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High-Density Electromyography and Motor Skill
Learning for Robust Long-Term Control of a 7-DoF

Robot Arm
Mark Ison, Ivan Vujaklija, Bryan Whitsell, Dario Farina and Panagiotis Artemiadis

Abstract—Myoelectric control offers a direct interface between
human intent and various robotic applications through recorded
muscle activity. Traditional control schemes realize this interface
through direct mapping or pattern recognition techniques. The
former approach provides reliable control at the expense of func-
tionality, while the latter increases functionality at the expense
of long-term reliability. An alternative approach was recently
proposed using concepts of motor learning. It provides session-
independent simultaneous control, but previously relied on con-
sistent electrode placement over biomechanically independent
muscles. This paper extends the functionality and practicality of
the motor learning-based approach, using high-density electrode
grids and muscle synergy-inspired decomposition to generate
control inputs with reduced constraints on electrode placement.
The method is demonstrated via real-time simultaneous and
proportional control of 4-DoF while operating a myoelectric
interface over multiple days. Subjects showed learning trends
consistent with typical motor skill learning without requiring
any retraining or recalibration between sessions. Moreover, they
adjusted to physical constraints of a robot arm after learning
the control in a constraint-free virtual interface, demonstrating
robust control as they performed precision tasks. The results
demonstrate the efficacy of the proposed man-machine interface
as a viable alternative to conventional control schemes for
myoelectric interfaces designed for long-term use.

Index Terms—Electromyography, Human-Robot Interaction,
Motor Learning, Myoelectric Control, Simultaneous Control,
High-Density EMG, Real-Time Systems, Prosthetics

I. INTRODUCTION

Myoelectric control allows a convenient human-machine in-
terface by transforming electromyography (EMG) signals into
control outputs. Surface EMG (sEMG) provides non-invasive
access to muscle activity. This type of control has been
explored extensively due to its direct application to functional
prostheses [1]–[3]. Recent extensions consider applications in
other human-machine interfaces, such as robot teleoperation
[4]–[6], powered wheelchairs [7] and virtual joysticks [8].
However, transient changes in sEMG cause a trade-off between
functionality (i.e. proportional and simultaneous control) [9],
[10] and reliability (i.e. consistent long-term control without
frequent retraining) [11], [12] in most control schemes.
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Two control approaches are currently employed in conven-
tional myoelectric control: direct control and pattern recogni-
tion (PR). Direct control links antagonistic muscles or muscle
groups directly to a single degree-of-freedom (DoF) [13].
Various switching methods sequentially transition between
different DoFs or functions in finite state machines [14]. These
simplistic controllers provide reliable controls, but lack the
functionality to smoothly operate multiple DoFs [15].

PR methods utilize machine learning techniques, including
both classification [16] and regression [17], to decode a map-
ping between myoelectric inputs and desired outputs [1]. This
enhances functionality compared to direct controls by enabling
multiple DoFs without explicit switching methods. However,
increased functionality requires an updated training set which
is highly dependent on the user’s motion repeatability [16]
and influenced by many external factors [18]–[21]. Thus, the
decoding often overfits to a small set of the full input space,
and performance tends to degrade over time [22]. Adaptive
[22]–[25] and pre-trained models [26]–[29] attempt to avoid
this effect with varied success.

An alternative method was recently proposed utilizing con-
cepts of motor skill learning and brain plasticity [30]. These
motor learning-based methods extend direct control principles
to multiple DoFs through linear transformations between EMG
inputs and control outputs, naturally providing both simulta-
neous and proportional control [31]. The surjective mapping
creates a redundancy in the control scheme which reduces the
precision needed in muscle activations to control the entire
task-space [32]. These methods have shown a user’s ability to
learn a given mapping, regardless of its intuitiveness [33], and
to develop muscle synergies associated with enhanced control
of the myoelectric interface [34], [35].

While these motor learning implementations consistently
demonstrate session-independence, they rely on targeted elec-
trode placement over biomechanically independent muscles to
avoid biomechanical constraints [36] and to enhance learning
potential [33], [35]. Robust extensions to three or more DoFs
originally required a large number of input muscles [37] to
maintain redundancy in the control scheme and to avoid unin-
tended outputs during use [32]. However, Ison and Artemiadis
[38] introduced a surjective mapping function enabling robust
simultaneous control of 3-DoFs using only four independent
muscle inputs.

This work presents a novel myoelectric control scheme
capable of real-time simultaneous and proportional control of
a large number of DoFs, without requiring retraining between
sessions, targeted electrode placement, nor biomechanically
independent muscle inputs. A novel muscle synergy-inspired
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decomposition transforms high-density (HD) sEMG into in-
dependent activation signals which linearly map to control
outputs. The algorithm (detailed in Section III-A2) extends the
DoF-wise non-negative matrix factorization (NMF) algorithm
proposed by Jiang et al. [39]. DoF-wise NMF extracts muscle
synergies related to hand kinematics, and the extension trans-
forms these synergies into independent activation signals to
ensure the outputs can be operated autonomously for complete
simultaneous and proportional control of the interface. The
method is demonstrated using concurrent control of 4-DoFs in
a finite state machine (FSM) to control a 7-DoF robot arm, and
validated via learning trends and session-independent char-
acteristics identified in other motor learning-based schemes
[30]–[35], [38]. To the best of the authors’ knowledge, no
other myoelectric control scheme has demonstrated real-time
simultaneous and proportional control of 4-DoFs from untar-
geted sEMG of a single arm. Moreover, previous attempts at
myoelectric control of a 7-DoF robot arm required retraining
each session [40], [41].

II. RELATED WORK

A. Motor Learning

Learning a new motor task typically involves a three stage
learning process [42]. The initial cognitive stage carries a
significant mental load and sporadic performance as users
explore and gather information relevant to the task. As users
repeat the task, they enter an associative stage with reduced
conscious effort and increased performance. Finally, through
repetition, an autonomous stage is reached, where tasks seem
unconscious and intuitive to perform [42].

These principles are associated with brain plasticity and
commonly utilized in brain-machine interfaces [43], which
train users to associate thoughts with controls [44]. Similar
learning trends are seen with myoelectric interfaces. Users
adapt to controls within a single session regardless of their
initial intuitiveness or relationship with kinematics [30], [32],
[33], [45]. Radhakrishnan et. al [30] found that this initial
adaptation results in an exponential performance enhancement.
Antuvan et. al [33] observed that less intuitive controls have
worse initial performance, but a higher learning rate such that
performance quickly converges with that obtained using more
intuitive control schemes. These adaptations are associated
with the dynamic formation of new muscle synergies, resulting
in more efficient control of the interface as users presumably
enter the later stages of motor learning [34], [35]. Ison
and Artemiadis found a correlation between these developing
muscle synergies and a long term learning component, both
of which contribute to performance retention among similar
tasks, efficient generalization to new tasks, and effective
transfer to new interfaces [31], [34].

Clingman et. al [46] propose that these characteristics can be
applied to entertaining myoelectric training systems for more
robust interaction with prosthetic devices. Ison and Artemiadis
[38] demonstrated the potential benefits of such a training
system as subjects implicitly learned to control a robot arm
by interfacing with an analogous virtual object via a non-
intuitive control scheme. The subjects naturally transferred

this learning when interacting with the physical robot, feeling
the controls were intuitive despite them having no relation to
human kinematics.

All of the above control schemes target specific, biomechan-
ically independent muscles for interaction with the interface.
De Rugy et. al [36] noted that dependent muscles may hinder
motor learning and prevent users from obtaining satisfactory
performance while interacting with abstract myoelectric in-
terfaces. The present work incorporates high density surface
electromyography to eliminate this constraint and expand the
capabilities of motor learning in myoelectric interfaces.

B. High-Density sEMG

sEMG signals are influenced by a variety of factors and
transient changes which can render individual signals unreli-
able [1], [47], [48]. While many of these complications can
be eliminated with invasive measures [49], they can be sig-
nificantly reduced by recording a richer information set from
HD electrodes without requiring exact electrode placement.

Untargeted electrodes uniformly placed around the forearm
has become standard for PR-based myoelectric controls in
recent years [15], [50], [51]. HD extensions use electrode
grids to extract 2D information from the muscle activity [52].
Muceli et. al [53] used these grids in a simultaneous 4-DoF
control scheme trained with multi-layer perceptrons, but only
evaluated results offline. Tkach et. al [54] used similar grids
to train a linear discriminant analysis classifier on arm and
hand motions for subjects with amputations, concluding that
the richer processing led to more robust control. Unfortunately,
the increased number of signals bring enhanced concerns for
overfitting, limiting such PR controls during long-term use.

Alternative control techniques with HD sEMG propose
semi-unsupervised methods. Jiang et. al [39] introduced a
muscle synergy-inspired extraction method for motions along
desired DoFs in the control scheme. Multiplying input signals
with the obtained weights provides simultaneous control for an
intuitive motor learning-like 2-DoF control scheme [55], [56].
Muceli et. al [57] demonstrated how these controls may be
robust to different electrode number, shifts, and configurations.
Although promising, these controls have yet to demonstrate
session-independence for operation of more than 2-DoFs. This
work adapts these methods to generate a session-independent
control scheme capable of controlling more DoFs.

III. METHODS

The experiment performed in this study evaluates per-
formance characteristics and control capabilities of a novel
control scheme operating a 7-DoF myoelectric interface with
4-DoF simultaneous and proportional control. Three sessions
are conducted on distinct days. In the first two sessions, a
user learns the control scheme by interacting with a helicopter
in virtual reality (VR) to complete a set of tasks. The final
session involves controlling a KUKA Light Weight Robot
4 (LWR 4) and an attached Touch Bionics iLIMB Ultra to
complete three precision tasks using the same control scheme.
Subjects are split into two groups. The experimental group
interacts with the two interfaces via HD sEMG inputs, while
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the control group uses keyboard inputs. The control group acts
as a reference for learning using definitive, noiseless inputs on
the non-intuitive control scheme.

A. Muscle Synergy-Inspired Decomposition

Muscle synergy-inspired dimensionality reduction extracts
robust control information from HD sEMG by separating
redundant signals into quasi-independent inputs.

1) Muscle Synergy Based Model: Jiang et. al [39] modeled
HD sEMG observations, Y(t), as instantaneous mixtures of
muscle activation signals, F(t). Following the notation in
Muceli et. al [57], the relationship is defined as:

Y(t) = W · F(t) (1)

where W is a channel weighting matrix representing the con-
tribution of the activation signals to the signal received at each
electrode. Each column Wi approximates a muscle synergy
provided as high-level input by a user when interacting with
myoelctric interfaces [1]. This model is proposed as the basis
for extracting robust control signals from HD sEMG [57], and
is similarly used as the basis for this control paradigm.

W is generated using the DoF-wise NMF algorithm de-
scribed in [39]. This algorithm assumes that two activation
signals control a single DoF on a joint, one in the positive
direction, f+i (t), and one in the negative, f−i (t). Thus, W
becomes a n × m matrix, where m = 2d, with n sEMG
channels and d DoFs of interest [39]:

Y(t) = [W+
1 W

−
1 · · ·W

+
d W

−
d ] ·


f+1 (t)
f−1 (t)

...
f+d (t)
f−d (t)

 (2)

2) Novel Activation Signal Extraction: This paper proposes
a novel method to extract k < m quasi-independent activation
signals by approximating a subset of k independent columns
in W. If all Wi are orthonormal, W is a semi-orthogonal
matrix satisfying WTW = I , and the left inverse of W
exists: W−1

left = WT . Y(t) can then be decomposed into
independent activation signals:

F(t) = WT ·Y(t), (3)

providing independent control inputs to the interface.
The DoF-wise NMF algorithm does not guarantee a semi-

orthogonal W. Moreover, the variability of sEMG causes
uncertainty in the exact values of W. The proposed algorithm
produces a n × k semi-orthogonal matrix, Ŵ, decomposing
sEMG into quasi-independent control inputs, F̂(t), approxi-
mating activation signals F(t). Given the 4×4 Gaussian kernel
G, function δ(V) thresholding V to 0 at one standard devi-
ation below the maximum element in V, and 2D convolution
operator ∗, the algorithm generating Ŵ is as follows:

1) Rearrange all Wi according to the 2D configuration of
the HD electrode grid.

2) ∀Wi (i ∈ {1..m}) : W
′
i = δ(Wi) ∗G.

3) m−k times do: Merge W
′
a and W

′
b, where W

′
a and

W
′
b have the closest cosine similarity of all W

′
i pairs.

Fig. 1. Summary of the proposed 5-step algorithm to generate Ŵ with four
quasi-independent control inputs from a noisy W. Each column of both W
and Ŵ is represented with elements rearranged according to their topographic
position on high-density electrode grids, as described in Fig. 3 below.

4) ∀W′
i (i ∈ {1..k}) : W

′
i = δ(W

′
i) ∗G.

5) ∀W′
i : Ŵi =

W
′
i

|W′
i|

, reshaped to a row vector.

Figure 1 demonstrates the algorithm visually. Ŵ, with Gaus-
sian blurred, orthonormal columns, satisfies (3) and forms the
basis of a session-independent control scheme. The mixture of
Gaussians, represented by Ŵ, act as a spatial low-pass filter on
the noisy EMG input signals. The sparser Ŵ also reduces the
influence of cross-talk for easier isolation of control outputs
and enhanced simultaneous control. The consistency of the
resulting decomposition is a function of overlap between the
approximated activation signals and the user’s true underlying
activation points. By only considering independent activation
points, the robustness is a function of electrode span within
and electrode distance between each activation signal versus
potential electrode displacement.

B. Experimental Setup

The VR and robot control setups for the experimental group
are shown in Fig. 2 and 2(b), respectively. HD sEMG signals
are recorded from the right forearm muscles, approximately
two inches below the elbow at the ulnar bone, using three
equally spaced semi-disposable adhesive 8×8 electrode grids,
with 10mm inter-electrode distance. In contrast to previous
studies involving multiple sessions with untargeted electrodes
[22], exact electrode positioning was not marked in this
study to simulate cross-session performance in a realistic use
scenario. The skin is cleansed with water and a reference
electrode is placed on the subject’s elbow.

The 192 monopolar signals are acquired using EMG-USB2,
OT Bioelettronica amplifier with gain set to 1000, bandpass
filtered at 3 − 900Hz, sampled at 2048Hz with 12-bit A/D
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(a) (b)
Fig. 2. Experimental setup with HD sEMG electrodes. (a) Session 1 and
2: VR interface controlling a helicopter’s position, orientation, and color. (b)
Session 3: LWR 4, iLIMB, and three target objects to grasp and move based
on controls learned in the VR interface.

TABLE I
FINITE STATE MACHINE CONTROL AXES

Control Axis Position State Orientation State
1 X Yaw (φ)
2 Y Pitch (θ)
3 Z Roll (ρ)
4 Color (VR) or Hand Open/Close (Robot)

conversion, and broadcast via TCP for further processing, as in
[57]. Two additional sEMG signals are recorded on the biceps
brachii (BB) and triceps brachii (TB) using wireless electrodes
(Delsys Trigno Wireless, Delsys Inc.). These bipolar electrodes
are acquired with a gain of 500, digitized with 16-bit depth at
a frequency of 1926 Hz and broadcast via TCP. Both signals
are received by a custom program using C++ and OpenGL
API [58] to control both interfaces. The sEMG signals are
processed in real-time and converted to control variables of
the virtual helicopter (session 1 and 2) or robotic hand (session
3). The helicopter and hand respond to the outputs at 200Hz.

C. Control Paradigm

The 7-DoF control scheme is implemented as a two-state
finite state machine, with each state offering simultaneous
control of velocities over 4-DoFs (see Table I). Control Axes
1-3 switch between controlling the global position and local
orientation of the object. Co-contracting both BB and TB
above a preset threshold induces the switch. Control Axis
4 is constant among both states, controlling the color of the
helicopter and hand opening/closing of the robot.

The input sEMG is pre-processed to provide linear en-
velopes as input, Y(t). The mapping function is adapted from
[34], with a linear mapping between the 194× 1 vector Y(t)
(3 ∗ 64 + 2) and 4× 1 vector U(t) of control outputs:

U(t) = gM · ŴT · [(Y(t)− σ) ◦ u(Y(t)− σ)] , (4)

where ◦ is an element-wise matrix multiplication, u(∗) is
the unit step function, σ is the muscle activation thresh-
old, and g is the output gain. Ŵ is the muscle synergy-
inspired 194×6 decomposition matrix reducing Y(t) to quasi-
independent control inputs F̂(t), as described previously. M is
a semi-random mixing matrix converting F̂(t) to the control
outputs U(t). The resultant U(t) is averaged over the last five
outputs to reduce effects of any motion artifacts, electrode
disconnections, or unintended muscle twitches. Both σ and g
can be tuned for each subject, but in general, σ = 0.01mV

prevents undesired outputs from resting muscles and g = 50
provides a conservative sensitivity trade-off between too much
and too little muscle activation required for movement.

1) Pre-Processing: Both sets of sEMG inputs are pre-
processed to provide linear envelopes to the control scheme.
The HD sEMG signals are first subtracted from the mean of all
signals to remove external common noise, and then rectified
and low-pass filtered (fourth-order zero-lag Butterworth filter,
cut-off frequency 3Hz). Finally, the signals are filtered by a
3×3 median filter to minimize the effects of any local distur-
bances. The additional TB and BB signals are rectified, low-
pass filtered (fourth-order zero-lag Butterworth filter, cut-off
frequency 3Hz), and normalized with respect to the subject’s
maximal voluntary contraction (MVC), as found during the
initial calibration. Both sets are sub-sampled to 200Hz and
merged to Y(t), with TB and BB as the last elements.

2) Calibration: An initial calibration phase generates the
session-independent Ŵ unique for every subject, as described
in Section III-A. With 192 HD electrodes spanning the cir-
cumference of the forearm, eight DoFs are considered here
– four coarse wrist motions (wrist flexion/extension, wrist
pronation/supination, ulnar/radial deviation, hand open/close)
and four fine finger motions (flexion/extension of the index,
middle, ring, and pinkie fingers). The calibration data was
collected following the procedure described in [52]. Subjects
were prompted by a monitor to move along each direction at
a pace of roughly three seconds per motion. Each movement
was repeated four times, summing to a total of 64 three-second
recordings across the sixteen listed motions (half-DoFs) used
to initialize a 192× 16 W.

Because the TB and BB are not part of the HD grid, their
contribution is ignored until after the initial calculation of Ŵ
with k = 4. The contribution of both TB and BB are then
appended to the fifth and sixth columns of Ŵ at the 193rd

and 194th row, respectively, with the remaining elements in
those rows and columns set to zero. Thus, the 194×6 Ŵ has
the first four control inputs decomposed from forearm muscles
(see Fig. 3), and the final two coming from TB and BB.

During this calibration, subjects also performed their MVC
for TB and BB to set the switching threshold at 50% of it.

3) Mixing Matrix: To generate a control scheme capable of
spanning the entire task space with minimal inputs, the mixing
matrix, M, is a random matrix optimized with a cost function
maximizing the angles between row vectors and subject to the
following constraints, where Mi is a column vector in M:

1) M5 = [0, 0, 0, 1]T and M6 = −M5 to disconnect
grasping from motion.

2) ∀Mi : |Mi| = 1 for equal contribution from all inputs.
3) All row vectors are zero mean to prevent motion at rest.
For this experiment, M is as follows (see Fig. 4):

M =


0.52 −0.94 0.42 0.00 0.00 0.00
0.79 0.06 −0.85 0.00 0.00 0.00
−0.33 −0.34 −0.33 1.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 −1.00


(5)

4) Robot Control: The robot control runs slightly different
than the controls within VR due to joint limits, singularities,
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ulnar bone    anterior forearm     radial bone      posterior forearm        ulnar bone

Fig. 3. Visualization of the first four columns of the muscle-synergy
inspired decomposition matrix Ŵ, transforming high density sEMG Y(t)
to four of the six quasi-independent control inputs F̂(t). Each column
Ŵi is represented by a color, with elements rearranged according to their
topographic position on the HD electrode grids. The intensity of the color
indicates the weight of the elements in Ŵi. prox: proximal, dist: distal. This
representation shows the three 8×8 grids as if they were contiguous around the
circumference of the arm. In reality, each grid is separated by some distance
depending on the subject’s forearm circumference.

Fig. 4. Visualization of mapping M, transforming control inputs F̂(t) to four
output control axes U(t), where each axis is as defined in Table I.

and torques. LWR 4 operates in Cartesian impedance control
using inverse kinematics when the control state is in position,
and joint impedance control using forward kinematics of the
wrist joints when the control state is in orientation mode. The
switch to joint impedance reduces the risk of exceeding joint
velocity and position limits while rotating through singularities
in the null space. Global ρ, φ, and θ are limited to ±π3 to
avoid physical joint limitations while rotating. The iLIMB is
controlled via velocity commands to all fingers over Bluetooth.

5) Noiseless Keyboard Interface: The control group uses
keyboard inputs, with US layout, as F̂(t), with simultaneous
control offered by pressing multiple keys:

U(t) = gM · F̂, (6)

where U, g, and M are defined as in (4), and visualized in Fig.
4. Subjects control color changes/hand grasping with their left
hand (F̂5,6 = {1, 2}) and position/orientation with their right
hand (F̂1,2,3,4 = {j, k, l, ; }) without needing to move their
fingers off the keys. The magnitude of F̂ was given by 90%
of the maximum synergy input used by all subjects in the
experimental group, allowing them to simulate proportional
control by tapping the keys. This provides an ideal scenario
for learning as subjects interact with the non-intuitive controls.

D. Experimental Protocol

Subjects interact with the control scheme over three sessions
on distinct days. None of the subjects were initially aware
how to control the interface, although they were shown how
to switch between control states. They were asked to learn the
simultaneous controls simply by interacting with them. The
experimental group used sEMG inputs as described above,
with an initial calibration phase before the first session to
generate Ŵ associated with the subject’s underlying muscle
anatomy. The control group used keyboard inputs as a noise-
less substitute for sEMG.

1) Session 1: This session introduced the VR and its con-
trols to the subject. All subjects were initially given 20 minutes
to become familiar with the controls, in which example
tasks were presented without requiring completion. Subjects
were encouraged to explore the interface and understand how
to control the helicopter along all 7 available DoFs. This
time presumably encompasses the initial exponential learning
documented previously [30], [32], [33].

After 20 minutes, subjects were asked to complete 26 tasks.
At this point, it is expected that they will show more linear
learning trends [34]. Each task consisted of three subtasks
exercising control across all DoFs (see Fig. 5):

1) Move the helicopter to a ring displayed on the screen.
2) Rotate the helicopter toward a target displayed on a wall.
3) Change the helicopter’s color to match the top bar cue.

Once the subject completed the full task, the helicopter re-
turned to an initial position, orientation and color, and a ten
second break was given. There was no task time limit to
encourage exploration and reduce any effect of einstellung (i.e.
becoming stuck in a non-optimal solution) while learning [59].

In total, subjects were presented 26 distinct rings uniformly
placed on a sphere surrounding the starting point of the
helicopter. 26 distinct orientation targets were also presented,
uniformly spread on the walls along the front half of the
VR space. Each trial presented a random combination of
ring position, target position, and prompted color such that
after 26 trials each ring and target position, respectively, were
displayed exactly once. Thus, completing the full set on the
first session ensures that the subject can move in the full task
space. The random arrangement of ring, targets, and colors
were constant for each subject to ensure a consistent learning
environment.

2) Session 2: This session occured at least 24 hours after
session 1. Subjects were asked to complete as many VR tasks
as possible for one hour to evaluate learning retention. Subjects
were not given any exploration time nor assistance during the
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(a) (b)

(c) (d)
Fig. 5. Subtask sequence for VR. The helicopter (a) starts from an initial
configuration, (b) moves to the center of the ring, (c) rotates to point toward
the target on the wall, (d) changes to the color shown in the top bar cue. The
color task can be completed simultaneously, but (b) and (c) must be completed
in order. Once all three subtasks are complete, the helicopter resets, and new
ring, target, and color are shown after a 10 second rest.

(a) Clothespin 1 (b) Clothespin 2 (c) Ball
Fig. 6. Subtask sequence for the robot interface. The robot hand is controlled
to grasp two clothespins (a and b, subject perspective) and a ball (c, top view).
The object is then placed into the bin below the table. The order in which
these tasks are completed is determined by each subject.

interaction, and use the same control scheme and Ŵ calculated
during session 1. Each cycle of 26 tasks presented a random
combination of the complete sets of rings, targets, and colors
from Session 1, held constant across subjects.

3) Session 3: The final session occured between one and
eight days after session 2, and introduced the robot interface
while still using the same control scheme and Ŵ calculated
during session 1. Subjects were asked to complete three
precision tasks by sequentially grasping a tennis-sized ball and
two customized clothespins to place in a bin. The clothespins
were 3D printed extensions of conventional ones to provide a
larger gripping area. The 2× 1.25 inch grasping pad allowed
two iLIMB digits to close on the area for a more stable grasp

Figure 2(b) shows the setup of the objects, with ideal grasps
shown in Fig. 6. Subjects were required to activate all 7 DoFs
with centimeter precision to grasp each object. The experiment
was complete after grasping each object in any order.

E. Data Analysis

The first two sessions are split into eight equal blocks
containing data from 25% of a single session, and performance
metrics are compared among the control and experimental
groups to determine the presence of motor learning. The final
session records total completion time to indicate precision
performance capabilities and any influential factors.

1) Learning Trends: During the first two sessions, perfor-
mance is evaluated according to three metrics: completion
time, throughput and path efficiency [60], [61]. Completion
time, CT , is the time taken to successfully complete the

task. Throughput, TP , measures both speed and accuracy
by considering CT with respect to task difficulty, measured
in bits/second according to Fitts’ law standards [62]. Path
efficiency, PE, is the ratio between the optimal distance, D,
to complete the task and the actual path taken to reach the
target [60]. . The index of difficulty, ID, of a task is given
by the Shannon Formulation [62]:

ID = log2(
D

WD
+ 1) (7)

where D is the optimal distance to complete the task and WD

is the weighted cumulative error tolerance of all targets, held
constant throughout this experiment. D is formulated similar
to [45]:

D =
1

g

√
(λγ1 + γ2)2 + γ23 (8)

where g is as defined in (4), γ1 is the straight line distance from
the starting position to the center of the ring, γ2 is the angular
distance between the starting orientation of the helicopter and
the target orientation with respect to the center of the ring,
γ3 is the internal distance from starting color to desired color,
and λ = 0.471 is the ratio between output angular velocity in
orientation state and output velocity in position state for equal
input F̂(t). gamma1 and gamma2 are additive because the
position and orientation subtasks are sequential, while color
can be performed simultaneously. TP is then:

TP =
ID

CT
(9)

The three metrics CT , TP and PE are evaluated with
respect to block number b to form a mean model of the
learning curve. Based on [34], the initial 20 minute exploration
time presumably encapsulates the initial exponential learning
component. Thus, the metrics are assumed to contain approx-
imately linear trends, and are fit to first degree polynomials:

CT (b) = κct − βctb (10)

TP (b) = κtp + βtpb (11)

PE(b) = κpe + βpeb (12)

where b represents the overall block number in session 1 and 2,
κ represents initial performance, and β represents the learning
rate for each component. For all metrics, a positive β indicates
better performance and a significant learning component.

2) Robot Control: In the third session, subjects are evalu-
ated on how quickly they perform all three precision tasks
with the robot. This may be influenced by a number of
immeasurable factors such as strategy and adaptation to the
physical constraints of the robot. It may also be influenced by
measurable factors such as performance in the virtual tasks,
time between session 2 and session 3, and, for the experimental
group, the choice of Ŵ. With a small number of data points,
it is not expected to find a valid model of these factors to
predict the final completion time. Thus, correlation coefficients
between these factors and the final completion time identify
relationships and rank the importance of each factor.
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TABLE II
LEARNING TRENDS FITTING PARAMETERS

Metric Group β β [95% CI] κ R2

CT (b)
exp 17.10 [12.40,21.70] 177.0 0.94
cont 1.66 [1.39, 1.92] 25.3 0.98

TP (b)
exp 0.024 [0.019, 0.029] 0.06 0.98
cont 0.033 [0.028, 0.038] 0.26 0.97

PE(b)
exp 0.031 [0.024, 0.038] 0.20 0.10
cont 0.037 [0.032, 0.042] 0.53 0.23

*exp: experimental group; cont: control group

IV. RESULTS

Eight healthy subjects (all male, age 19-40, 1 left-, 7 right-
handed, forearm circumference 10 − 12in, forearm length
9.75−11.25in) formed the experimental group. Five additional
subjects (all male, age 20-25) served as the control group. All
subjects gave informed consent to the procedures as approved
by the ASU IRB (Protocol: #1201007252).

Of the eight subjects in the experimental group, two subjects
displayed outlier tendencies. One subject experienced sudden
confusion during the second session (block 6), which caused
a loss of control. This subject struggled to regain control
throughout the remaining experiment. In contrast, another par-
ticipant learned the controls almost entirely in the 20 minute
exploration stage and performed significantly better than any
other subject, even those in the control group, throughout all
sessions. The results include both subjects, most noticeably
through the learning trend inconsistencies at block 6

A. Learning Trends

The average time between session 1 and 2 was 30 hours for
the experimental group, and 25 hours for the control group.
All but one subject found the controls easier at the start of the
session 2, consistent with motor learning characteristics [63].

Completion times for both groups follow a roughly linear
trend throughout sessions 1 and 2 (see Fig. 7 top). The fit
for the experimental group reveals a significant learning rate
despite the non-intuitive control scheme resulting in initial
poor performance (see Table II first row). The control group
also shows a significant learning rate, though significantly less
than the experimental group, as subjects found the noiseless
keyboard inputs easier to explore and quicker to learn. Consis-
tent with previous studies [30], [33], the two groups quickly
trend toward similar performance despite the initial gap.

The two groups similarly show significant learning trends
in throughput (see Fig. 7 middle). The learning rates for both
the experimental group and control group are not significantly
different, (see Table II row 2), although they are separated by
an initial performance gap relating to the ease of discovering
the appropriate control inputs.

Both groups also show significant learning in path efficiency
(see Fig. 7 bottom). The learning rates for both the experi-
mental group and control group are not significantly different
(see Table II row 3), although they are separated by the initial
performance gap, similar to throughput. The poor fit metrics
are expected due to the bias toward higher variance as the
mean path efficiency increases [34].

Both groups maintained the learning trends despite the break
between sessions, as shown by block 4 and 5 in Fig. 7.
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Fig. 7. Performance metrics as a function of block number for all subjects.
The error-bars represent a 95% confidence interval within each block. Both
groups display consistent improvement despite at least 24 hours between each
session. With respect to completion times, the experimental group shows
worse initial performance but a faster learning rate such that completion times
are quickly converging. Both groups have similar learning rates in throughput
and path efficiency, with an offset indicative of the additional exploration time
needed for sEMG controls.

B. Robot Control

The average time between session 2 and 3 was 97 hours (∼
4 days) for the experimental group, and 119 hours (∼ 5 days)
for the control group. All but one subject found the controls
consistent during the start of the third session, although all
subjects in both groups perceived occasional delays in the con-
trol outputs, caused by generating outputs exceeding physical
joint and velocity limits. An example grasp sequence is shown
in Fig. 8. A supplementary video demonstrating the various
precision tasks is available at: http://youtu.be/Qrel34jA4TQ.

On average, the control group finished all three tasks in 14.4
minutes (95% CI [10.8, 18.0]), while the experimental group
finished in 30.6 minutes (95% CI [18.0, 43.1]). Although
significantly higher on a student paired t-test (p = 0.04),
the relative completion times, with the experimental group
finishing twice as long as the control group, are expected
considering the trends in Fig. 7. At the end of session 2, the
experimental group finished tasks three times slower than the
control group, but was trending toward equal performance.

The relationship between the final completion time and
identified sources of influence are considered by correlation
coefficients between the metrics for each subject, displayed
in Table III. For both groups, the only significant correlation
is with throughput (p < 0.05). Completion time and path

 http://youtu.be/Qrel34jA4TQ


8

(a) (b) (c) (d)
Fig. 8. Example chronological task sequence completed by a subject, with an example of an unsuccessful grasp (a) in red, followed by three successful
grasps (b, c, d) in green, demonstrating the precision required to complete the tasks.

TABLE III
INFLUENTIAL FACTORS IN ROBOT COMPLETION TIME

Factor Experimental (R) Control (R)
Throughput -0.82 -0.75

Completion Time +0.70 +0.66
Path Efficiency -0.61 -0.61

Delay -0.16 -0.41
Ŵ -0.28 –

efficiency at the end of session 2 are moderately correlated
with final completion time (p < 0.1). In contrast, the delay
between session 2 and session 3 is- not correlated with the
final completion time (p = 0.71), which suggests performance
degradation is not a significant factor in completion times.
The choice of Ŵ is considered with respect to both activation
component-wise and merged-component cosine similarity to
the subject with significantly better control than any other
subject. This produces only weak correlations (p > 0.4),
indicating that the exact Ŵ is not a significant influence.
An analysis of electrode span and distance between activation
components, expected to be the major factors influencing
robustness, also gave weak correlations with performance
(p > 0.5), likely due to variability across subjects. Future
work will investigate these relationships more closely.

V. DISCUSSION

This work presents a novel motor learning-based control
scheme capable of real-time simultaneous and proportional
control of a large number of DoFs without requiring re-
training between sessions. Using high density sEMG, a mus-
cle synergy-inspired decomposition avoids the constraint on
targeted electrode placement while maintaining the session-
independent benefits shown in other motor learning-based
control schemes. Despite not knowing either the input signals
nor non-intuitive mapping, the subjects demonstrate learning
trends consistent with typical motor skill learning. The same
trends are seen with the control group using noiseless keyboard
inputs, and are consistent with previous works which control
fewer DoFs while targeting specific muscles [30]–[32], [34],
[38].

The proposed method is designed to be robust to small
electrode displacements by approximating independent activa-
tion signals as mixtures of Gaussians, effectively introducing
a spatial low-pass filter on noisy EMG while reducing them to
more stable, low-dimensional inputs. Thus, robustness of the

method is a function of electrode span within and distance
between each activation signal. Future work will quantify
robustness with respect to these two variables and measured
electrode displacement, as in [57].

Two potential outliers were revealed in this study. One
subject became confused in the middle of a session, and had to
restart the exploration process to re-learn the controls. Another
subject performed significantly better than the control group
throughout the experiment. This subject finished session 3
in six minutes and reported the controls to be both intuitive
and simple to use. As the only subject with significant video
gaming experience, this supports findings that video gamers
learn myoelectric control tasks faster [46], perhaps due to
enhanced ability to explore the potential input space.

This study focuses on solely able-bodied subjects to validate
the proposed method as a practical control scheme for general
myoelectric interfaces. However, the concepts of motor learn-
ing and brain plasticity may also be applicable to amputees
and subjects with muscular disorders [5]. These groups may
not have voluntary control over muscles necessary for conven-
tional intuitive controls with high functionality. By generating
a Ŵ which maximizes the number of independent activation
signals, assistive myoelectric devices might offer a sense of
intuitive control without requiring kinematic mappings [45],
at the expense of the initial learning curve associated with
motor learning. This will be explored in future work.

The performance of each subject with the VR interfaces
correlates with the ability to control precision tasks with
the robot, despite subjects feeling differences in the control
scheme due to physical constraints. In particular, speed and
accuracy, as measured by TP , significantly reflected their
capabilities in the physical interface. This implies that VR
may be used to implicitly train subjects to intuitively interact
with a physical robot, as in [38]. It also suggests that VR can
be used as an initial screening to determine the viability of
a motor learning-based control scheme (i.e. overcoming the
initial learning curve) for a potential user.

In summary, the proposed control scheme provides session-
independent simultaneous and proportional control of myo-
electric interfaces using muscle synergy-inspired inputs. These
inputs reduce the constraint on exact electrode placement over
muscles, and increase the potential functionality of motor
learning-based control approaches. The controls can be en-
hanced simply by interacting with the interface, similarly to
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learning a new motor skill. The results confirm significant
learning trends correlating with a sense of more intuitive
control, supporting this method as a viable technique for
reliable long-term control of myoelectric interfaces.
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