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Abstract—Trust is an essential building block of human civ-
ilization. However, when it relates to artificial systems, it has
been a barrier to intelligent technology adoption in general.
This paper addresses the gap in determining levels of trust
in scenarios that include humans interacting with a swarm of
robots. Electroencephalography (EEG) recordings of the human
observers of the different swarms allow for extracting specific
EEG features related to different trust levels. Feature selection
and machine learning methods comprise a classification system
that would allow recognition of different levels of human trust
in those human-swarm interaction scenarios. The results of this
study suggest that EEG correlates of swarm trust exist and
are distinguishable in machine learning feature classification
with very high accuracy. Moreover, comparing common EEG
features across all human subjects used in this study allows for
the generalization of the classification method, providing solid
evidence of specific areas and features of the human brain where
activations are related to levels of human-swarm trust. This work
has direct implications for effective human-machine teaming with
applications to many fields such as exploration, search and rescue
operations, surveillance, environmental monitoring, and defense.
In those applications, quantifying levels of human trust in the
deployed swarm is of utmost importance because it can lead to
swarm controllers that adapt their output based on the human’s
perceived trust level.

Index Terms—Electroencephalography, human-swarm interac-
tion, trust.

I. INTRODUCTION

Trust is an essential building block of human civilization.
Trusting others allows us to create and maintain relationships,
and trusting systems, such as governments, allow us to create
and maintain societies [1]. When it comes to artificial systems,
people and governments become weary, delaying artificial
intelligence technology adoption due to a lack of trust in the
intelligent systems [2], [3]. Unlike humans, robots can not
sense and subsequently adapt to a human’s growing distrust of
their actions. A framework to quantify trust between humans
and robots could enhance human-machine teaming across a
variety of applications. However, such a framework is still
missing.

While many definitions exist, in this work, we adopt the
following definition of trust used in human-autonomy in-
teraction: “The attitude that an agent will help achieve an
individual’s goals in a situation characterized by uncertainty
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and vulnerability” [4]. One specific area that we explore trust
is within Human-Swarm Interaction (HSI). A swarm is a group
of robot agents with basic control laws, such as moving away
from each other, moving towards one another, or matching
another neighbor’s heading; a combination of these control
laws allows for an organic movement of the robots, similar to
a flock of birds or school of fish [5]. Previous work on human-
swarm interaction shows that collective swarming behaviors
are distinguishable at the brain level [6]; a necessary step
for an HSI brain-computer interface. Although there are many
methods to teleoperate a swarm, [7]–[10], in order to take the
leap in automating aspects of this control, we need to trust that
the swarm will do whatever task is assigned to it, or ensure
that the swarm can sense and adapt to our growing distrust in
their actions.

While the research focused on trust in HSI is sparse, trust
is investigated in human-machine interactions, with research
focused on predictive models (e.g., convolutional neural net-
work, Markov decision process) to establish different levels
of trust [11]–[13]. These works establish that there are many
factors (e.g., demographics, status information, dependability,
transparency) that influence trust, but trust can be modeled
adequately if these factors are considered. As trust and control
of swarms are usually intertwined for effective human-swarm
teaming, researchers have used predictive models of trust
to control a swarm in the past [14]. This research showed
that trust is affected by factors such as the swarm’s physical
appearance and the user’s conceptualization of trust, which
resulted in each study participant requiring their own trust
model [14]. However, the model described in this study only
captures intervention and non-intervention features as a trust
metric. A more robust model would benefit from other factors
that might give insight into human intent; however, this also
requires user input of their subjective trust ratings to provide
trust feedback effectively [14].

Indications of trust have been observed at the brain level
before, via Magnetic Resonance Imaging (MRI) studies [15],
as well as ElectroEncephaloGraphy (EEG) [16]–[20]. It has
been shown that different brain regions contribute to trust in
human-autonomy interaction [17]. Specifically, trust in human-
autonomy systems originates in the left-frontal, fronto-central,
right-frontal, and occipital regions [17]. Similarly, machine
learning has been used to classify trust levels in human-
machine interaction in the past, with a prediction accuracy of
approximately 72% [16]. While current literature on human-
autonomy interaction gives us insight into trust via EEG data,
findings fail to determine EEG features of trust in human-
swarm interaction scenarios. These features are necessary for



a more hands-on approach to intervening with misbehaving or
adversarial swarms, among others.

This paper addresses the gap in determining levels of trust in
human-swarm interaction by cycling through different swarm-
ing behaviors and using machine learning to determine which
EEG features are related to trust. Adopting the definition
of trust described earlier [4], we develop an experimental
scenario in which specific swarming behaviors allow for a
clear distinction between which swarms could complete a task
and which could not. By doing so, we systematically allow for
the subject’s attitudes towards the swarms to align with those
of low trust and high trust. EEG recordings of the human
observers of the different swarms allow for extracting specific
EEG features related to different trust levels. The methods in
our study aid our EEG feature selection and classification to
show that we can decide between low trust and high trust
for each subject with high prediction accuracy. Moreover,
comparing common EEG features across subjects allows for
the generalization of the classification method to all subjects,
providing solid evidence of specific areas and features of
the human brain where activations are related to levels of
human-swarm trust. The proposed work introduces EEG-based
feature classification related to human trust in robotic swarms
for the first time, which has direct implications for effective
human-machine teaming with applications to many fields such
as exploration, search and rescue operations, surveillance,
environmental monitoring, and defense.

II. METHODS

This work focuses on determining trust features in EEG
recordings that would allow us to improve human-swarm in-
teraction and interfaces. The goal is to develop a classification
system that would allow recognition of different levels of
human trust in human-swarm interaction scenarios. Below, we
first introduce the data type and swarm simulator with the
respective swarming behaviors and task descriptions. We then
discuss the EEG processing workflow, including the feature
selection and classification, used to determine trust levels.

A. Experimental Setup

EEG and gaze tracking data were collected for this study,
but for the purposes of this paper, only EEG recordings are
analyzed and discussed further. The EEG data were collected
using a Brain Products ActiCHamp amplifier with 32 active
electrodes. The active electrodes were placed on the subject’s
scalp using an ActiCAP head cap based on the International
10-20 system [21]. The data were recorded at 500 Hz. Figure
1 shows the experimental setup.

B. Task Description

The experiment is comprised of virtual non-holonomic
agents displayed as discs with lines displaying their current
heading tasked with reaching a target point on the computer
screen. All agents are modeled as double integrators, driven
by two-dimensional forces which directly affect the two-
dimensional acceleration of the agents, similarly to [22].

Fig. 1: Experimental setup. A subject is wearing an EEG cap and
gaze-tracking glasses while viewing the computer screen during a
swarm simulation.

There are three possible areas the swarm spawns from at the
beginning of each simulation trial, with each agent having a
random initial velocity and heading. Additionally, the swarm
is presented with one of three different locations they attempt
to reach (target), located at the top of the computer screen.
These are as well randomized. To distinguish each swarm
in post-experiment questions to the subject, we color-coded
them depending on which behavior they exhibit at the time:
green is explore, red is surround, and blue is flock. Based
on previous work [23], each agent showed a line protruding
from the perimeter of the agent indicating its current heading.
Once an agent reaches the goal, it goes offline (i.e., it stops
moving and its color turns gray). The task is complete when
approximately 90% of the swarm of agents reaches the goal.
If the swarm is unable to reach the goal under the allotted
time of 25 seconds, then the simulation ends with the swarm
failing to reach the goal. To note, the explore swarm never
completes the task, while the flock and surround behaviors do
in the allotted time. This is by design as we want to have
a clear-cut definition for low (explore) and high trust (flock
and surround) scenarios. Each subject observes each swarming
behavior (explore, surround, and flock) five times for a total
of 15 trials per subject. There is only one swarm exhibiting
one behavior for the duration of a trial. Figure 2 shows an
example of what subjects see during the experiment for one
trial.

C. Swarm Simulator

The simulation of virtual agents displayed on the computer
screen was generated and controlled using a Python 3.9.10
script and the tkinter package. The Lab Streaming Layer
(LSL) Recorder software is used to time–synchronize both
the EEG and gaze tracking data [24]. The simulation interface
enables control of three different swarming behaviors by the
experimenter while the simulation updates with new agent
positions every 16 ms, or approximately at 60 Hz frequency.
The simulation framework was inspired by the work in [25].



Fig. 2: Representative snapshot of the swarm simulation, where the
agents are represented as discs with lines displaying their current
heading. A red swarm is moving toward a goal shown as a yellow
asterisk at the top left, with a few agents disabled (in gray) after
reaching the goal’s boundary, as indicated by a red dashed circle
around the target.

D. Swarming Behaviors

The swarming behaviors are based on the work presented in
[5], [26], with each behavior having a combination of repel,
cohere, and align forces. We added a wall-bounce force to
ensure the swarm stayed within the boundary of the computer
screen. The control laws are applied differently depending on
which swarming behavior is exhibited.

1) Explore: The explore swarming behavior is described
by two force vectors, the repulsion vector, cri , and the wall-
bounce vector, cwbi . The force vector cri for each agent i,
i = 1, 2, ..., n, is computed as:

cri =


n∑

j=1

(pi − pj), if ∥pi − pj∥ ≤ sr, and i ̸= j

0, if ∥pi − pj∥ > sr

(1)

where n is the swarm size, pi is the position of the agent i,
pj is the position of the jth neighbor, sr is the sensing radius
for the repulsion vector, and ∥·∥ denotes the vector norm.

When an agent reaches the wall perimeter of the simulation
space, a wall-bounce force is exerted. The wall-bounce force
cwbi , which bounds the swarm to move within the screen, is
computed by:

cwbi =



wl − pi

∥wl − pi∥2
, if ∥wl − pi∥ < swb

wr − pi

∥wr − pi∥2
, if ∥wr − pi∥ < swb

wt − pi

∥wt − pi∥2
, if ∥wt − pi∥ < swb

wb − pi

∥wb − pi∥2
, if ∥wb − pi∥ < swb

(2)

with wl, wr, wt, and wb defined as the normal vector of
the agent to the left, right, top, and bottom screen boundaries,
respectively. swb is defined as the sensing radius for the screen
boundary. For the exploring behavior, sr is set to 50 px, and
swb is set to 60 px. The total size of the allowable simulation
space for the agents is 1920 by 1080 px.

The total force exerted on each agent exhibiting the explore
behavior is given by:

fei = cri + cwbi . (3)

2) Flock: The flock behavior makes use of repulsion and
wall-bounce forces, similar to the explore behavior, but with
different sensing radii for each. The sensing radii for cri and
cwbi under flock are set to 15 px and 50 px, respectively. In
addition to these vectors, flock also incorporates an alignment
force, afi , and a cohesion force, ccfi . The afi is different
depending on the agent’s leader status and computed as:

afi =

{
gg − pi, if ∥gg − pi∥ < sa and lfi = true

afnl
, if ∥gg − pi∥ < sa and lfi = false

(4)

where gg is the swarm global goal on the screen, afnl
is the

alignment force of the nearest leader to the agent, sa is the
sensing radius of the alignment force, and lfi is the leader flag
for the agent (i.e., set to false if the agent is not a leader and
true is the agent is a leader). For this study, sa is set to 100
px. If any agent is not a leader nor near one, then the agent
continues along their current path. The ccfi force is defined
as:

ccfi = pi − arrf , if ∥pj − pi∥ < scf (5)

where scf is the sensing radius for the cohesion force under the
flock behavior, ar is defined as the agent radius, rf represents
a radius factor, in (x, y) coordinates, that acts as a boundary
to avoid neighbor-agent collisions. For this study, scf is set to
50 px, ar to 7 px and rf to (4, 4) px. As such, the total force
exerted on each agent exhibiting the flock behavior is given
by:

ffi =

{
afi + cwccfi + rwcri , if lf = true

afi + cwccfi + rwcri + cwbi , if lf = false
(6)

where cw and rw are the cohesion and repulsion weighting
factors, respectively. For this study, if the agent is a leader, cw
is set to 0.9 and rw to 1.0. If the agent is not a leader, then
cw is 0.9 and rw is 2.5. Each swarm has 15 leaders that are
randomly assigned at the beginning of each trial.

3) Surround: The surround swarming behavior is com-
prised of cri , cwbi , and a modifed cohesion force, ccsi . The
ccsi force is defined as:

ccsi = pi −mid(R), if ∥pj − pi∥ < scs (7)

where scs, set to 20 px, is the sensing radius for the surround
behavior and mid(·) is the midpoint of a rectangle, R, defined
with vertices (xmin, ymin, xmax, ymax). Figure 3 describes
how R is obtained. The total force exerted on each agent
exhibiting the surround behavior is given by:

fsi = ccsi + cri + cwbi . (8)
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Fig. 3: The definition of the surround rectangle R used in the
surround behavior is shown. The sensing radius concentric to the red
agent, highlighted red only for visualization purposes, encapsulates
five neighboring agents. R is constructed from the local minimum
and maximum coordinates as shown by the xmin, ymin, xmax, and
ymax labels.

E. Experiment Details

Criteria to participate as a human subject in this study are
as follows: be between 21 – 50 years old, have no current or
past history of visual impairment, have no known neurological
issues, be in general good health, and be proficient in English.
There was a total of seven subjects, two females and five
males, that met these criteria and participated in the study
with an average age of 25.4 ± 1.6 years. Due to a hardware
malfunction, only six subjects had analyzable data. However,
the number of subjects is in line with previous work related
to human-robot interaction with the use of EEG [27]–[31].
The protocol for this study was approved by the University
of Delaware Institutional Review Board (IRB ID: 1487701-5),
with informed consent given by all subject participants.

Before the start of the experiment, we informed the subjects
what they were going to see on the screen. Each subject
observes each swarming behavior (explore, surround, and
flock) five times for a total of 15 trials per subject. The subject
is asked to think about each swarm’s ability to reach the goal
through each trial. Questions that they should have in mind are:
“Is one swarm better equipped to handle this task?” In other
words, “are you able to trust the swarm to complete the task?”,
or “is the swarm untrustworthy?” No verbal communication
is required or expected by the subject during the trials. The
subject’s trust is therefore assessed through the demonstration
of competence of the swarm to reach the goal, in line with
how trust can be established [4].

After the experiment, each subject was asked about their
impressions of the experiment based on the pre-experiment
questions. Additionally, we asked the subjects if their answers
would be different if the task was different. Specifically, they
were asked: “If the task was to map out an area instead of
reaching a specific point in space, which swarm would you
choose and why?” All those questions were only for qualitative
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Fig. 4: EEG processing workflow.

understanding of the human-swarm interaction scenario and
they were not used in any quantifiable extraction of human
trust later in the methods.

F. Data Analysis

All the data are processed and analyzed in MATLAB and
with the MATLAB plugin, EEGLAB, [32]. The workflow
is detailed in Fig. 4. All feature selection and classification
is done per subject since each individual experiences trust
differently (see section I. Introduction for details).

1) EEG Data Processing: We process and clean up the data
by applying a fourth-order low-pass Butterworth filter (cut-
off frequency at 40 Hz), followed by a fourth-order high-pass
Butterworth filter (cut-off frequency at 1 Hz), for removal of
high-frequency noise and low-frequency trends, respectively.
After filtering, we re-reference the data as an average of all
the channels. Additionally, an electrooculogram (EOG) artifact
removal algorithm [33] was applied to the processed EEG data
to remove any eye movement or blinking artifacts. Finally,
we created study sets in EEGLAB to extract power spectrum
calculations for feature vector construction.

2) Feature Selection & Classification: After extracting
all power spectrum values in the frequency domain from
EEGLAB, we divided the data into five wavebands (0.5 Hz
< δ < 4.0 Hz, 4 Hz < θ < 7.5 Hz, 8.0 Hz < α < 13.0
Hz, 14 Hz < β < 26 Hz, 30 < γ < 45.0 Hz) indicating
the standard brain wave bands as described in [34]. After this
step, we could average across the entirety of a waveband to
obtain one feature per waveband per EEG channel. A concern
with this approach is that it could mask a discernable feature
if it were present in either the low or high end of the specific
waveband. We, therefore, average the power spectrum values
across sub-bands by splitting the band into approximately two
equal-in-size sections to obtain a total of 10 power spectrum
values, per channel. To illustrate this, Fig. 5 visualizes the
average power spectrum density for one EEG channel, for low-
trust and high-trust conditions; the vertical lines delineate the
wave band barriers. As can be seen in Fig. 5, an average power
spectrum value across the entirety of the beta band could make
it so that this feature could not be used to distinguish between
these two conditions. However, if each of the five brain wave
bands (delta (δ), theta (θ), alpha (α), beta (β), gamma (γ)) is
split into a low and high wave band, see Table I, it could have
a significant difference in either sub-band for the feature to be
used in classification. As such, there are a total of 10 features
per EEG channel, for a total of 320 features per trial.



Fig. 5: An indicative power spectrum plot for channel 10, of subject
1, for one trial. The vertical dashed lines indicate the brain wave
boundaries with their respective labels at the top of the plot. The
shaded portion is not considered in this study as suggested in [34].
Table I details the frequencies used for each sub-band.

The total feature vector per trial, X, is then constructed in
the following way:

X = [XT
1 XT

2 · · · XT
32]

T
(9)

where Xℓ ∈ R10, ℓ = 1, 2, ..., 32, is the feature vector for
each of the 32 EEG channels, containing the average power
spectrum value across the 10 sub-bands defined above.

The feature selection model we implement is the Neighbor-
hood Component Analysis (NCA) in MATLAB, implemented
through the function fscnca, with the solver set as stochastic
gradient descent, implemented using the option sgd. To select
the final set of features used in classification, F, we use the
NCA model feature weights, W, and a relative threshold factor,
r. Features are selected based on the following criteria:

W = [W
(1)
1 W

(2)
1 · · · W

(h)
1 · · · W

(h)
q ]T (10)

F ⊆ X ∀ W (h)
q > r ·max([1 max(W)]) (11)

where W
(h)
q , is the NCA model feature weight of channel

q, q = 1, 2, ..., C, and sub-band h, h = 1, 2, ..., SB , where
C = 32 and SB = 10, and max(·) returns the maximum scalar
value of an array provided as input. In (11), the maximum
value is first obtained from W and provided in a 2-element
array, with the first element being 1. From here, we obtain
the maximum value of this 2-element array and multiply it by

TABLE I: Sub-band Frequency Ranges

Waveband Low Frequency (Hz) High Frequency (Hz)
δ 0.5 – 1.75 1.75 – 4
θ 4 – 5.75 5.75 – 7.5
α 8 – 10.5 10.5 – 13
β 14 – 20 20 – 26
γ 30 – 37.5 37.5 – 45

r. F will contain a subset of the features X in (9) for any
respective weights (i.e., W (h)

q 7→ X
(h)
q )) that are greater than

the relative threshold calculated in (11). For this study, r is
taken to be 0.02.

For feature classification, we use the k-Nearest Neighbors
(k-NN) classifier [35] using the MATLAB fitcknn function
implementation. Initial analysis showed that a k-value of 1
would yield the best results. We stratified the training data and
completed a 5-fold cross-validation, standardizing the predic-
tors for the k-NN model implementation. To compare classi-
fication performance, we used Linear Discriminant Analysis
(LDA) and Support Vector Machines (SVM) classifiers using
the MATLAB fitcdiscr and fitcsvm functions, respectively.

III. RESULTS

Given the subjectivity of perceived trust, the results will
be shown initially per subject. Additionally, since the subjects
were exposed to three different swarming behaviors, we com-
pare the results of a classifier trained initially on three classes
(behaviors). However, we then group the behaviors into low
and high levels of trust and present the results for binary
classification as well. We will then consolidate the results
and show what generalizations can be made about the human
trustworthiness of robot swarms using EEG features.

A. Low Trust vs High Trust: Brain Topographies

Trust is an important relationship in human-swarm inter-
action. The human should be able to trust that the swarm is
addressing the task at hand. As such, we set out to determine
if we could perceive different levels of trust at the EEG level
when observing different swarming behaviors that are related
to the ability to execute the task at hand. We categorized flock
and surround as high-trust since these swarms always reach the
goal, and the explore behavior as low-trust as this swarm never
reaches the goal, based on the criteria noted in Section II. The
categorization is consistent with the post-interview assessment,
where we asked each subject to describe their experiences with
the simulations. All six subjects mentioned trusting the red
(surround) and blue (flock) swarm to reach the goal on the
screen while distrusting the green (explore) swarm.

In order to compare EEG recordings between those two
groups of high and low trust, we applied a standard t-test
to our low-trust (explore) and high-trust (flock and surround)
EEG features. The goal is to test significant differences be-
tween low- and high-trust levels. Figure 6 shows the brain
topographies of the significance across sub-bands of all six
subjects. At each sub-band, and for each channel, a standard
t-test was applied to compare the power spectrum density of
low-trust and high-trust, where low trust is associated with
the explore behavior and high trust to both flock and surround
behaviors. An average of statistical significance, shown in
color, is calculated across sub-bands with a value of 1 showing
that each frequency step in the sub-band showed significance
and a value of 0 showing that no frequency in the sub-
band showed significance. Significance is defined based on
the standard p-value, p < 0.05. Fig. 6 shows that each subject
experiences the difference in low and high trust scenarios



Fig. 6: Brain topography of all six subjects (rows) across all 10 sub-bands (columns), as defined in Table I. At each sub-band, a standard
t-test was applied to compare the power spectrum density of low-trust and high-trust, where low trust is associated with the explore behavior
and high trust to both flock and surround behaviors. An average of significance, shown in color, is calculated across sub-bands with a value
of 1 showing that each frequency step in the sub-band showed significance and a value of 0 showing that no frequency in the sub-band
showed significance. Dots on the brain map represent electrodes or EEG channels. Significance is defined based on the standard p-value,
p < 0.05.

differently. For example, subject 2 (second row) experienced
a higher perceived trust difference, whereas subjects 1 and
4 demonstrated fewer differences in significance. However,
most of the differences observed occurred in the alpha, beta,
and gamma bands across all six subjects, except for subject
2 where there was a more significant difference in low delta
compared to low alpha. Moreover, if we consider the spatial
distribution of the features that showed statistically significant
differences between the two levels of trust, we see most of
the differences in the frontal and occipital regions across all
subjects.

B. Feature Classification

While noting differences in brain response when exposed to
different swarming behaviors is essential, we need to establish
if we can use this information to identify EEG features of trust
that would allow us to anticipate user distrust of a swarm
and update a swarm’s control, for example. We trained a
model described in Section II using low and high trust as
the classifiers, using leave-one-out five-fold cross-validation
for each behavior. Figure 7 shows the confusion matrix of the
aggregate classification accuracy across all subjects. We see
a 98.4% and 100.0% prediction accuracy for high- and low-
trust classes, respectively. Only one low-trust trial was mis-
classified as high-trust (subject 1), while all high-trust classes

TABLE II: k-NN, LDA, and SVM Feature Classification Results.
Combined classification accuracy of all six subjects based on three
different classifiers.

Classifier k-NN LDA SVM

High-Trust 98.4 % 98.2 % 96.6 %

Low-Trust 100.0 % 82.9 % 90.3 %

were correctly predicted, across all subjects. Additionally, we
compared the results of the k-NN classifier with LDA and
SVM classifiers. Table II shows the classification results of all
three classifiers. We see that the k-NN classifier outperforms
both LDA and SVM classifiers in predicting both high-trust
and low-trust classes. While classification results for high-trust
are comparable (i.e., within 2% of each other), we see that k-
NN outperforms both LDA and SVM by approximately 17%
- 10% for low-trust classification, respectively.

Although we initially grouped the three behaviors into two
levels of trust and presented the binary classifier above, we
analyzed the performance of a classifier to the three behaviors
explore, flock, and surround too. Similarly to the binary
classifier, we trained and tested our classification model based
on the three swarm behaviors. As seen in Fig. 8, we achieved
a 96.8%, 84.4%, and 96.2% classification prediction accuracy
for explore, flock, and surround behaviors, respectively. The
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Fig. 8: Combined confusion matrix of all six subjects using the
three behaviors as separate classes. The model was trained and tested
for each subject with the classification results added together. Out
of 90 total observations, the explore, flock, and surround behaviors
were correctly predicted 96.8%, 84.8%, and 96.2% of the time,
respectively.

largest misclassification occurs with surround, where it was
incorrectly classified as flock in some cases. Specifically, two
instances of flock get misclassified (one to explore, one to
flock), while surround gets misclassified as flock five times.
Based on subject responses and that these behaviors always
reach the goal, this misclassification was expected.

C. Similarity of Features Across Subjects

The above classifiers were trained to subject-specific data
and features selected using the feature selection method pre-
sented in Section II. However, we wanted to analyze common-
alities in features selected among subjects. For this reason,
we analyzed which features were selected in each of the six
subjects and looked for commonalities. Figure 9 shows the
feature heatmap we use to determine which features are shared

TABLE III: Common Features By Subject. Features are noted as
Xa,b, where a, b correspond to their respective row and column
placement in the feature heatmap in Fig. 9.

Subject Subset of Features Selected per Subject

1 X3,6, X9,22, X1,26, X7,26

2 X3,6, X8,18, X9,21, X9,22, X7,26

3 X3,6, X8,18, X9,22, X1,26

4 X8,18, X9,21, X9,22

5 X9,21, X1,26, X7,26

6 X3,6, X8,18, X9,21, X1,26, X7,26

Common Features

X3,6, X8,18, X9,21, X9,22, X1,26, X7,26

among all subjects. The rows represent each of the 10 features
per channel, and the columns represent the 32 EEG channels.
The number on each element represents the number of subjects
for which the specific feature was selected by the algorithm
noted in Section II. As seen in Fig. 9, there is no single feature
shared among all six subjects, but there are six features that at
least four subjects share. These are not the same four subjects
for all six features. For example, Table III shows how only
subjects 2 and 6 contain five of the six common features, while
subjects 4 and 5 only contain three. As can be seen, each of
these common features shows up at most in four subjects.

Based on these results, we trained a classifier across all
subjects, using only the six common features as inputs, to
predict low or high trust. Figure 10 shows the results of this
classification in cross-validation. It can be seen that low trust
gets misclassified as high-trust four times, while high trust gets
misclassified as low-trust seven times. However, the overall
classification rates are very high for high trust, 93%, and
satisfactory for low trust, 78.8%, which shows that only the six
most common features across subjects can be used to predict
trust levels with high accuracy across all subjects.

IV. DISCUSSION

The results of this study suggest that EEG correlates of
swarm trust exist and are distinguishable in machine learning
feature classification, given the test conditions and swarm
behaviors exhibited. This has the potential to impact the future
of human-swarm teaming. The rest of the discussion explores
the specific brain regions of trust found in this study, lists
any shortcomings, and considers the future applications of this
study’s findings.

A. Brain Regions Related to Trust

Based on this study’s results, we see that brain areas
that were activated differently between the two levels of
trust tested, as depicted in Fig. 6, are consistent with brain
regions responsible for trust identified in previous studies
[17]. Specifically, we see that there are higher significance
differences between low and high trust scenarios in the left,
central, and right frontal regions as well as the occipital region.
This strengthens our claim that the observed brain activation



Fig. 9: Commonality of selected features across all six subjects represented as a heatmap. The features are described by sub-band (rows)
and channel (columns). Each feature or cell a subject has will be counted as one. The maximum value a cell can have is six. The common
features among 4 subjects are highlighted by a red box around them.
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Fig. 10: Combined confusion matrix of all six subjects using the trust
classes. The model was trained with the six most common features,
see Table III, found in at most four subjects. The classification results
are added together. Out of 90 total observations, the low-trust and
high-trust conditions were correctly predicted 78.8% and 93.0% of
the time, respectively.

differences are indeed due to different levels of trust, and they
are not evoked due to specific parameters of the experiment,
e.g., the motion of the swarm. When looking further for
similarities across subjects, Fig. 11 shows the brain regions of
the most common features discussed in Table III. We see that
EEG channels FC5 and O2 are consistent with the previous
findings in [17]. Additionally, we see that EEG channels T8
and TP10 are consistent with the work in [36], which finds
that the temporal region in the gamma waves indicates levels
of mistrust. In our case, only TP10 and CP6 are in the γ
band. The results related to the most common features are
promising, but we do not claim to be definitive. Additional

work with many more subjects is needed to have definitive
evidence that general features can be used with the majority
of subjects with consistent and positive results.
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Fig. 11: The channel location of the most common features as seen
in Fig. 9 and Table III. It is shown that left-central, occipital, centro-
parietal, and temporal regions play a role in accurately determining
trust levels in this study.

B. EEG Features Dimensionality Reduction

This study focused on a binary classification of trust (low
and high) using three swarming behaviors that affect the trust-
worthiness of the swarm. Focusing on the prediction accuracy
using a k-NN classifier, we obtain a high prediction accuracy
across all subjects, as shown in Fig. 7. The model prediction
accuracy is based on 72 ± 13 features out of 320 features
per subject. We also found that we can drastically reduce
the dimensionality by focusing on the most common features,
resulting in 4 ± 1 features per subject, as seen in Table III,



and achieving great prediction accuracy, as seen in Fig. 10.
This result is very promising because it can lead to drastically
reducing the setup time for EEG electrode placement, and the
computational cost, by focusing on the most common features
and areas, while still achieving very accurate prediction results.
For example, for one subject that used 64 of 320 features
in classification, we could decrease the number of channels
needed to be attached to the subject by about 1/3 (i.e., those
64 features came from only 20 channels). As such, we reduce
the data being processed, thus reducing the total number of
features being computed as well as improve on the physical
setup time of attaching electrodes to the subject. While more
work is needed to establish definitive general features across
subjects as described earlier, we can see that the savings are
even more drastic as we go from 20 channels to 6.

C. Limitations and Future Applications

Although an EEG interface does not seem to be practical for
some applications, e.g., for a human operator of a swarm in a
search and rescue scenario, we believe that the technological
advances in EEG recording interfaces and systems will render
this setup feasible and economical in the very near future.
Moreover, our work shows that a minimum set of channels
can lead to a high classification accuracy of trust, which can
further help with the feasibility and simplicity of the proposed
setup in future applications. As noted in the results section
of this paper, we can achieve a high classification of trust
given our experimental setup. We believe this to be the case
given that trust is a mental construct that each individual
can experience differently, compared to other work in Brain-
Computer Interfaces (BCIs) where a subject actuates a robot
arm or manipulates a swarm into a preset configuration [37],
[38]. Future work could explore the reproducibility of such
high classification rates found here through testing the same
subjects on different days, for example. However, as with other
BCIs, retraining the classifier has to be done every time it
is intended to be used. Thus, testing the same subjects on
different days does not mean we use the same trained model
from day one, rather, we need to retrain the model every day
the subject is tested.

The proposed work introduces EEG-based feature classi-
fication related to human trust in robotic swarms for the
first time, which has direct implications for effective human-
machine teaming with applications to many fields such as
exploration, search and rescue operations, surveillance, en-
vironmental monitoring, and defense. In those applications,
quantifying levels of human trust in the deployed swarm is of
utmost importance because it can lead to swarm controllers
that adapt their output based on the human’s perceived trust
level. In these scenarios where the swarm can exhibit different
swarming behaviors to adjust to the task (e.g., overcoming
obstacles, changing configurations, etc), it is important that
the subject can discern between a swarm’s disregard for
a command instead of the swarm adapting to its current
environment. As such, future work could focus on changing
a swarm’s behavior within the trial either working towards or
against the task at hand. Moreover, applications in which the

operator’s hands are constrained (e.g., active conflict, search-
and-rescue, on-orbit maintenance, manufacturing) would ben-
efit from this type of system. Operators could continue their
work without manually operating a swarm’s current target,
which might increase productivity. This type of interaction
would require an operator’s attention to shift depending on
the task. The work discussed here depends on the subject
focusing on and thinking about the swarm’s trustworthiness
throughout the entirety of the trials. Future work could focus
on determining if trust levels are discernable when subjects
are preoccupied with additional tasks. Additionally, providing
transparency in human-machine teaming is an effective way
to establish comprehension of a given task of a collective
behavior [39], [40]. Leveraging the findings discussed in this
paper, we can design an interface that provides a swarm’s
current understanding of a task and an operator’s current
trust levels, in order to provide an operator insight into the
swarm’s current intentions. Fig. 12 provides an example of
how we could use this for search-and-rescue operations. The
human operator can safely and remotely observe the swarm
and provide feedback through EEG signals if the autonomous
agents are putting survivors in danger.

Fig. 12: Example of a human operator in the loop overseeing rubble
removal. The operator is able to observe the process and indirectly
provide feedback with brain signals.

V. CONCLUSION

Trust is a barrier to artificial intelligence technology adop-
tion [2], [3]. This paper establishes neural correlates of human
trust when observing a robot swarm complete a task. In this
study, EEG data were used to find differences in trust using
three swarming behaviors (explore, flock, and surround) to
reach a target. The results of this paper show that we can
identify a low trust and high trust scenario to an increased
level of accuracy for each subject with approximately only
22% of the available EEG data. Additionally, we show that
the dimensionality of the necessary EEG features can be
decreased even further to only six features, which correspond
to approximately 2% of the available data. Using only this
small set of features, the human trust levels in the swarm
can still be identified with high accuracy. To the best of
our knowledge, this is the first time that EEG measurements
are used to find trust features when dealing with a robot
swarm exhibiting different collective behaviors. This work has
direct implications for effective human-machine teaming with
applications to many fields such as exploration, search and



rescue operations, surveillance, environmental monitoring, and
defense. In those applications, quantifying levels of human
trust in the deployed swarm is of utmost importance because
it can lead to swarm controllers that adapt their output based
on the human’s perceived trust level.
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