriptor into a vector in Euclidean space. This

s rooted from the fact that these descriptors rely on some statis-

ic parameters, such as mean, variance, median, which are defined

s scalars. Furthermore, pattern recognition and dissimilarity met-

ics between features are built only for vectors in Euclidean space.

hus, the classical approaches fail to notice a very distinctive char-

cteristic of data: their structure, or more specific, the manifolds

nd the interrelation across the tensor dimensions. Recently, data

reatment based on the concept of manifold and tensor analysis

ave been proved to be more effective and adopted in many ap-

lications. Geometric control [4] has been extensively studied to

odel and control mechanical system dynamics under the con-

ept of Riemannian Manifolds. In computer vision, covariance ma-

rix [5] is considered as a specific class of Riemannian Manifolds

nd currently is the state-of-the art descriptor used for object and

ction recognition in video. In [6] , Barachant et al. obtained very

romising results by using covariance matrix as the EEG descrip-

or and adopting the Log Euclidean distance to discriminate among

https://doi.org/10.1016/j.neucom.2017.10.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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them. In [7] , Phan and Cichocki proposed a Fisher Discrimination

Analysis for higher-order dimension tensor, and also achieved en-

couraging results. In this paper, we revise the classical EEG features

under the perspective of Riemannian Manifold and tensor analysis,

and conduct an empirical study to compare the performance of dif-

ferent approaches. 

Furthermore, classical approaches often rely only a single fea-

ture, i.e. power spectrum, to characterize the mental tasks. This is

acceptable for some simple binary motor imagery tasks, i.e. right–

left hand control, mostly studied in current BCI research. How-

ever, in general brain activities are very complicated and hardly

be represented just by a single feature. In contrast, an appropri-

ate combination of different f eatures may provide different per-

spectives to the signals and hence be more distinctive. The com-

mon approach is to concatenate all the feature vectors into one

long vector and utilize dimension reduction techniques, such as

Principle Component Analysis (PCA), Linear Discriminant Analysis

(LDA) or Canonical Correlation Analysis (CCA) to remove noisy and

redundant features. However, these approaches often require the

features to be in the same range and are not suitable for heteroge-

neous features, e.g. combination of features in the vector form with

binary or histogram form. Furthermore, the dimension reduction

techniques are designed independently from the classifiers, hence

they do not take into account the bias of trained classifiers [8] .

In this paper, we utilize a multi-kernel learning method, namely

multi-class multi-kernel Relevance Vector Machine [9] , to promote

a framework for more efficient fusion of EEG features. 

This paper is organized as follows. Section 2 introduces nota-

tion and basic concepts used in the paper. A review of EEG fea-

tures is presented in Section 3 . Section 4 revises the classical fea-

tures under the perspective of Riemannian Manifold, and extends

the concepts of discriminant analysis from Euclidean to Rieman-

nian using different kinds of manifold distance. Heterogeneous Or-

ders Relevance Composition (HORC) is introduced in Section 5 .

In Section 6 , the multi-class multi-kernel machine learning ap-

proach proposed in [9] is adopted for feature fusion and recogni-

tion. Section 7 presents the experimental results and discussion.

Section 8 concludes the paper and discusses future work. 

2. Preliminary 

This section establishes notations and definitions used in the

paper. We denote m , m , M and M as a scalar, vector, matrix and

tensor form, respectively. Let R 

n ( C 

n ) be an n dimension real (com-

plex) space, 1 n ∈ R 

n be a vector with all entries equal to 1, and

I n ∈ R 

n ×n be the identity matrix. E { x } is the expected value of x

and diag( x ) is a diagonal matrix constructed from x . 

A 

T denotes the (conjugate) transpose of A , and vec( A ) is the

vectorizing operator on matrix A . If A is symmetric then vec( A )

only takes an upper half of the matrix. We denote ‖ v ‖ p and ‖ v ‖
as the L p norm and L 2 norm of a vector v , respectively. ‖ A ‖ F de-

notes the Frobenius norm of matrix A . 

Definition 2.1. An n × n matrix A is Symmetric Positive Definite

(SPD) if A = A 

T 
, x T A x > 0 , ∀ x � = 0 . Equivalently, the eigenvalues of

A , denoted as λ( A ), are positive. 

Definition 2.2. An n × d matrix A is orthogonal if its columns are

orthogonal unit vector, i.e. A 

T A = I d . 

Definition 2.3. A 

k , exp ( A ) and log ( A ) of matrix A ∈ C 

n ×n are de-

fined through its eigenvalues � and eigenvectors U as 

A 

k � U diag 
([

λk 
1 , . . . , λ

k 
n 

])
U 

T = U �k 
U 

T 
, 

exp ( A ) � U diag 
([

e λ1 , . . . , e λn 
])

U 

T = U e �U 

T 
, 

log ( A ) � U diag ( [ log (λ1 ) , . . . , log (λn ) ] ) U 

T = U log ( �) U 

T 
. 
t
efinition 2.4. x | μ, α ∼ N ( x | μ, α−1 ) denotes that the random

ariable x follows a Gaussian distribution with the mean μ and

ariance σ 2 = α−1 , i.e., its probability P ( x | μ, α) = N ( x | μ, α−1 ) . 

.1. Multiple kernel learning for heterogeneous feature fusion [10] 

Let { x i , l( x i ) } n i =1 
be a set of labeled patterns where x i ∈ X is

 feature of a sample i and l ( x i ) ∈ { ± 1} is its output label. For a

hosen feature map φ : X → R 

m assuming that a set { φ( x i ) , l( x i ) =
1 } can be linearly separated from { φ( x j ) , l( x j ) = 1 } , the training

rocess for classification attempts to find an optimal hyperplane

 ∈ R 

m such that 

 ( x ) = a 

T φ( x ) + w o ∈ R , s.t: y ( x ) l( x ) > 0 . (1)

he solution’s principle is to minimize the cost function 

( a , w 0 ) = 

1 

2 

n ∑ 

i =1 

(
a 

T φ( x i ) + w o − t i 
)2 + 

λ

2 

h 

(
a 

2 
)
, 

here h ( a 

2 ) > 0 is a constraint function on a , and λ is the Lagrange

ultiplier. By setting ∂ J 
∂ a 

= 0 , we obtain 

 = 

n ∑ 

i =1 

−
(

∂h 

∂ a 

2 

)−1 
a 

T φ( x i ) + w o − t i 
λ︸ ︷︷ ︸ 

w i 

φ( x i ) = 

n ∑ 

i =1 

w i φ( x i ) . (2)

ubstituting (2) to (1) yields the dual form of optimization 

 ( x ) = 

n ∑ 

i =1 

w i φ
T ( x ) φ( x i ) + w o = 

n ∑ 

i =1 

w i k ( x , x i ) + w o = w 

T �(x ) , 

(3)

here k ( x , x i ) = φT ( x ) φ( x i ) ∈ R is called kernel at x i , w =
 w 0 , . . . , w n ] 

T and �(x ) = [1 , k ( x , x i ) , . . . , k ( x , x n )] T ∈ R 

n +1 . 

Eq. (3) is referred as the “kernel trick” as it embeds the

eature from the original space X to the Reproducing Kernel

ilbert space . Hence, if a sample x is represented by a set of

 features { x ( j) } m 

j=1 
, where each x ( j ) lies in its own space X j 

quipped with a map φj ( x ), the weighted feature map φ( x ) =
 

√ 

β1 φ1 ( x ) , . . . , 
√ 

βm 

φm 

( x )] T yields the kernel at x i at 

 ( x , x i ) = 

m ∑ 

j=1 

β j k j ( x , x i ) , k j ( x , x i ) = φT 
j ( x ) φ j ( x i ) . (4)

hus, multi-kernels function in form of linear combination of dif-

erent kernels provides a clever way to combine heterogeneous

eatures. In practice, the explicit map φ( x ) are mostly avoided by

irectly defining the kernel. For example, the Gaussian kernel is

ommonly used: 

 ( x 1 , x 2 ) = e −γ d 2 ( x 1 , x 2 ) , 

here d ( x 1 , x 2 ) is the distance between two points x 1 and x 2 de-

ned in its original space X , i.e. d( x 1 , x 2 ) = ‖ x 1 − x 2 ‖ for x 1 , x 2 ∈
 

q . Using Gaussian kernel implies that the dimension of the

apped feature space is infinite, φ : X → R 

+ ∞ while still limits the

imension of w by the number of training samples, i.e. w ∈ R 

n +1 .

ence, multi-kernels function efficiently combines heterogeneous

eatures. 

. Literature review 

.1. Temporal–spatial–frequential decomposition 

In feature extraction process, we aim to extract from the

ecored EEG signals the most salient characteristics that are corre-

ated to the observed outcome. Since EEG signal captures brain’s

lectrical activity, its energy is distributed over three domains:

ime, spatial and frequency. This section summarizes the main

echniques to decompose the signals. 
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.1.1. Temporal filters 

This consists of several preprocessing steps. First, the EEG sig-

al is band-bass filtered into a suitable narrow frequency band. For

xample, frequency band for motor imagery is often found in 7–

0 Hz. After that, artifacts due to EOG such as eye-blinking need

o be removed. Finally, since the brain activation can only main-

ained in a short period of time, the recorded EEG in one trial can

e separated into several possibly overlapped segments. Heuristi-

ally, a time segment can be from 1–2 s. 

.1.2. Spatial filters 

The recorded EEG signals X (t) = [ x 1 (t ) , . . . , x N (t )] from N chan-

els can be thought as “results echoed” from n unknown sources

 (t) = [ s 1 (t ) , . . . , s n (t )] and assumed to be a linear combination as

 (t) = W S (t) , where W ∈ R 

N×n is the linear fusion matrix [11] .

ince S ( t ) is unknown, additional assumptions must be imposed

o cast the constraints on the optimal problem of estimating W .

nce W is determined from the calibration process, S ( t ) can be ob-

ained for an incoming X ( t ). Among several available approaches,

ndependent Component Analysis (ICA) [11] , Canonical Correlation

nalysis (CCA) [12] and standardized Low Resolution Electromag-

etic Tomography (sLORETA) [13] have been successfully used in

CI applications. 

.1.3. Frequential filters 

Among several approaches for time-frequency analysis, such as

utoregressive model (ARM), Short-Time Fourier Transform (STFT)

nd wavelet transform (WT), discrete wavelet transform (DWT) is

roved to be more effective to characterize EEG as it can handle

on-stationary signals [2,7,14,15] . However, the performance of WT

ritically depends on the similarity between the shape of input sig-

al and that of the chosen basis function. Thus, using one fixed WT

asis function may not optimally capture the dynamics and nonlin-

arity of the brain signal. Recently, Hilbert Huang Transform (HHT)

16] offers an alternative time-frequency tool, in which the basis

unction is adaptively constructed by the data itself. Hence, HHT

s more attractive to EEG processing than the conventional men-

ioned frequency transformation methods [17] . 

.2. Features in Euclidean space 

After being time–space–frequency filtered, the input EEG is

ransformed to X (t) ∈ R 

N c ×N b ×T s , where N c is the number of chan-

els, N b is number of frequency bands and T s is the number of

ampling points. From here, distinguished feature can be extracted

o recognize the mental tasks. 

Classical approaches found in the literature, e.g. in

1,3,14,15,18] and their references, share the same principle:

he features are extracted from the original n -dimension space

nto a 1-dimension feature vector. A typical framework involves

xtracting statistic measurements along the temporal dimension,

nd then vectorizing them along the spatial and frequential

imension. Finally, feature selection is utilized to remove any

edundant and irrelevant elements. Hence, classification can be

erformed based on the dissimilarity between the features vec-

ors, which can be measured by several well-established metrics

n Euclidean space. 

Let a i,k (t) ∈ R 

T s and ϕ i,k (t) ∈ R 

T s be the amplitude and phase of

he analytic signal x i,k = a i,k ∠ ϕ i,k (t) ∈ C 

T s at the channel i and sub-

and frequency k where i = { 1 , . . . , N c } , k = { 1 , . . . , N b } . 
.2.1. Features commonly used in BCI 

Power spectrum (e), mean coefficients ( μ), and standard deviation

 σ ) of individual sub-band x i, k ( t ) is computed as: 

 i,k = a 

T 
i,k a i,k , μi,k = 

1 

T a i,k 

T s 
, σ 2 

i,k = 

(
a i,k − μi,k 

)T (
a i,k − μi,k 

)
T s − 1 

. 
he final feature vector is a concatenation of all individual compo-

ents, e.g. e = [ e 1 , 1 . . . e i,k . . . e N c ,N b ] 
T . 

Maximum cross-correlation (R) [19,20] between x ∈ C 

T s and y ∈
 

T s is defined as 

 xy = 

T s 
max 
k =1 

| ρ(k ) | , ρ(k ) = 

T s −k −1 ∑ 

t=0 

x (t + k ) y (t) . 

he correlation matrix R ∈ R ̄

n ×n̄ is obtained by computing R xy 

cross all channels i and sub-band k using amplitude and phase

.e. R a ( j, l) = R a j a l and R φ( j, l) = R φ j φl 
. 

Coherence (COH) [21,22] is the auto-correlation at a specific fre-

uency bank k across the channels 

oh ( x i,k , x j,k ) = 

x T 
i,k 

x j,k 

T s − 1 

= 

∑ T s 
t=0 a i,k (t) a j,k (t) e i (ϕ i,k (t) −ϕ j,k (t)) 

T s − 1 

. 

he Coherence matrix COH ∈ R 

N c ×N c is typically defined as the

aximal coherence magnitude among all frequency bands 

OH(i, j) = 

N B 
max 
k =1 

| coh 

(
x i,k , x j,k 

)| . 
Covariance (COV) [6] is a special case of Coherence matrix,

here only the amplitude is considered 

OV = 

A A 

T 

T s − 1 

∈ R 

n̄ ×n̄ . 

Phase Locking Value (PLV) [23,24] is a special case of coherence

hen only the phase information is considered and the amplitude

s set to 1 

plv 
(
x i,k , x j,k 

)
= 

1 

T s 
| 

T s ∑ 

t=0 

e i ( ϕ i,k (t) −ϕ j,k (t) ) | . 

It can be seen that all the aforementioned features are the vari-

nts of cross-correlation matrix, which essentially captures the lin-

ar relationships between the channels. The coherence matrix COH

nd phase locking value matrix PLV are commonly used to con-

truct graphs of brain-functional connectivity [22] . Among them,

OH and COV are SPD. However, the final feature vector in clas-

ical approach is often obtained by vectorizing the upper half of

he matrices. Mapping the feature into the Euclidean space yields

ub-optimal results since it ignores this unique structure. 

.3. Feature selection and dimension reduction 

There are several techniques to reduce the features’ dimen-

ion, either through a linear mapping, such as Principle Compo-

ent Analysis (PCA), Linear Discrimination Analysis (LDA), Local

reserving Projection (LPP) and Local Fisher Discrimination Analy-

is (LFDA) [25,26] , or by performance ranking, such as Fisher Score

15] or Mutual Information [27] , or a combination of them. 

Among the linear transform techniques, Common Spatial Pattern

CSP) [28,29] has been successfully used in BCI contest. CSP seeks

or a linear transform W ∈ R 

N C ×m composed of m spatial filters

 j ∈ R 

N c that maps the original data X ∈ R 

N c ×T s to another space

 = W 

T X in which the following Rayleigh quotient is extremized

( w j ) = 

E 

{ 

Y 

1 
j Y 

1 
j 

T 
} 

E 

{ 

Y 

2 
j Y 

2 
j 

T 
} = 

w 

T 
j 
E 
{

X 1 X 

T 
1 

}
w j 

w 

T 
j 
E 
{

X 2 X 

T 
2 

}
w j 

= 

w 

T 
j 
C 1 w j 

w 

T 
j 
C 2 w j 

, (5)

here X 1 and X 2 are samples belong to classes 1 and 2, and C 1 and

 2 are the average of the covariance of each class. The optimal so-

ution for w j are then the eigenvectors of C −1 
2 C 1 which correspond

o the largest and smallest eigenvalues of C −1 
2 C 1 . After CSP trans-

ormation, the variance of the data is used as feature descriptor. 
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Among the performance ranking techniques, Mutual Information

(MI) is the most general and statistically confident index. MI be-

tween two random variables X and Y , where X is often denoted the

features and Y is the corresponding labels, measures their mutual

dependence and is defined by Shannon’s formula as 

I(X, Y ) = 

∑ 

x ∈ X 

∑ 

y ∈ Y 
p(xy ) log 

p(xy ) 

p(x ) p(y ) 
= H(X ) − H(X | Y ) , (6)

where H ( x ) and H ( X | Y ) are the Shannon Entropy and Conditional

Entropy defined, respectively, as 

H(X ) = −
∑ 

x ∈ X 
p(x ) log p(x ) , 

H(X | Y ) = −
∑ 

y ∈ Y 
p(y ) log p(x ) 

∑ 

x ∈ X 
p(x | y ) log p(x | y ) , 

and p ( x ), p ( y ), p ( xy ) and p ( x | y ) are the probability density function

(PDF) of X, Y and their joint PDF and conditional PDF respectively.

Hence, a feature X can be selected based on its MI with the class

label Y . Despite that MI is powerful, simple and intuitive, estimat-

ing MI is not easy since the PDFs are unknown. In practice, these

PDFs are often estimated either by assumption of foreknown dis-

tribution, such as Gaussian, or by constructing their discrete his-

tograms. In [30] , the authors combined MI and Joint Approximate

Diagonalization to extend CSP to a Multiclass-CSP application. 

4. Feature in Riemannian Manifold and tensor 

One problem of classical features is that they might discard

discriminative information hidden in the original high dimension

space. Recently, developments in manifold geometry and tensor

analysis promote a new trend in feature descriptors. That is, the

dissimilarity between features can be measured directly in the

original high dimension space, which allows unveiling hidden fea-

tures overlooked by the classical approaches. In this section, we

summarize some basic definitions of manifolds and tensors, more

details can be found in [31] . Then, some successful methods on us-

ing manifold and tensor features are analyzed. 

4.1. Features in natural manifold 

Definition 4.1. A topological space ( X, N ) is a set of points X = { x }
equipped with a neighborhood function N , which assigns each point

x to a subset N(x ) ⊂ X, N(x ) � = ∅ . 

Definition 4.2. A function f : X → Y between two topological spaces

( X, N x ) and ( Y, N Y ) is called homeomorphism if f is bijection, contin-

uous and its inversion function f −1 is also continuous. Then, X and

Y are called homeomorphic . 

Definition 4.3. A n-dimensional manifold ( X, N ) is a topological

space if each point x ∈ X has a neighborhood N ( x ) homeomorphic

to Euclidean space R 

n by a function f : N(x ) → R 

n . A differentiable

manifold is a manifold equipped with a globally differentiable func-

tion f . 

Definition 4.4. At each point x of the differentiable manifold X ,

one can attach a Tangent Space T X ( x ) that consists of real tangent

vectors of all possible curves passing through x . 

Definition 4.5. A Riemannian Manifold is a differentiable manifold

equipped with a smoothly varying inner product on each Tangent

Space. 

Definition 4.6. A geodesic distance between two points on the

manifold is the length of the shortest curve (called geodesic ) con-

necting the two points. 
Symmetric Positive Definite (SPD) Matrix belongs to a special

iemannian Manifold, often denoted by Sym 

+ 
n . Several dissimilarity

etrics are proposed to estimate the distance in Sym 

+ 
n as follow. 

• Riemannian distance d af [32] defines the geodesic distance be-

tween two SPD S i and S j as 

d R ( S 1 , S 2 ) � ‖ log ( S −1 
i S 2 ) ‖ = 

√ 

n ∑ 

i =1 

log 
2 λi , 

where λi = eig i ( S 
−1 
1 S 2 ) . This metric is invariant to an affine

transformation and inversion. However, solving the generalized

eigenvector is very computationally expensive for practical ap-

plication. 

• Tangent Space distance. The Riemannian metric can be approxi-

mated by the distance between tangent vectors through a com-

mon reference point C . The tangent vector S̄ i of a point S i at the

reference point C is defined as. 

S̄ i = log C S i � log 

(
C −

1 
2 S i C 

− 1 
2 

)
. 

This log C mapping defines a Lie group equipped by the multi-

plication and inverse operators [33] as 

S 1 �S 2 = exp ( log C S 1 + log C S 2 ) , S −1 = exp ( − log C S ) . 

This Lie group forms a Hilbert inner product between S 1 and S 2 
in the Sym 

+ 
D manifold as 

〈 S 1 , S 2 〉 C = tr ( log C ( S 1 ) log C ( S 2 ) ) , 

and the distance between S i and S j are derived as 

d 2 T S ( S 1 , S 2 ) C � ‖ ̄S i − S̄ j ‖ 

2 
F = tr 

((
S̄ i − S̄ j 

)(
S̄ i − S̄ j 

)T 
)
, 

To obtain a good approximation with Rienmannian geodesics,

the reference point C needs to be close to the two points.

Hence, C is heuristically selected as the geometric mean of the

point set { S i }. However, mapping to the Tangent Space flattens

the manifold and does not preserve the true geodesic distance.

Furthermore, for a set of non stationary points, the mean C

shifts over time, hence the mean C needs to be iteratively re-

estimated for any new collected data point S t [6,34] . 

• Log-Euclidean distance [35] selects the reference point C at the

identity matrix I , hence the distance is simplified as 

d 2 LE ( S 1 , S 2 ) � ‖ log ( S 1 ) − log ( S 2 ) ‖ 

2 
F . 

In fact, if the dataset is first whitened by a map 

ˆ S i = C −
1 
2 S i C 

− 1 
2 

where C can be the geodesic mean, the Tangent Space distance

is reduced to Log Euclidean distance. Intuitively, Log-Euclidean

distance first maps the SPDs from the Riemannian Manifold to

the Euclidean space by the log operator, then compute the Eu-

clidean distance. 

• Kullback–Leibler (KL) divergence [36] is not a geodesics but in-

stead based on informative geometry. If two random multivari-

ate samples X 1 ∈ R 

d×T and X 2 ∈ R 

d×T are assumed to be Gaus-

sian distribution, i.e. 

X 1 ∼ N 1 ( μ1 , S 1 ) , X 2 ∼ N 2 ( μ2 , S 2 ) , 

where μi and S i are the mean and covariance of X i respectively,

the KL divergence from N 1 (μ1 , S 1 ) to N 2 (μ2 , S 2 ) is defined as 

d 2 KL ( N 1 |N 2 ) � 

1 

2 

(
tr 
(
S −1 

2 S 1 
)

+ �T 
μS −1 

2 �μ + ln 

(
det S 2 
det S 1 

)
− d 

)
,

where �μ � μ2 − μ1 . Since the KL divergence is asymmetric,

its symmetric distance is defined as d 2 
KL 

( S 1 , S 2 ) � d 2 
KL 

(N 1 |N 2 ) +
d 2 

KL 
(N 2 |N 1 ) . For μ2 = μ1 = 0 , the KL distance is simplified to 

d 2 ( S , S ) � 

1 

tr 
(
S −1 S + S −1 S 

)
− d. (7)
2 
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Fig. 1. Dimension reduced mapping from Sym 

+ 
D 
→ Sym 

+ 
d under Log Euclidean op- 

erator. 

Table 1 

Between and within weighted matri- 

ces. 

Condition y i = y j = c y i � = y j 

W 

(w ) 
i, j 

a i, j 
1 

N c 
0 

W 

(b) 
i, j 

b i, j ( 
1 
N 

− 1 
N c 

) 1 
N 

Table 2 

Affinity coefficients. 

FDA k NN Heat kernel Local scaling 

a i, j 1 N c / N e −γ d 2 ( S i , S j ) e −γi γ j d 
2 ( S i , S j ) 

b i, j 1 0 e −γ d 2 ( S i , S j ) e −γi γ j d 
2 ( S i , S j ) 
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• Stein divergence [37] or LogDet Divergence [36] defines the dis-

tance between two SPD S 1 and S 2 as 

d 2 SD ( S 1 , S 2 ) � log det 

(
S 1 + S 2 

2 

)
− log det ( S 1 S 2 ) 

2 

. 

Similar to Kullback–Leibler (KL) divergence, the distance d SD is

not geodesic. 

• Von Neumann divergence [36] defines quantum relative entropy

between two SPD covariance matrices as 

d 2 V N ( S 1 | S 2 ) � tr ( S 1 ( log ( S 1 ) − log ( S 2 ) ) − S 1 + S 2 ) . 

Note that d VN is also asymmetric. Hence, one can define

the symmetric distance version as d 2 V N ( S 1 , S 2 ) � d 2 V N ( S 1 | S 2 ) +
d 2 

V N 
( S 2 | S 1 ) 

d 2 V N ( S 1 , S 2 ) = tr ( ( S 1 − S 2 ) ( log ( S 1 ) − log ( S 2 ) ) ) . 

.2. Manifold discrimination analysis and connection with common 

patial pattern 

.2.1. Common spatial pattern revisited under manifold distance 

In [38] , Samek et al. unveiled that the classical CSP [28] and

heir variants can be casted into a unified framework based on

ullback–Leibler divergence. Specifically, let �1 and �2 ∈ R 

D ×D are

he mean covariance matrix of classes 1 and 2, C = ( �1 + �2 ) , and

 = C −
1 
2 is the whitening transform matrix, so that 

˜ 
1 + 

˜ �2 = I , ˜ �1 = P �1 P 
T 
, ˜ �2 = P �2 P 

T 
. 

he spatial filter V = I d R ∈ R 

d×D , R R 

T = I is searched to maximize

he distance between the means of each class 

 ( V ) � (1 − λ) d 2 KL 

(
V 

T ˜ �1 V , V 

T ˜ �2 V 

)
− λ�, (8)

here d KL is the Kullback–Leibler (KL) divergence given in (7) , and

is the regularization defined as 

� 

1 

N 1 + N 2 

2 ∑ 

c=1 

N c ∑ 

i =1 

d 2 KL 

(
V 

T ˜ �
i 

c V , V 

T ˜ �c V 

)
, 

here ˜ �
i 

c are the covariance matrix of trial i in the class c

hich has total N c trials. The optimal V can be solved iteratively

y the gradient descent method. In [38] , the authors prove that

pan ( W ) = span ( V ) , where W is the conventional CSP coefficients

iven in (5) . 

.2.2. Connection between CSP and LDA in tangent space and 

og-Euclidean space 

If one replaces the Kullback–Leibler divergence in the cost func-

ion (8) by another distance, e.g. Log Euclidean, so that 

 ( V ) � d 2 T S 

(
V 

T ˜ �1 , V 

T ˜ �2 

)
− λ

1 − λ

2 ∑ 

c=1 

N c ∑ 

i =1 

d 2 T S 

(
V 

T ˜ �
i 

c , V 

T ˜ �c 

)
N 1 + N 2 

. 

here the first term is to maximize the distance between the

lasses’ means, and the second term is to minimize the sum of

istances between the samples within each class. 

This is the exact meaning of LDA in the Euclidean space, hence

he CSP accomplished with Log Euclidean distance is equivalent to

he Tangent Space LDA proposed in [6] . In short, these approaches

ave identical meaning with the only difference in defining the

anifold distances. 

.2.3. Discriminant analysis on Riemannian Manifold 

Let f ( V , S i ) : Sym 

+ 
D 


→ Sym 

+ 
d 

be the function that maps S i from

he original manifold D to the lower dimension, more discrim-

nable one, i.e. d < D , using the projector V . If Stein divergence or

ullback divergence is used, it can be defined as 

f ( V , S ) � V 

T S V . 
i i 
In case of the Log Euclidean distance, there are two approaches.

irst, the mapping can be defined as f ( V , S i ) � V 

T s i , where s i is the

ectorized Logarithm mapping of S i to Euclidean space. Second, if

ne prefers to preserve the SPD structure, the transforming can

lso be defined by the nonlinear map: 

f ( V , S i ) � exp 

(
V 

T X̄ V 

)
, X̄ = log ( X ) , (9)

hich leads to a linear transform in its Tangent Space as illustrated

n Fig. 1 . It can be proved that the projected points defined by the

apping (9) also form another Lie Group ( Appendix A ). 

Follow the convention of formulating the discriminant analysis

roblems [25] , one can define the between class and with-in class

ost functions as 

 

(w ) � 

1 

2 

n ∑ 

i, j � = i 
W 

(w ) 
i, j 

d 2 
(

f ( V , S i ) , f ( V , S j ) 
)
, (10a) 

 

(b) � 

1 

2 

N ∑ 

i, j � = i 
W 

(b) 
i, j 

d 2 
(

f ( V , S i ) , f ( V , S j ) 
)
. (10b) 

here d ( f ( S i ), f ( V , S j )) is the corresponding Riemannian distance,

nd W 

(w ) 
i, j 

and W 

(b) 
i, j 

are the within and between weighted matrices

haracterizing the relation between the samples. W 

(w ) 
i, j 

and W 

(b) 
i, j 

re defined in Table 1 . 

There are several manners to define the weight a i, j and b i, j ,

uch as Fisher Discriminant Analysis (FDA), k -Nearest Neighbor

 k NN), Heat kernel (HK), and Local Scaling (LS) [25] which are

pecified in Table 2 . In the case of k NN, only k nearest neigh-

ors of the sample S i are considered to apply the conditions. In

he heat kernel, γ > 0 is the tuning parameter. In the local scal-

ng, γ −1 
i 

= d( S i , S 
(k ) 
i 

) where S (k ) 
i 

is the k th nearest neighbor of S i .

euristicly, k = 7 is recommended [25] . 

For the chosen weights W 

(w ) 
i, j 

and W 

(b) 
i, j 

, we seek for an or-

honormal matrix V , V 

T V = I d , that simultaneously minimizes the

ith-in class D 

( w ) and maximizes the between class D 

( b ) cost func-

ions, V = arg min V L ( V ) , where 

 ( V ) � D 

(w ) − D 

(b) or L ( V ) � 

D 

(w ) 

(b) 
. (11)
D 
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Table 3 

Transform map and Jacobian matrix. 

Distance Transform map Jacobian ∂d 2 

∂ V 
( X , Y ) 

Log Euclid ˆ X = V T log ( X ) V 4( log ( X ) − log ( Y )) V ( ̂ X − ˆ Y ) , 

LogDet ˆ X = V T X V ( X V ̂  X 
−1 − Y V ̂  Y 

−1 
)( ̂ X − ˆ Y )( ̂ X + ̂

 Y ) −1 

Kullback–Leibler ˆ X = V T X V ( X V ̂  X 
−1 − Y V ̂  Y 

−1 
)( ̂ X ̂  Y 

−1 − ˆ Y ̂  X 
−1 

) 

Von Neumann ˆ X = V T X V 2(� + �T ) , � = 2( X − Y ) V V T ( log ( X ) − log ( Y )) V 
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This optimization problem can be solved by the conjugate gra-

dient descent on Grassmann manifold method [39] . The gradient

∇ V L ( V ) on the manifold at an iterative step is 

∇ V L ( V ) = 

(
I D − V V 

T 
) n ∑ 

i, j � = i 

∂L ( V ) 

∂d 2 
i j 

∂d 2 
i j 

∂ V 

, 

where the Jacobian 

∂d 2 

∂ V 
of the squared distance for each metrics is

given in Table 3 (proof in Appendix A ). The optimization on mani-

fold can be solved efficiently by the Manopt toolbox [40] . 

The advantage of the proposed discriminant analysis on Rie-

mannian Manifold is that it is applied for multiple classes in a nat-

ural way while the conventional CSP is only applied to binary clas-

sification problem [38,41] . Hence, it avoids the burden of designing

one-vs.-one strategy of CSP. 

It is worth to emphasize that Log Det and Kullback Leibler dis-

tance are invariant to a linear transform of any full rank matrix

P ∈ R 

D ×D , i.e. 

d ( S 1 , S 2 ) = d 
(
P S 1 P 

T 
, P S 2 P 

T 
)
. 

Hence, under the purpose of increasing distance between classes,

any blind source separation, such as ICA or CCA, are unnecessary.

Therefore, the discrimination can only be improved if d < D when

assuming that the noise and artifact effects contained in D − d

components are removed. 

4.3. Tensor discriminant analysis 

Different with manifold, tensor is a multiple dimension array

data without strictly constrained structure. Basic definitions and

notations of tensor are summarized as follow. 

Definition 4.7. An m-order tensor is a multidimensional data X ∈
C 

n 1 ×n 2 ×···n m . The tensor X can be unfolded at a mode i into a matrix

X (i ) ∈ C 

n i ×n̄ i , where n̄ i = 

1 
n i 

∏ m 

j=1 n j . 

Definition 4.8. The product of a tensor X and a matrix V ∈ C 

d×n i 

along the mode- i is denoted as 

 = X ×i V ⇔ Y (i ) = V X (i ) , Y ∈ C 

n 1 ···×n i −1 ×d×n i +1 ···×n m . 

Definition 4.9. An m-order tensor X ∈ C 

n 1 ×n 2 ···×n m can be decom-

posed by a set of matrix V i ∈ C 

n i ×d i as 

X = G × { V } = G ×1 V 1 · · · ×m 

V m 

, G ∈ C 

d 1 ×d 2 ···×d m . 

where G is the core tensor . 

All the classical dimension reduction techniques, such as PCA,

LPP, or LDA, can be extended to Tensor decomposition [7,42,43] .

For example, for the case of second order tensor (matrix) X i ∈
R 

d 1 ×d 2 , tensor discriminant analysis is formulated as 

 = arg min 

V = { V 1 , V 2 } 

n ∑ 

i, j � = i 
W i, j ‖ V 

T 
1 X i V 2 − V 

T 
1 X j V 2 ‖ 

2 
F , (12)

where W i j = W 

w 

i j − W 

b 
i j is the weight defined similarly in Table 1 .

In principle, the set of factorization matrix { V } are obtained by

iteratively finding one mode V i while fixing other modes. Conse-

quently, the problem for a single mode is simplified to the con-

ventional linear discrimination analysis that can be solved easily
y eigenvector decomposition. The optimal { V } are selected as the

igenvectors corresponding to the maximal eigenvalues. Hence, an

ncoming feature X can be decomposed to the core tensor G , where

 i < n i . The final feature is obtained by vectorizing G followed by a

eature selection. In general, performing dimension reduction di-

ectly on tensor space yields better discriminant than that on the

uclidean since it exploits the dissimilarity across dimensions [44] .

. Heterogeneous order relevance composition 

Covariance matrix or cross-correlation is a simple and effec-

ive method to capture the linear relationship between two multi-

ariate random variables. However, beyond the linear relationship,

here may also exist the nonlinear or conditional dependence be-

ween them. 

As noticed by Wang et al. [45] , Covariance matrix can be inter-

reted as a linear kernel, i.e. the dot product of the feature vector

n its original space, e.g. COV ( X ) = X 

T X . Hence, this definition can

e generalized to any nonlinear kernel, i.e. the dot product in the

ilbert space, e.g., K ( X ) = 〈 φ( X ) , φ( X ) 〉 . Other advantages of Ker-

els are that they always satisfy the SPD condition regardless of

he input vector’s dimension and they do not require the explicit

ap φ( X ). 

We investigate several commonly used Kernels as follows: 

• Linear kernel (covariance): COV (i, j) = x T 
i 
x j . 

• Polynominal kernel: K p (i, j) = 

(
x T 

i 
x j + a 

)d 
, a > 0 . 

• Gaussian kernel: K G (i, j) = exp 
(
−γ ‖ x i − x j ‖ 2 

)
, γ > 0 . 

• Rational quadratic: K Q (i, j) = 

(
1 + γ ‖ x i − x j ‖ 2 

)−d 
, γ > 0 . 

• Mutual information (MI)): 

I(i, j) = 

∑ 

a ∈ x i 

∑ 

b∈ x j 
p(ab) log 

p(ab) 

p(a ) p(b) 
, 

To compute MI, we can use the k -neighbors approach [46] im-

plemented in the Information Theoretical Estimators (ITE) tool-

box provided by the Szabo [47] . The Mutual Information Ma-

trix (MIM) is not always SPD as pointed out by Jakobsen [48] .

However, the counter examples are very specific, while the au-

thor also claims that MIM is very often SPD in practice. In

our experiment dataset, by using the Energy-weighted MI, i.e.

K MI (i, j) = (e x i e x j ) 
1 / 2 I(i, j) , it is always SPD. 

To combine these heterogeneous relationships, one can just

imply concatenate all matrices into a high-dimension vector.

owever, considering that the relevance matrices are all symmet-

ic, we proposed two methods, named Heterogeneous Order Rel-

vance Composition (HORC) Tensor and Kernel, to combine these

eatures more efficient as follows: 

efinition 5.1. Given a set of m symmetric relevance matrices

 S i } m 

i =1 
, S i ∈ R 

d×d , the HORC Tensor H T is extracted as follows. 

 T = [ H 1 . . . H m 

] 
T ∈ R 

m ×l , l = d(d + 1) / 2 , (13)

 i = 

{
vec( log C ( S i )) , if S i ∈ Sym 

+ 
d 
, 

vec ( S i ) , otherwise . 
(14)
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In HORC Tensor, each column captures different order rele-

ances of a pairwise EEG channels while each row contains a

nique relationship across all pairwise channels. Thus, it forms a

eaningful tensor, and dissimilarity between HORC features can be

erformed using Tensor Discriminant Analysis. In practice, to avoid

he expensive computation when l � m , we first reshape the HORC

eatures into a three order tensor R 

m × d 
2 

×(d+1) or R 

m × d+1 
2 

×d . 

efinition 5.2. Given a set of m symmetric relevance matrices

 S i } m 

i =1 
, S i ∈ R 

d×d , the HORC Kernel H K is defined as follows. 

 K = 

∑ 

βi j K j 

(
γ j , H i 

)
here H i is defined in (14) , K j is the Gaussian kernel with kernel

idth γ j , and β ij is the optimal weighted of each kernel. 

The optimal β ij can be obtained from the multi-kernel Relevant

ector Machine, which performs feature selection and fusion si-

ultaneously. 

. Multi-Class Multi-Kernel relevance vector machine 

The aforementioned features can be optimally combined us-

ng the Multi-Kernel Learning approach introduced in Section 2.1 .

mong several kernel-based classifiers, such as Kernel PCA, Kernel

isher Discrimination Analysis, and Support Vector Machine (SVM)

10] , Relevant Vector Machine (RVM) is selected due to the follow-

ng advantages. 

• RVM does not require a positive definite kernel. Thus, we can

use Gaussian kernel on any geodesic distances. This is impor-

tant since not all geometric distance yields SPD Gaussian kernel

as noticed by Jayasumana et al. [49] . 

• The number of basis vectors 1 returned from RVM is much

sparser than that of SVM. Hence, incoming data can be clas-

sified much faster. This advantage is very meaningful in prac-

tice since estimating manifold distances is much more compu-

tationally expensive relatively to Euclidean distance. 

• RVM does not require a tuning process to avoid the over-fitting

problem 

2 induced in the other methods. This is critical since

the size of training data in BCI applications is often very lim-

ited thus over-fitting very likely happens. Therefore, when us-

ing SVM, one must experimentally select the penalized param-

eters through a cross-validation process. However, doing so still

cannot guarantee the hyperplane is safe to the outliers. 

• RVM returns a probability of a sample belonging to a class.

Hence, the results also provide the prediction confidence in

contrast with true-or-false results returned from other classi-

fiers. 

• RVM is a multiple-class classifier, which is different from the

strategy of one-vs.-all or one-vs.-one voting in other binary

classifiers, such as SVM. 

In this paper, we use the multi-class multi-kernel RVM (mRVM)

ast version proposed by Psorakis et al. [9] Damoulas and Girolami

50] , and the algorithm is summarized in the Appendix B . 

. Experiment and results 

The aforementioned approaches are evaluated by using the

atasets IIa from the BCI competition IV [51] . The datasets consist

EG signals from nine subjects, each was asked to perform four dif-

erent motor imagery tasks: Left hand, right hand, tongue and foot.
1 Basis vector is called “Support Vector” in SVM and “Relevant Vector” in RVM. 

hese basis vectors help determine the classifier boundary. 
2 When a classifier performs very well in training but poorly in testing. This is 

ue the hyperplane overfits to the outliers in the training set. 

s  

5  

g  

t  

a

he EEG signals are recorded and sampled at the rate of 250 Hz

sing 22 electrodes. The experiment was conducted in two days,

nd 288 trials were recorded in each day. Each trial contained 7 . 5 s

ong samples, in which the trigger cue was shown in the period of

2 –3 . 25] s . The subjects was asked to perform corresponding motor

magery after the cue and maintain for 3 s . 

The same preprocessing steps with [6] are applied. Specifically,

he signals are first bandpass filtered in [8–30] Hz using 5-order

utterworth filter, and the data epoch X is taken from 2 . 5 s to 4 . 5 s

f the trial, which yields X ∈ R 

N c ×T s , N c = 22 , T s = 500 . Missing val-

es (denoted as NaN in the dataset) are replaced by its neighbor

alues, and any trial with more than 20 missing values are ex-

luded. No EOG correction is performed. 

In the following experiments, each reported result is an average

ver fifteen fold trials. In each trial, the whole dataset is randomly

articipated into two sets: a haft for training and a haft for testing.

or each participant, mRVM is run three times to avoid the prob-

em of falling into local maxima, and the highest result is reported

or each trial. For Gaussian kernel exp(−γ d 2 ( x i , x j )) , we use multi-

le kernel widths γ ∈ [10 −3 , 0 . 1] with 3–5 different values depend-

ng on the distance, and the optimal combination of the parame-

ers are selected by mRVM algorithms. 

In the first experiment, we evaluate the performance of each

etric described in Section 4.1 using the mRVM classifier with the

ull dimension covariance matrix COV ∈ Sym 

+ 
D =22 . The result accu-

acy is reported in Table 4 . As seen from the averaged accuracy

cross subjects, the performance of the metrics are quite similar.

he Log Euclidean distance performs worst (e.g. 62%) as expected

ue to the unjustified usage of the Identity matrix as the reference

oint. In contrast, the Tangent Space distance, which is the Log Eu-

lidean distance using the Geometric Mean as the reference point,

ields similar results with Kullback–Leiber, Log Det and Von Neu-

ann distance (e.g. 66%). The Tangent Space distance has a dis-

dvantage since its performance depends on a suitable reference

oint, which may not work well for a scattering dataset or if the

ata is shifted over time. In contrast, other distances can be com-

uted directly regardless the data point distribution. 

To evaluate the computational cost, the algorithms depend

n three main steps: (1) build the kernel for training dataset

 T ∈ R 

288 × 288 using one of the mentioned distance and kernel

ype, (2) train the RVM classifier to extract the Relevant Vec-

ors and their weights, (3) predict labels for the testing dataset.

able 5 shows the averaged computational time of the mentioned

teps, and the averaged number of Relevant Vectors for one cross-

alidation partition. The test is conducted on a Computer with i7-

930 3.2 Ghz, 16 G RAM. The Log-Euclidean is the fastest since we

nly need to map the Covariance to the Euclidean space once, and

ence can be precomputed efficiently. The Tangent Space distance

s slower since it depends on the reference point, which needs

o be recomputed for each dataset. The Kullback–Leiber, Log Det

nd Von Neumann are more computationally expensive. Hence,

he time to construct Kernel and predict the labels is significantly

onger. 

The classification performance of the mRVM is illustrated in

ig. 2 . The top four sub-figures show the probability of a test sam-

le belongs to each class, and the bottom shows the classification

esults based on the maximum probability. The test samples are

rouped from class 1 to class 4 for readability purpose. It can be

een that classification for Right Hand and Left Hand is almost per-

ect, as their probability is approximately at 100% confidence. The

lassification of tongue and foot is less consistent, and the misclas-

ification often happens when the highest probability is just above

0%. This is important for robotics BCI application as we can ne-

lect a BCI command if its highest probability is less than a cer-

ain threshold value. Furthermore, this prediction probability can

lso serve as the feedback to user. 
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Table 4 

Mean and standard deviation of the classification accuracy (%) using COV ∈ Sym 

+ 
D =22 for different metrics: Tangent Space 

(TS), Log Euclidean (LE), Log Det (LD), Kullback–Leiber (KL) and Von Neumann (VN) and kernels: Gaussian (Gauss) or Dot 

Product (dot Prod.). The highest and lowest accuracy are marked as bold and italics . 

TS + Gauss TS + dot Prod. LE + Gauss LE + dot Prod LD + Gauss KL + Gauss VN + Gauss 

Subject 1 77.2 ± 3.8 76.3 ± 2.0 77.1 ± 1.3 76.7 ± 1.7 78.5 ± 2.8 79.2 ± 2.3 79.2 ± 1.3 

Subject 2 49.6 ± 2.5 50.0 ± 1.9 46.7 ± 2.9 49.8 ± 2.6 49.9 ± 2.1 49.8 ± 2.8 51.1 ± 2.1 

Subject 3 83.6 ± 1.1 83.2 ± 2.2 77.7 ± 1.7 80.8 ± 1.3 84.0 ± 0.6 83.6 ± 1.9 83.7 ± 1.5 

Subject 4 57.1 ± 2.8 56.6 ± 2.9 53.7 ± 3.5 55.8 ± 2.3 56.1 ± 1.3 57.5 ± 2.1 54.2 ± 2.2 

Subject 5 39.4 ± 2.9 39.4 ± 2.5 35.3 ± 1.5 34.2 ± 1.9 40.3 ± 1.7 39.2 ± 4.3 38.4 ± 2.9 

Subject 6 44.6 ± 2.3 40.0 ± 2.6 37.5 ± 2.1 39.9 ± 3.7 44.7 ± 2.3 43.1 ± 4.4 42.0 ± 2.7 

Subject 7 78.3 ± 1.9 77.6 ± 1.5 72.3 ± 1.8 75.9 ± 1.8 77.7 ± 2.4 76.6 ± 2.7 78.7 ± 1.6 

Subject 8 81.9 ± 1.6 81.3 ± 2.2 77.7 ± 1.7 79.9 ± 1.4 81.4 ± 2.5 81.3 ± 1.6 82.6 ± 1.7 

Subject 9 83.2 ± 1.3 82.0 ± 2.5 80.3 ± 1.8 81.3 ± 1.7 84.0 ± 1.2 84.1 ± 1.6 84.1 ± 1.7 

Average 66.0 ± 2.3 65.2 ± 2.3 62.0 ± 2.0 63.8 ± 2.0 66.3 ± 1.9 66.0 ± 2.6 66.0 ± 2.0 

Table 5 

Averaged computing times (s) for constructing Kernel K T ∈ R 288 × 288 of the 288 training trials data, training RVM classifer and 

predicting labels for the 288 testing trials data. Number RVs is the average number of Relevant Vectors or Support Vectors 

selected from 288 training trials 

TS TS LE LE LD KL VN TS -SVM 

Average + Gauss + dot Prod. + Gauss + dot Prod + Gauss + Gauss + Gauss + Gauss 

Kernel K T (s) 1.11 1.1 0.03 0.026 2.49 2.52 2.68 1.11 

Train classifier(s) 14.1 12.14 16.21 13.34 13.68 10.33 14.31 34.86 

Number of RVs 13.3 14.52 16.98 15.7 13.5 14.2 16.2 613.1 

Predict (s) 0.004 0.003 0.006 0.003 2.70 2.74 3.44 0.023 

Total (s) 15.21 13.24 16.24 13.37 18.87 15.59 20.43 35.99 
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Fig. 2. Classification motor imagery task results and the corresponding confidence of Subject 3. 
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We also compare the performance of RVM with SVM classifier.

Note that, among the considered metrics, only the Log-Euclidean or

Tangent Space distance can yield a positive definite Gaussian ker-

nel for all kernel width γ > 0 [49] . Thus, in this test, only these

two metrics can be used with SVM. In our implementation, for

each partitioned training dataset, SVM classifier is trained by 10-

fold cross validation, and the optimal box-constraint C and kernel

width γ are tuned by the Matlab’s Bayesian Optimization func-

tion bayesopt [52] . The bound values are set to C = [10 −5 , 10 5 ] ,

γ = [10 −5 , 10 5 ] , and the Matlab function fitcecoc is used to train
ultiple-class SVM. Since there are n = 4 classes, we need to train

otal n (n − 1) / 2 = 6 binary one-vs.-one classifiers. The last column

f Table 5 shows the computation time and the number of Sup-

ort Vectors (SVs), which are significantly larger than that of RVM,

ue to the large number of binary classifiers combination and the

ross-validation process to find the optimal parameters. Note that,

hile the training set only has 288 data points, SVM needs total

13 points (212%), many of which are redundant, to construct 6

lassifier boundaries for 4 classes. In contrast, RVM only requires

4 points (5%) in average, which is very sparse. 
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Table 6 

Mean and standard deviation of the classification accuracy using Tangent Space features and Support Vector Machine 

with Gaussian kernel. 

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 

81.5 ± 1.9 44.8 ± 10.3 84.5 ± 1.3 59.1 ± 2.9 42.2 ± 2.9 52.1 ± 2.3 75.9 ± 2.3 83.1 ± 1.9 84.4 ± 1.4 

Table 7 

Mean and standard deviation of the classification accuracy using COV ∈ Sym 

+ 
d< 22 for different metrics: vectorized 

Tangent Space (vec(TS)), vectorized Log Euclidean (vec(LE)), Tangent Space (TS), Log Det (LD), Kullback–Leiber (KL) 

and Von Neumann (VN) using Gaussian kernel. The highest accuracy are marked as bold . 

vec(TS) vec(LE) TS LD KL VN vec(TS) + LD/KL 

Subject 1 80.4 ± 1.7 80.0 ± 2.1 80.2 ± 2.1 80.1 ± 2.1 81.8 ± 2.1 82.3 ± 2.3 81.6 ± 1.6 

Subject 2 47.6 ± 2.3 47.8 ± 1.9 51.3 ± 2.8 51.5 ± 2.3 50.7 ± 1.8 51.6 ± 1.5 50.6 ± 1.7 

Subject 3 88.4 ± 1.4 84.8 ± 1.0 83.9 ± 1.0 86.9 ± 1.2 86.5 ± 1.5 85.6 ± 1.4 88.1 ± 1.5 

Subject 4 62.1 ± 3.5 60.1 ± 2.2 58.3 ± 2.0 59.3 ± 1.6 57.2 ± 2.0 56.2 ± 2.6 62.1 ± 2.5 

Subject 5 43.2 ± 2.9 40.9 ± 2.0 39.2 ± 2.7 39.9 ± 1.7 36.9 ± 2.0 38.9 ± 2.1 43.9 ± 1.8 

Subject 6 53.3 ± 2.4 49.3 ± 2.1 50.1 ± 2.2 51.4 ± 1.3 48.9 ± 1.3 45.0 ± 1.5 53.1 ± 2.7 

Subject 7 77.9 ± 1.8 76.2 ± 2.0 80.4 ± 2.4 80.6 ± 2.1 81.8 ± 1.9 81.0 ± 2.2 79.2 ± 2.0 

Subject 8 85.5 ± 1.6 82.3 ± 1.6 83.9 ± 1.8 82.9 ± 1.8 84.3 ± 1.5 83.1 ± 1.6 85.3 ± 1.3 

Subject 9 86.7 ± 1.4 83.6 ± 2.1 82.4 ± 1.7 82.7 ± 0.8 83.0 ± 1.9 83.3 ± 2.0 86.9 ± 1.4 

Average 69.5 ± 2.0 67.2 ± 1.9 67.7 ± 2.1 68.4 ± 1.7 67.9 ± 1.8 67.4 ± 1.9 70.1 ± 1.8 
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Table 8 

Averaged computing times (s) for constructing Kernel K T ∈ R 288 × 288 of the 288 

training trials data, training RVM classifer and predicting labels for the 288 test- 

ing trials data. Num. RVs is the average number of Relevance Vectors selected from 

288 training trials. 

Average vec(TS) vec(LE) TS LD KL VN 

Dim. reduce (s) 2.05 0.94 98.29 219.62 226.35 176.43 

Kernel K T (s) 0.03 0.026 0.18 1.62 1.56 1.69 

Train RVM (s) 10.18 6.09 11.56 10.66 9.43 9.01 

Num. RVs 7.48 9.7 12.4 11.9 11.4 13.7 

Predict (s) 0.002 0.004 0.19 1.7 1.66 2.08 

Total 12.26 7.06 110.22 233.6 239.0 189.21 

Table 9 

Averaged accuracy across subjects using 

different relevant matrix types. 

Kernel Average 

Poly 66.0 ± 1.9 

Gauss 69.4 ± 1.9 

R. quad 68.4 ± 1.7 

M.I 58.9 ± 2.1 

HORC T 68.5 ± 2.1 

HORC K 70.3 ± 1.6 
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In this test, SVM provides slightly higher accuracy, as reported

n Table 6 . The difference in the performance may due to the se-

ection of the kernel widths. Specifically, while we implement the

ayesian Optimization function to tune the parameters for SVM in

ach training dataset, RVM only performs kernels fusion using a

et of fixed kernel widths. However, notice that RVM does not suf-

er the over-fitting problem, while SVM relies mainly on tuning the

ox-constraint parameter C . This can be seen in Subject 2, where

he over-fitting in SVM still happens in several cross-validation par-

ition, as the minimal accuracy drops to 25.7%, i.e. close to the

hance level. 

In the second experiment, we evaluate the performance of dis-

riminant analysis methods for each manifold distance (MDA) de-

cribed in Section 4.2.3 . 3 The manifold dimension is reduced to

ym 

+ 
d=12 

for Log Euclidean, Log Det and Von Neumann distance, 

nd Sym 

+ 
d=16 

for Kullback–Leibler distance. The within and be-

ween weighted matrices W 

(w ) 
i, j 

and W 

(b) 
i, j 

are constructed using

ocal Scaling method with k = 7 , and the rational cost function

s used. The results in terms of accuracy are reported in Table 7 .

n general, MDA not only reduces the dimension of the manifold

ut also improves the accuracy by 2 –5% . For Tangent Space dis-

ance, we apply two techniques: the shrinkage LDA [53,54] on Eu-

lidean space and the MDA on SPD. In this test, we found that the

angent Vector combined with Shrinkage LDA yields the highest

erformance by boosting the accuracy approximately 5% compar-

ng with that of the original dimension. The other MDA algorithms

ncreases the accuracy by 2% in most subjects. However, we also

bserve that MDA occasionally does not improve or even decrease

he accuracy such as the case of Subjects 5 and 9. The reason is

hat shrinkage LDA uses regularized Covariance while MDA does

ot. Hence, MDA is sensitive to the outliers. 

The computational cost of the discriminant analysis algorithm

epends on the four main steps: (1) reduce the dimension of the

anifold from Sym 

+ 
22 

to Sym 

+ 
d < 22 

using one of the mentioned dis-

ance, (2) building the kernel for training dataset K T ∈ R 

288 × 288 us-

ng the same distance, (2) train the RVM classifier to extract the

elevance Vectors and their weights, (3) predict labels for the test-

ng dataset. Table 8 shows the averaged computational time of the

entioned steps, and the averaged number of Relevance Vectors

or one cross-validation partition. 
3 We modified the source code published in [39] for our implementation. 

f  

q

2  

r  
mRVM can also perform optimal feature fusion using multiple

ernels framework. To illustrate this idea, we combine two kinds

f distance: the Tangent Space LDA and Log Det or Kullback Leibler

oupled with MDA. Note that although they use the same covari-

nce matrix, the two features lie in different spaces and represent

ifferent perspectives: manifold geodesics and informative geome-

ry. The result is reported in the second last column in Table 7 . It

an be seen that the combination approach yields equal or better

ccuracy relatively to each individual method. 

For the HORC feature, we first investigate the performance of

ach individual component. For Polynomial kernel K P , we select

 = 1 , d = 2 . For Gaussian kernel K G , we use the kernel width γ =
0 −4 . For Rational Quadratic Kernel K Q , we set γ = 10 −4 , d = 2 . For

utual Information (MI) kernel, we use Shannon Entropy function

ith 8 neighborhood. In this experiment, we do not incorporate

requency information since the bandwidth of motor imagery is

uite consistent and well described by α (8–12 Hz) and β (15–

5 Hz) bands. As shown in Tables 9 and 10 , the prediction accu-

acy when using these kernels as the feature descriptors are quite
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Table 10 

Mean and standard deviation of the classification accuracy using different kernel forms in place of covariance matrix with Tangent 

Space vector distance. 

Kernel S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 

Poly 78.5 ± 1.5 45.8 ± 1.4 84.9 ± 1.5 60.8 ± 1.8 40.9 ± 1.8 41.2 ± 3.1 76.0 ± 2.6 80.1 ± 2.2 85.7 ± 1.5 

Gauss 81.7 ± 2.1 49.9 ± 2.2 86.3 ± 1.0 62.1 ± 1.7 42.1 ± 3.2 54.5 ± 2.2 78.2 ± 1.0 84.4 ± 2.0 85.3 ± 1.9 

R. quad 80.5 ± 1.8 50.0 ± 1.9 87.2 ± 1.1 61.2 ± 2.1 43.2 ± 1.3 53.6 ± 2.5 76.9 ± 2.0 81.0 ± 1.0 82.4 ± 1.8 

M.I 72.2 ± 1.7 40.0 ± 2.0 75.7 ± 1.0 49.2 ± 2.8 32.6 ± 2.0 43.1 ± 2.9 63.5 ± 1.6 75.7 ± 2.0 78.1 ± 2.8 

HORC T 79.5 ± 1.8 48.6 ± 2.4 86.1 ± 1.8 60.2 ± 2.6 41.2 ± 3.6 52.7 ± 1.6 77.4 ± 2.1 84.5 ± 1.5 85.8 ± 1.3 

HORC K 81.7 ± 2.1 49.6 ± 1.5 87.8 ± 1.6 62.1 ± 3.0 42.6 ± 1.2 55.4 ± 1.9 80.6 ± 1.1 85.8 ± 1.2 86.9 ± 0.8 
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equivalent, except for the MI kernel. However, MI kernel’s perfor-

mance is still significantly above the chance level. 

The last two rows of Table 10 shows the performance of

the HORC descriptor, which combines the covariance matrix COV ,

Gaussian kernel K G , Rational Quadratic Kernels K Q and Mutual In-

formation kernel K MI . These kernels are selected since they repre-

sent different order relevances, such as linear, nonlinear and statis-

tic relationship. For Tensor discrimination analysis, we use Tensor

HODA algorithm [7] . As illustrated in Tables 9 and 10 , the HORC fea-

ture yields equal or better performance than each single compo-

nent. The HORC kernel yields higher accuracy than the HORC Ten-

sor. This is because Tensor Discrimination Analysis only performs

linear combination of the features. In contrast, mRVM is a sparse

kernel learning that tends to suppress the less discriminative fea-

tures before fusion, as we observe that the average kernel weights

for COV , Gauss, Rational Quadratic and Mutual Info are 0.02, 0.65,

0.33 and 0.0, respectively. 

Finally, Fig. 3 summarizes Cohen’s Kappa values, with the maxi-

mum and minimum indication of the mentioned methods for each

subject. The Kappa value is defined as 

κ = 

P a − P c 

1 − P c 
, 

where P a is the prediction accuracy and P c is the chance level, i.e.

25% for 4 classes. Based on the Kappa values, we can see that all

the prediction are significantly above the chance level. 

8. Conclusion 

In this paper, we revise the classical EEG features under the per-

spective of Riemannian Manifold and Tensor. An empirical study to

investigate different dissimilarity metrics for covariance matrix, a

special class of Riemannian Manifold, is conducted. Specifically, we

compare the performance of Tangent Space, Log Euclidean, Log Det

divergence, Kullback–Leibler and Von Neumann distance based on

the accuracy of classifying four different Motor Imagery tasks. Fur-

thermore, Common Spatial Pattern is generalized to the discrimi-

nant analysis in the Riemannian Manifold using different geomet-

ric distances. We also extend the Covariance matrix in the orig-

inal space to the Kernel matrices, which capture different order

relevance of the features in the Hilbert space. Two ways of com-

bining these different Relevance matrices, named Heterogeneous

Orders Relevance Composition (HORC) Tensor and Kernel, are also

examined. The multi-class multi-kernel Relevance Vector Machines

is promoted for classification since it offers several unique advan-

tages. Based on Baysian Optimizing Principle, mRVM is a sparse

classifier that avoids over-fitting problem and provides the predic-

tion probability for multiple-class in a natural way. Especially, its

kernel is not restricted by the Mercer condition, thus allows us to

use any distance metrics on the Riemannian Manifold for any ra-

dial basic function kernel, such as the Gaussian kernel. Finally, a

thorough study has been conducted to evaluate the performance

of total sixteen techniques. Our future work will be combining

reinforcement learning techniques with mRVM to perform online

learning BCI based on the HORC features. 
cknowledgment 
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ppendix A. Proof for Jacobian of manifold distance 

1. Log Euclid distance 

The nonlinear mapping (9) forms a Lie group [55] as there

xists the multiplication and inverse operation in the projected

pace 

 i � Y j = exp 

(
log ( Y i ) + log ( Y j ) 

)
= exp 

(
V 

T ( ̄X i + X̄ j ) 
)
V ) , 

Y 

−1 = exp ( − log ( Y ) ) = exp 

(
−V 

T X̄ V 

)
, 

here X̄ = log ( X )) . Since X and Y are SPD, Y i �Y j and Y −1 are also

PD, which concludes the proof. 

The Jacobian of d 2 
LE 

( Y i , Y j ) w.r.t V is given as 

∂d 2 LE 

(
Y i , Y j 

)
∂ V 

= 

∂ tr 
(
V 

T 
(
X̄ i − X̄ j 

)
V V 

T 
(
X̄ i − X̄ j 

)
V 

)
∂ V 

= 4 

(
X̄ i − X̄ j 

)
V V 

T 
(
X̄ i − X̄ j 

)
V . 

2. Log det distance 

It follows Eq. (17) in [39] and the definition in Table 3 that the

acobian of d 2 
LE 

( ̂  X , ̂  Y ) w.r.t V can be obtained as 

∂d 2 LD 

(
ˆ X , ˆ Y 

)
∂ V 

= −X W 

ˆ X 

−1 − Y W 

ˆ Y 

−1 + 2 ( X + Y ) W ( ̂  X + 

ˆ Y ) −1 

= 

(
2 ( X + Y ) W − X W 

ˆ X 

−1 (
ˆ X + ̂

 Y 

)
− Y W 

ˆ Y 

−1 (
ˆ X + ̂

 Y 

))(
ˆ X + ̂

 Y 

)−1 

= 

(
X W 

(
1 − ˆ X 

−1 
ˆ Y 

)
+ Y W 

(
1 − ˆ Y 

−1 
ˆ X 

))(
ˆ X + 

ˆ Y 

)−1 

= 

(
X W 

ˆ X 

−1 − Y W 

ˆ Y 

−1 
)(

ˆ X − ˆ Y 

)
) 
(

ˆ X + 

ˆ Y 

)−1 
. 

3. Kullback Leibler distance 

It follows Eq. (19) in [39] and the definition in Table 3 that the

acobian of d 2 
KL 

( ̂  X , ̂  Y ) w.r.t V can be obtained as 

∂d 2 KL 

(
ˆ X , ˆ Y 

)
∂ V 

= X W 

(
ˆ Y 

−1 − ˆ X 

−1 
ˆ Y 

ˆ X 

−1 
)

+ Y W 

(
ˆ X 

−1 − ˆ Y 

−1 
ˆ X ̂

 Y 

−1 
)

= X W 

ˆ X 

−1 
(

ˆ X ̂

 Y 

−1 − ˆ Y 

ˆ X 

−1 
)

+ Y W 

ˆ Y 

−1 
(

ˆ Y 

ˆ X 

−1 − ˆ X ̂

 Y 

−1 
)

= 

(
X W 

ˆ X 

−1 − Y W 

ˆ Y 

−1 
)(

ˆ X ̂

 Y 

−1 − ˆ Y 

ˆ X 

−1 
)
. 

4. Von Neumann distance 

Since there is no close form to compute ∂ log ( V T X V ) 
∂ V 

, we utilize

he trick in Lemma 6 [39] , log ( V 

T XV ) ≈ V 

T log ( X ) V , to approximate

https://doi.org/10.13039/100000185
https://doi.org/10.13039/100000181
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Method

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

K
ap

pa

0.6

0.69
0.72

0.8

(g) Subject 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Method

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

K
ap

pa

0.67

0.73
0.76

0.85

(h) Subject 8
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Fig. 3. Compare the Cohence’s Kappa values between methods: 1. TS +Gauss, 2. TS + dot Prod., 3. LE + Gauss, 4. LE + dot Prod., 5. LD + Gauss, 6. Kullback + Gauss, 7. VN 

+ Gauss, 8. Vec(TS) + Gauss, 9. vec(LE) + Gauss, 10. TS + Gauss, 11. LD + Gauss, 12. KL + Gauss, 13. VN + Gauss, 14. vec(TS) +KL/LD, 15. HORC Tensor, 16. HORC Kernel. The 

highest and lowest values are specified in each plot. 
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he Jacobian of d 2 
V N 

( ̂  X , ̂  Y ) w.r.t V as 

∂d 2 V N 

(
ˆ X , ˆ Y 

)
∂ V 

= 

∂ tr 
(
V 

T 
(
X i − X j 

)
V V 

T 
(
X̄ i − X̄ j 

)
V 

)
∂ V 

= 

� + �T 

2 

, 

here � = 2( X − Y ) V V 

T ( log ( X ) − log ( Y )) V . 

ppendix B. Summary of multi-class Relevant Vector Machine 

9] 

Let X = { x i } N i =1 
be a training set of N observations, each sample

 i has m features { x ( j) 
i 

∈ X j } m 

j=1 
in its feature space X j and a corre-

ponding label l i ∈ { 1 , . . . , C} , where C > 1 is the number of classes.

According to (3) and (4) , we aim to build a model consisting

f a multi-class hyperplane W ∈ R 

N×C and a multi-kernel weighted
ector β ∈ R 

m written as 

 

 

y 1 
. . . 

y C 

⎤ 

⎦ 

 ︷︷ ︸ 
 ( x ) ∈ R C 

= 

⎡ 

⎣ 

w 11 . . . w 1 N 

. . . 
. . . 

. . . 
w C1 . . . w CN 

⎤ 

⎦ 

︸ ︷︷ ︸ 
W 

T ∈ R C×(N) 

⎡ 

⎣ 

k 1 ( x 1 , x ) . . . k m 

( x 1 , x ) 
. . . 

. . . 
. . . 

k 1 ( x N , x ) . . . k m 

( x N , x ) 

⎤ 

⎦ 

︸ ︷︷ ︸ 
K (x ) ∈ R (N) ×m 

⎡ 

⎣ 

β1 

. . . 
βm 

⎤ 

⎦ 

︸ ︷︷ ︸ 
β∈ R m 

here each element K ij ( x ) is the kernel function evaluated at

he training sample x i using the feature x 
( j) 
i 

and kernel function

 j ( · , · ). y ( x ) = W 

T K ( x ) β is the response of the model to a data

ample x . For a training sample x i ∈ X , the response is 

 ( x i ) = [ y 1 . . . y c . . . y C ] 
T , y c = 

{ 

1 if l(x i ) = c, 
0 otherwise. 

nd for a new sample x , its label can be predicted as 

( x ) = c, if y c ( x ) > y j ( x ) ∀ j � = c. (B.1)
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mRVM finds the optimal parameter W and β using the Bayesian

rule with the following probabilistic constraints. 

First, the true label t i = l(x i ) is assumed to be the measure

of the prediction y ( x ) corrupted by a standardized normal noise

ε ∼ N (0 , 1) , i.e. l( x ) = y ( x ) + ε, or 

P 
(
t i = c| x i , w 

T 
c , β

)
= N 

(
w 

T 
c K ( x i ) β, 1 

)
. (B.2)

Second, the over-fitting problem is solved by assuming that

only a few sample in the training set are representative for its

class, while the rest is redundant and safely ignored. This casts the

sparsity on W , which can be modeled as 

P ( W | α) = N 

(
W | 0 , α−1 

)
. (B.3)

Third, since some features are more important than the other,

we can set 
∑ m 

i =1 βi = 1 , βi > 0 , which implies a Dirichlet distribu-

tion of β, i.e. 

P 
(
β| ρ)

= Dir 
(
β| ρ j 

)
. (B.4)

Hence, the maximal magnitudes of W and β are controlled by

α and ρ, which are also enforced to follow Gamma distribution, i.e.

P ( αci | τci , υci ) = γ ( αci | τci , υci ) , P ( ρ| μ, λ) = γ ( ρ| μ, λ) . (B.5)

The parameter Ξ = [ τ, υ, μ, λ] can be automatically tuned as

the arguments maximizing the evidence approximation, which is

the following marginal likelihood function 

P ( l( X ) | X , Ξ) = P 
(
l( X ) | X , W , β

)
P ( W | τ, υ) P 

(
β| μ, λ

)
(B.6)

where P ( W | τ, υ) = P ( W | α) P ( α| τ, υ) and P ( β| μ, λ) =
P ( β| ρ) P ( ρ| μ, λ) . Substituting (B.2) –(B.5) to (B.6) , one can

iteratively update Ξ by following the gradient descent

∂P (l( X ) | X , Ξ) /∂Ξ . For a new Ξ, one can update the optimal

parameters W 

∗ = argmax P ( W | τ, υ) and β
∗ = argmax P ( β| μ, λ) .

The process runs iteratively until reaching some convergence

conditions. 

Finally, for a new sample x , its label can be predicted by

(B.1) with the confidence 

P 
(
l( x ) = c| X , W 

∗
, β

∗) = E ε

[ ∏ 

i � = c 
�(ε + ( w 

∗
c − w 

∗
i ) 

T K (x ) β
∗
] 

, 

where E ε is the expectation along the variable ε. More details can

be found in [9] . 4 
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