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Abstract

Generating data-driven models for industrial polymer blends is of growing interest as it enables quantita-
tive estimates of physical properties where the exact chemistry and structure are unknown. We outline a
data-driven modeling approach to aid the discovery of new polymer blends by relating their ingredients
and physical properties. This approach involves two components—a forward model that uses a machine
learning method to predict physical property given a formulation as input, and an inverse model that gener-
ates candidate formulations for desired property targets using optimization. We compared various machine
learning methods (similarity-based, tree-based, and shrinkage-based machine learning methods) by training
and evaluating them on an experimental dataset of 78 distinct polymer blend formulations. Each formula-
tion contains several of the 28 total ingredients. The physical properties of interest are water absorption,
hardness, and thermal conductivity. Using a nested cross-validation scheme, we found that similarity-based
machine learning methods, such as Gaussian process regression (GPR) and k-nearest neighbors, are suitable
for generating robust forward models of polymer blends. The inverse model was developed using forward
model and a particle swarm optimization (PSO) routine. We utilized the uncertainty predictions from GPR
models to construct a loss function that gives robust optimal formulation candidates. With a modified loss
function, we showed that one can generate candidate formulations that meet multiple design target proper-
ties.



1 Introduction

Polymers have hierarchical structures and complex interactions that span several orders of magnitude in
length and time scales. Although a range of behaviors can be obtained by manipulating the monomer
chemistry and structure of polymers, optimal functionality and performance may be achieved in a more
economical manner by using mixtures of several polymers and small molecules, also known as polymer
blends. The advantages of polymer blends, such as tunability to improve performance and processability,
flexibility in manufacturing, and lower costs, make them highly desirable for industrial applications [/1]].

For a polymer with well defined composition and processing conditions, one may be able to apply
physics-driven simulation techniques, such as Monte Carlo (MC), molecular dynamics (MD), and density
functional theory (DFT) to obtain useful quantitative relationships for structure, composition, and physico-
chemical properties [[2]. However, in the case of polymer blends, where several ingredients (small molecules
or polymers) are added to the base polymer, obtaining a quantitative relationship from simulations may be-
come computationally intractable for large number of ingredients. Moreover, in cases where the chemistry
and structure of the ingredients are not well characterized, it may not be possible to determine the force fields
and interaction potentials required for physics-based simulations. As a result, formulation design of polymer
blends relies heavily on heuristics and empirical relationships obtained from experimental measurements.
This alternative data-driven approach is also called polymer informatics [3} 4], where machine-learning
methods and data-driven modeling can accelerate the discovery and development of new formulations, al-
lowing one to screen candidate polymer formulations for desired target properties.

In this work, we apply a polymer informatics approach to predict three target properties of a polymer
blend: water absorption, hardness, and thermal conductivity, using the weight fractions of aliased ingredients
as covariates.

2 Project Goal

The overarching goal of this project is to generate novel formulations with desired target properties. To
achieve this goal, the project is divided into two stages. The first stage is to train a model that maps the
ratios of the ingredients of the polymer formulation to the the aforementioned properties (forward-design)
such that one can use this model to obtain the properties of any given formulation. The second stage is to
obtain a formulation that meets the magnitude of a desired property target (inverse design) using the forward
model to guide the search of the formulation through an optimization procedure.

3 Computational approach

The first step in our approach is to find mappings between our formulations and their physical properties:
water absorption, hardness, and thermal conductivity, by training a model with a collection of formulas
with known physical properties. The polymer formulation dataset comprises of 78 distinct formulationsﬂ
containing weight fractions of ingredients such as plasticizers, tougheners, antioxidants, flame retardants
and stabilizers in addition to the base polymer and fillers (see Figures [5] [ and [7]in the Appendix for a
graphical respresentation of the dataset). The dataset is aliased to protect the intellectual property of DuPont.
Therefore, the identities and structural characteristics of these ingredients are not included in the model. A
generic identifier is assigned to each ingredient based on its type (Polymer_1, Filler_3, Clarifier_1,
etc.). The target properties associated with each formulation are the following:

» Water absorption is a quantitative measure of water absorbed by the polymer blend, usually reported
as a percent water per dry weight. Water absoprtion depends on the hydrophilic chemistry and diffu-
sion properties of the polymer blend. Water is present in the free volumes of the polymer network and
attaches to the polymer chains via hydrogen bonds. In addition to the type of polymers and additives
used, temperature and exposure time also have an effect on water absorption [5].

* Hardness is defined as resistance to local plastic deformation. Experimentally, hardness is determined

!In this work, instances, samples, formulation and formulas are used interchangeably.



by measuring the depth of indentation against an applied load. Values are reported as dimensionless
number on scales that are specific to the type of hardness test conducted. Barcol, Rockwell (E,M,R),
and Shore tests are some of the hardness tests suitable for polymers. Hardness is strongly influenced
by testing temperature and the presence of additives [6].

» Thermal conductivity is the ability of the polymer blend to conduct heat reported in terms of heat flux
per temperature gradient (units mW/m.K). Thermal conductivity depends on the nanoscale structure
of the polymer chains and additives as well as the presence of crystalline and amorphous domains.
Processing plays a key role in determining the thermal conductivity of the end product [7].

3.1 Forward design

The objective of the forward design is to ob-
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ing for each column of ingredients (hereafter Figure 1: Forward design approach showing the scheme for
called a feature) such that X = %, where X model selection. Hyper-parameter tuning was performed
is a feature, p is the feature mean, o is the fea- using a nested cross-validation scheme for each model, fol-
ture standard deviation (sample), and X is the lowed by retraining the best performing model on the full
standardized feature. 71-instance training set. The model performance was then

Formally, each formulation x is an M- tested against held-out dataset of 7 formulation instances.
dimensional vector, i.e., x € [0,1]™, where M is the cardinality of the set of all ingredients (feature space).
However, only D < M components in each sample are different from zero and the sum of these D elements
is 1. This means that the remaining M — D elements in this vector are zeros, which make the dataset sparse
in the feature space.

Based on the sparsity of the feature space present in our dataset and the multi-task nature of this problem,
we train multiple regression models that can exploit structures of the formulations to predict the target
properties. To tackle sparse feature spaces, one possibility is to apply linear models that enforce sparsity in
the coefficients that weigh each feature through regularization techniques such that these weights represent
the relevance of each feature in the prediction [[§]. The linear regression models that we use are Ridge,
LASSO, and Elastic Net. Another possibility is to split the feature space using regression trees, and make
predictions based on the aggregates of the instances that lie inside the regions generated by these trees [9]].
The tree-based methods considered in this work are Gradient boosting and Random Forest regression. A
third option is to leverage the similarity of the instances in the dataset and make predictions relying on a
weighted combination of these similarities [[10]. The similarity-based techniques applied in this work are
k-Nearest Neighbors and Gaussian Process regression.

In order to select the best predictive model out of all the regressors considered in this work, we perform
a nested cross-validation procedure (Figure [)), which tackles bias in performance evaluation[11]]. In con-
trast to a traditional cross-validation execution, a nested cross-validation has an inner loop in which model
hyper-parameters are tuned and an outer loop in which model performance is evaluated. By doing this, we
avoid an overoptimistic evaluation that could mislead us in the model selection. The selection of the best
model for each target also considered applying/not applying a variance-based feature selection mechanism,



applying/not applying standardization, and augmenting/not augmenting the original dataset with 2 features:
mixing entropy H (x) = ¥, x;logx; and uncentered variance V(x) = ¥;x7, where x = [x1,...,xy].

Lastly, uncertainty associated to a prediction is crucially important for the reliability of ML models in
materials science[|12]. Particularly in our case, generating new formulations requires confidence intervals
because this information exposes regions in the feature space where we do not have enough evidence for
a confident prediction. In that sense, uncertainty can help us navigate the feature space to either exploit
information about known formulations or explore possibly novel blends. Several approaches for estimating
uncertainty such as bootstrapping, dropout for neural networks, and Bayesian methods[|13-15]] have been
developed in order to provide prediction intervals for models that do not provide them natively. Nonethe-
less, Gaussian processes[|16]], out of all the models we use in training, provide uncertainty estimates for
its predictions in a principled way. Strictly speaking, a Gaussian process f(x) ~ 4 % (m(x),k(x,x’)), de-
fined by a mean function m(x) and covariance function k(x,x’), provides Gaussian predictive distributions
p(felxi, X, ¥) ~ A (fe, 0(fi)) for £ = f(X,) atunseen instances x., where X = [x,...,xy] are the observed
data instances, y = [y1,...,yn| are the observed targets, and N is the number of data instances.

3.2 Inverse Design

The objective of the inverse design is to propose candidate formulations that meet targets for each of the
properties. In this work, we first narrow our focus to developing an inverse design scheme for a single
property target, allowing us to reformulate it as a single-objective, constrained optimization problem, before
briefly exploring multi-target optimization. The optimization algorithm we use is Particle Swarm Optimiza-
tion (PSO) [[17], a heuristic-based optimization method that is especially well suited for this purpose. It is
relatively robust, has easy-to-tune hyper-parameters, requires little knowledge of the underlying structure
of the optimized function, and does not depend on the gradient of the optimized function (see the appendix
for more detailed description of the algorithm), the latter being especially important if the chosen model
from the forward design step ends up being similarity-based and thus difficult to differentiate. We initialize
the particles at the positions of the 71 training instances used for the forward design with random velocities
to keep the particles close to these training samples, for which we have high confidence in the predictions
from our models. We define the loss function, £(x), as follows: £(x) = (f(x) — TARGET)2 +A02(f(x)),
where A is a scaling factor that controls the contribution from the variance term characterizing the certainty
in our prediction, and f(x),c?(f(x)) are the evaluated mean value and variance by the forward model. By
taking the variance term automatically provided by the Gaussian Process Regression forward model into
consideration, this form of loss function balances minimizing deviation from the target and providing so-
lutions in regimes of high prediction confidence. To maintain realistic solutions, the composition of each
ingredient needs to be in the range [0, 1), and the sum of compositions for all ingredients needs to be exactly
one. To implement these constraints, we construct the feature vector with 27 out of the 28 ingredients, and
search for each of the composition in the range of [0, 1). The left-out 28-th ingredient, which is chosen to
be Polymer I due to its ubiquitous presence in bulk amount in most of the training instances, can then be
automatically calculated as one minus sum of all other ingredients. When the sum of the 27-component
feature vector exceeds 1, we do not use £(xX) to evaluate a loss function, and instead assign an arbitrarily
large number (10°) as the loss, which effectively prevents the optimizer from providing such feature vector
as the candidate solution.

For multi-target optimzation, as an exploratory attempt we set the total loss function to the weighed sum
of loss functions for individual targets: £,,,;;(X) = ¥; wi¢;(x), where i is the target property.
4 Results & Discussion
The results of the nested cross-validation procedure incorporating a 10-fold outer loop and a 5-fold inner
loop for model selection are displayed in Table[I]in the appendix. Running a nested cross-validation pro-
cedure is computationally expensive as hyper-parameters need to be trained for each model multiple times.
Therefore, we execute the model selection procedure on DARWIN supercomputing cluster at UD. Specifi-
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Figure 2: Predictions of the best performing models compared with the training data set (blue symbols) and
test set values (red symbols), (a) water absorption, (b) hardness, (c) thermal conductivity.
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Figure 3: Results of single-target optimization for water absorption. (a) Distribution of all water absorption
values of the training instances, (b-d) Predictions for single-target particle swarm optimization with water
absorption target = (b) 0.1%, (c) 2.0%, (d) 4.2%. For each (target,A) three repeated runs are performed and
plotted with three distinct error bars (overlapping when not distinguishableable on the plot). In (b-d), target
value is marked by red cross, predicted water absorption values of “best” found formulation are represented
by the x-axis values of the colored error bars, and the standard deviation of the predicted distribution of
water absorption is represented by error bar along the y-axis.

cally, we use 1 standard compute node and 10 CPUs to accelerate this process. The best performing models
selected from the cross-validation procedure are Gaussian process regression (GPR) for water absorption,
k-nearest neighbors for hardness, and XGBoost for thermal conductivity. We decide to also use GPR as the
forward model for hardness as the performance metrics (R? and mean absolute error (MAE)) are close while
GPR has the additional benefit of providing the uncertainty. The comparison of predictions and targets for
selected models is shown in Figure 2]

The model predictions are in reasonable agreement with the data for water absorption and hardness.
However, for thermal conductivity, the selected model shows poor agreement. We suspect the underly-
ing cause of the latter to be the varying processing conditions between instances, as thermal properties of
polymers are known to be heavily influenced by the processing conditions. The distribution of amorphous
and crystalline sub-phases can result in dramatically different thermal conductivity values for similar com-
positions [7]. Water absorption and hardness predictions are reasonably accurate considering the lack of
chemistry, size, and structure of the ingredients in the dataset. Including additional information about the
physical nature of the ingredients, such as monomer chemistry, sizes, molecular weights, may result in
improved predictions, as reported in the literature for similar problems [3 4, [18].

The predictions from single-target PSO for water absorption are shown in Figure [3] We highlight the
effect of A in ¢(x) in regularizing the predicted formulations within regimes of high confidence. When the



target value is within the range of those in training instances (Figure [3f,d), at A = 0, no regularization is
applied and a blend formulation with predicted water absorption value exactly equal to the target is obtained,
albeit with significant uncertainty in prediction (shown by error bars and characterized by the standard de-
viation in predicted distribution automatically output by the GPR model). As A increases, the predictions in
general deviate slightly from the target in exchange for a lower uncertainty in prediction. Since our forward
models are similarity-based models built in a multi-dimensional parameter space with sparse training data,
we expect the model to be reliable only in a small subspace close to the training instances, and therefore we
believe that a predicted formulation that balances accuracy vs. certainty and resembles the known formula-
tion compositions is more promising for experimental testing than a predicted formulation that has "exact"
target values but unreliable uncertainty. In Figure 3p, we test an extrapolative case with target water absorp-
tion (0.1%) much lower than the range of values seen in training instances. We see that the optimizer is not
able to find a formulation with water absorption at this target regardless of A, and the predicted values gen-
erally stop at the lowest water absorption seen in training instances ( 1.0%). This result shows the expected
inability of similarity-based models (i.e., GPR models) to extrapolate beyond seen training instances. In this
circumstance of low amount of training data, we believe that it is desirable that our algorithms clearly signal
and automatically avoid the region of low confidence during the inverse search. In Figure[9]in Appendix, we
show search results with hardness as the target, leading to similar conclusions as we have discussed here for
water absorption. In Figure [10]in Appendix, we show the effect of A on the consistency between predicted
formulations of repeated runs for the same target value and A. We see that in the interpolation regime, higher
A also leads to more consistent predicted formulations.

In Figure 4, we show the results of an attempt of the dual-
target optimization searching for a formulation that gives a
certain water absorption and a certain hardness value. In this
proof-of-concept attempt, we set w; = 1 /TARGET; in £,,,1,i(X) o°
to give a qualitatively similar weight to the two target prop- 1391 ‘ “
erties. In practice, one can tune the w; to distribute appro-
priate weight to each target depending on their actual signifi-
cance. Similar to what we see in the single-target optimization, 107 °,
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5 Conclusions

We present an approach for modeling and inverse design of
polymer blends to meet targets for three physical properties,
namely, water absorption, hardness, and thermal conductivity.
The data set used contains the proportions of aliased ingredi-
ents present in a given polymer blend. We found that forward
predictions for water absorption and hardness using instance-
based methods were in good agreement with the test data set.
Thermal conductivity, which depends on polymer processing
as well as composition showed poor agreement. We expect the
predictions to improve if more chemical and structural infor-
mation about the ingredients as well as processing conditions,
such as temperature and stresses, are included in the dataset.

Figure 4: Results of multi-target optimiza-
tion for target of water absorption=2.5%
and Hardness=120. Three repeated runs
are performed and plotted with three dis-
tinct error bars (overlapping when not dis-
tinguishable on the plot). Target value is
marked by red cross, all training instances
are marked by grey dots, and the standard
deviation of the predicted distribution of re-
spective targets are represented by error bar
along the x-axis (water absorption) and y-
axis (hardness).

Finally, we developed a particle swarm optimization scheme based on the forward models to predict can-
didate formulations that can aid in accelerated discovery of new blends. The incorporation of uncertainty



into the loss function of the optimizer helps us regularize the determined blends within regimes of high
confidence.



Data availability

The data set containing the 71 training instances as well as the code for the model selection procedure can
be found in https://github.com/cesar-claros/DuPont.
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Appendix

Particle swarm optimization (PSO) algorithm

The Particle swarm optimization starts with an initial “swarm” of particles with initial velocities and posi-
tions within the parameter space that are successively updated based on the quality of solutions previously
visited until the optimality criterion is met. The inverse design scheme was developed in Python using PSO
implementation in PySwarms package by Miranda et al. [19]]. At successive iterations, each particle moves
to its next position evaluated based on the best solution (the solution with smallest loss) visited locally by
the particle and globally by the entire swarm in the previous iteration. Then at successive iterations, each
particle moves to its next position evaluated based on the best solution (the solution with smallest loss)
visited locally by the particle and globally by the entire swarm in the previous iteration:

Vinew = WViold + 7cCe(Xibest — Xiold) +75sCs (8 — Xiold) (D

Xinew = Xi,old T Vi,old- ()

In these equations, Vjpew and Xjpnew refer to the updated velocity and position of the partcle, vjqq and
X;j ola Tefer to the previous velocity and position of the particle; w, c¢. and ¢ are the three hyperparameters
of PSO (set to w = 0.2,c, = 0.1,c; = 0.06 in this work), commonly named as “inertia”, “cognitive” and
“social” terms respectively, that together controls the rate of convergence and aggressiveness in exploration
of unvisited parameter space; r. and r, are two uniform random variables sampled from [0, 1); X; pest and g
refer to the previous positions visited by this particle and the entire swarm, respectively, that minimizes the

loss function.



Additional figures and tables
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Figure 5: Visual representation of the dataset showing the ingredients of every formula. Non-zero values are
indicated in black. The dataset is sparse, especially for the ingredients Clarifier_1, Clarifier_2,
Clarifier_3, Polymer_3, UV_absorber_1, UV_absorber_2, Filler_2, and Filler_3, where
fewer than 3 non-zero instances are present.
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Figure 6: Histograms for each of the three target properties. Water absorption and hardness are distributed
across the whole range of values. Thermal conductivity on the other hand is clustered primarly around the
lower end of the values, with very few instances representing the higher end.

Table 1: Results of a nested cross-validation procedure for model selection. The models that perform the
best in at least two out of the three metrics are highlighted in blue for each of the target properties. Results
are shown as (mean,std).

Target | Model | R2 | MAE | RMSE

Water Absorption K-Neighbors Regressor (0.404, 0.404) (0.412, 0.074) (0.282, 0.110)

Y% Gaussian Process Regressor | (0.514, 0.368) | (0.357,0.109) | (0.238, 0.170)
XGB Regressor (0.443,0.487) | (0.396,0.097) | (0.267,0.165)
Random Forest Regressor (0.327,0.908) | (0.396, 0.100) | (0.276,0.172)
Ridge (0.238,0.521) | (0.475,0.108) | (0.381, 0.202)
Lasso (0.176,0.679) | (0.473,0.107) | (0.411,0.318)
ElasticNet (0.362,0.538) | (0.417,0.102) | (0.298,0.164)

Hardness K-Neighbors Regressor (0.593, 0.253) | (10.589,4.207) | (237.863, 244.553)
Gaussian Process Regressor (0.470,0.4727) | (11.164,4.084) | (252.464, 237.085)
XGB Regressor (0.473,0.412) | (12.058,5.766) | (294.037, 261.661)
Random Forest Regressor (0.546, 0.282) | (11.326,4.259) | (234.805, 178.271)
Ridge (0.194, 0.433) | (14.511,4.224) | (414.912, 300.542)
Lasso (0.380,0.287) | (13.195, 3.575) | (309.369, 186.328)
ElasticNet (0.163,0.715) | (13.964, 4.167) | (389.851, 271.575)

Thermal K-Neighbors Regressor (0.000, 0.727) | (9.499, 6.807) | (265.546, 458.483)

Conductivity Gaussian Process Regressor (-0.658, 2.070) | (10.230, 6.806) | (304.167, 456.758)

(mW/m.K) XGB Regressor (0.143, 0.326) | (8.210,5.579) | (225.724,361.156)
Random Forest Regressor (-0.108, 0.717) | (8.943,5.372) | (221.194, 350.100)
Ridge (-0.083, 0.593) | (9.225,6.356) | (240.918, 426.989)
Lasso (-0.053, 0.629) | (9.124,6.198) | (239.485, 433.459)
ElasticNet (0.050, 0.526) | (8.736,6.618) | (243.681, 439.969)
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Figure 7: Histograms showing the distribution of all 28 ingredients in the dataset. For a majority of ingredi-
ents, there is a significant number of instances that have a value of 0.
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Figure 8: Schematic diagram showing the nested cross-validation scheme to tune the hyper-parameters and
select the best model from the candidates for the forward design step. The outer loop of the nested cross-
validation scheme divides the entire training set into an evaluation fold and a training fold. In the inner loop,
the hyper-parameters for each model are tuned using the training fold, which is further sub-divided into an
inner training subfold and a validation subfold. Once the best hyper-parameters are determined, each model
is trained on the complete training fold and compared with the evaluation fold. This step is repeated for all
splits of the entire training set. The best performing model is trained on the complete dataset.
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Figure 9: Results of single-target optimization for hardness. (a) Distribution of all hardness values of the
training instances, (b-d) Predictions for single-target particle swarm optimization with hardness target = (b)
60, (c) 100, (d) 160. For each (target,A) three repeated runs are performed and plotted with three distinct
error bars (overlapping when not distinguishableable on the plot). In (b-d), target value is marked by red
cross, predicted water absorption values of “best” found formulation are represented by the x-axis values
of the colored error bars, and the standard deviation of the predicted distribution of water absorption is
represented by error bar along the y-axis.
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where N = 5 is the total number of replicated searches done for each (target, 1),

and X andaaraized: b 18 the optimized feature vector from the i-th replicated search,

post-standardization using the same standardizer for the forward model

Mean — squared distance =

Figure 10: Mean-squared distance between predicted "best" blend formulation between five independent
replicates of same (target, A) for single-target particle swarm optimization with (a) water absorption and (b)
hardness as target properties
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