STATA Resources, Unit 6, Section 1

Matrix construction and manipulation in STATA
Kyle Puetz « 4/28/13

STATA provides a number of functions that allow users to operate it as a matrix
calculator. Users can construct, edit, and analyze matrices all within the STATA
interface.

The first thing I would like to demonstrate is how to construct matrices within
STATA using the matrix command. The syntax for this command is:

1. Matrix input
matrix [input] A = (#[,#...]1 [\ #[,#...1 [\ [...11])

Consequently, the following command (from which we’ve removed the unnecessary
input aspect) ...

matrix A = (1,2\3,4)
2 matrix list A

... provides us with this output:

Al2,2]

cl c2
rl 1 2
r2 3 4

It should be clear, then, that a comma indicates to STATA elements that should be
separated within the same row while the backslash indicates that the following
elements should be placed in a new, different row. It should also be clear that the
default row names is rn where n is the number of the row, and, likewise, the default
column name is cn where n the number of the column. Also note that the matrix list
command provides us with information on the total number of rows and columns
when it provides us with “A[2,2].” The first number here indicates the number of
rows and the second the number of columns. Though with this example, we could
clearly just tell how many rows and columns there are by looking at the matrix, this
function becomes more helpful when dealing with matrices of exceptionally large
size.

It is also noteworthy that we can create vectors using the set of matrix commands.
We simply use the same syntax:

1 matrix V1 = (1,2,3,4)
2 matrix V2 = (1\2\3\4)
3 matrix list Vi1
¢ matrix list V2

... which provides us with the following results:

. matrix list V1
V1[1,4)

cl c2 c3 c4
ri 1 2 3 4

. matrix list V2

v2(4,1]
cl
ri 1
rz 2
r3i 3
r4 &

There are a number of things you can do within the set of matrix commands that
will generate an error. For example, ...

1 matrix drop X
2 matrix X = (1,2\3)

... generates the following error:

. matrix X = (1,2\3)
conformability error
rise3);

This is because if all the rows you have written do not share the same number of
cells, STATA will fail to recognize it as a properly constructed matrix. This does
bring up the question of what to do when you need to include missing or absent
values within a matrix. We see, for instance, that merely using a comma, as one
might do in R, doesn’t work:

1 matrix drop X
2 matrix X = (1,2\3,)

. matrix X = (1,2\3,)
3, not found
ri111);

Just as in the conventional STATA interface, you will want to indicate missing data
within the matrix by using a period:

1 matrix drop X
2 matrix X = (1,2\3,.)

This finally provides us with a properly functioning matrix:

X[2,2])

cl c2
rl 1 2
rz 3

Though the syntax provided by STATA itself suggests using letters as names for
matrices, you are by no means required to do so. (You may have noticed the use of
V1 and V2 to indicate the vertices in the previous example.) If you like you may use
full names to indicate matrices. For example

matrix numbers = (1,2\3,4)
2 matrix 1list numbers

numbers|[2,2]

cl c2
ri 1 2
r2 3 4

2. Matrix define

Thus far, I have shown how to create matrices in STATA using thematrix input
command. There is another way, however, to create matrices in the conventional
STATA program by using matrix define. The syntax for this command is

matrix [define] A = matrix_expression
Note, however, that define, like input, does not have to be explicitly stated within

the syntax. As such, you can create a matrix without having to specify whether you
are using the input or define function.

The matrix define command essentially allows users to generate new matrices
from the manipulation of previously constructed matrices. Let’s use the first matrix
we’ve generated to provide an example:

1 matrix AplusA = A + A
2 matrix list AplusA

This command — the use of the plus sign, essentially — tells STATA that you want
to perform matrix addition. This provides us with the following result:

Aplusal2z,2)

cl c2
rl 2 4
r2 6 8

With matrix addition, each cell in matrix 1 is added to the corresponding cell in
matrix 2. What we’re basically performing is this!:

: AplusA

1 1+1 2+2
2 3+3 4+4

Likewise, it is possible to perform matrix subtraction usingmatrix defineina
similarly intuitive way:

. matrix list AminusA

symmetric AminusAl[2,2]

cl c2
ri 0
r2 0 0

It is also possible to perform matrix multiplication in STATA. Let’s first create a new
matrix to use within the command:

1 To demonstrate how this works, I've provided a matrix of strings created via mata
(which I assume is a portmanteau of “matrix” and “STATA”). Within mata, it is
possible to edit matrices with a great deal more precision and options; it is
important to note that the conventional matrix commands will not allow you to
generate matrices of strings.

1 matrix B = (5,6,7\8,9,10)
2 matrix list B

B[2,3]

cl c2 «c3
ri 5 6 7
rz 8 9 180

Now, let’s use matrix multiplication to generate a new matrix:

1 matrix AB = AxB
2 matrix list AB

Let’s see the results:

. matrix list AB

AB[2,3]

cl c2 c3
ri 21 24 25
r2 47 54 57

To understand how this matrix multiplication works, it is helpful to look at both
matrices A and B as well as the process by which the matrix was created:

Al2,2]) B(2,3]

€l c2 cl c2 c3
rn 1 2 r1 5 6 7
rc 3 4 2 8 9 180

AB

1 1=5+2%8 1=6+2%9 1=7+2%9
2 3%5+4%8 3%6+4=9 3%7+4x9

Keep in mind that when performing matrix addition and subtraction your matrices
must have the exact same dimensions. In contrast, your matrices in matrix
multiplication do not have to have the same dimensions, but the number of columns
of the matrix functioning as the premultiplier (the first matrix mentioned within the
syntax) must match the number of rows within the second matrix. For example,
what if we were to use B rather than A as the premultiplier?

1 matrix BA = BxA
. matrix BA = B=A

conformability error

r(se3);

We’re confronted, once again, with a conformability error. That said, keep in mind
that, while STATA will let you know when matrices do not fit together due to
differences in dimension, it is possible for you to introduce errors into your analyses
if matrices are the same dimensions and you do not specify the correct matrix as the
premultiplier.

3. Creating network matrices

At this point, we’ve learned the basics of matrix construction and manipulation in
STATA. Now I'd like to focus on matrix creation in a way amenable to enabling basic
network analysis to occur. First, I'd like to focus upon adjacency networks. These are
networks that represent the relationships between objects in a single mode — for
instance, individuals.

Let’s say that we wanted to generate an asymmetric matrix of friendship ties. This
will basically represent every instance ego claimed alter as a friend and allows for
differentiation within the social relation. (That is, that Person 1 claims Person 2 as a
friend does not necessitate that Person 2 reciprocate.) Let’s also assume for the
purposes of this exercise that ego could not name ego as a friend. (This is a fairly
common presupposition within social network analysis.)

So let’s create some hypothetical network:

matrix relations = (0,0,1,1,0\1,0,1,1,0\1,0,0,1,0\1,1,0,0,1\0,1,0,0,0)
2 matrix list relations

relations|[5,5]
cl c2 c3 c4 c5

rr @ e 1 1 @
rz 1 1 1 @
rsi. 1 e 8 1 @
ra 1 1 8 8 1
rs e 1 @ @8 @

This looks great, but with social network data, we often want to identify the actual
individuals. We can do this using the rownames and colnames functions:

1 matrix colnames relations
2 matrix rownames relations
3 matrix list relations

Keep in mind that this is an adjacency matrix — a matrix with one mode of objects.
This is what allows us to use the same objects in both the rownames and colnames
commands. This is probably obvious, but if you have a two-mode matrix of objects,
you will want to include different names (as we will see in the next section). At any
rate, this command provides us with a new matrix with object names attached:

Attila Beksahn Cindy Dee Eliza
Attila Beksahn Cindy Dee Eliza

relations|[5,5])

Attila Beksahn Cindy Dee Eliza

Attila 8) 1 1
Beksahn 1 8 1 1 8
Cindy 1 8 8 1 8
Dee 1 1 5} 8 1
Eliza) 1 8 0)

So next, let’s try affiliations or two-mode networks. These are networks that have
two different modes of objects. Let’s say, for instance, that we wanted to look at the
memberships of these individuals in four different professional organizations.

1 matrix affiliations = (1,1,1,0\1,1,0,0\1,1,1,1\1,0,1,0\1,0,0,0)
2 matrix rownames affiliations = Attila Beksahn Cindy Dee Eliza

3 matrix colnames affiliations ASA SAS SSA AAS

¢+ matrix list affiliations

. matrix list affiliations

affiliations|[5,4)
ASA SAS SSA AAS

Attila 1 1 1 0
Beksahn 1))
Cindy 1 1 1 1
Dee 1) 1)
Eliza 1)) 8

Here, we see that all of them belong to ASA, but membership in the other
professional groups is somewhat less consistent.

I'd like to break in the middle of this discussion to demonstrate some commands for
manipulating matrices we've already created. Let’s say that after we created this
small sample, we created some more data by looking at the professional
memberships of some other people in the department:

1 matrix affiliations2 = (1,1,1,1\1,0,0,1\1,0,0,0)
2 matrix rownames affiliations2 = Jurgita Kate Laureen
3 matrix colnames affiliations = ASA SAS SSA AAS

So, now, we would like to append this new matrix to the existing relational dataset.
We can add new rows by using the following syntax:

1 matrix totalaffiliations = affiliations\affiliations2
2 matrix list totalaffiliations

totalaffiliations|[8,4]

Attila
Beksahn
Cindy
Dee
Eliza
Jurgita
Kate
Laureen

ASA
1

R e e e

SAS SS5A AAS
1 1]
1] 8
1 1 1
8 1]
8]]
1 1 1
8] 1
8]]

Similarly, it is possible to append new columns as well. Let’s say in the course of our
data collection we find a heretofore unknown professional organization that seems
relevant to the professional development of our sample and we want to include it in
our dataset. It’s possible to do so using this syntax:

matrix
matrix
matrix
matrix

forgotanorg = (0\0\1\0\1\0\0\0)
colnames forgotanorg = SSS

totalaffiliations

= totalaffiliations, forgotanorg

list totalaffiliations

The first two lines generate a new matrix and give it a name. The third line
demonstrates how to append a new column. Rather than the backslash we used to
append new rows, we use a comma to append new columns. Note that we do not
even need to create a new matrix but can use “totalaffiliations” as both a source of
data and as the ultimate dataset. Let’s examine the results:

totalaffiliations|[8,5]
ASA SAS SSA AAS SSS

Attila 1 1 1))
Beksahn 1 1 0 5} 0
Cindy 1 1 1 1 1
Dee 1 8 1 8 0
Eliza 1) 0) 1
Jurgita 1 1 1 1 8
Kate 1) 0 1 0
Laureen 1 8 5} 8 0

One particularly interesting aspect of affiliations networks is that they can be
exploited to evince the duality between two orders (see Breiger 1974). In other
words, an individual may be defined by the organizations to which he or she
belongs, and, similarly, an organization may be defined by the individuals who claim
membership to it. This duality allows us to generate two new matrices from the
original affiliations matrix: one that represents relationships between individuals as
mediated by groups and another that depicts relationships between groups as
mediated by the people who claim membership therein.

First, let’s move from the two-mode affiliations network to a one-mode network of
individuals. In order to do this, we are going to need to generate the transpose of the
existing matrix. We indicate we want the transpose of a matrix simply by adding an
apostrophe to the end of an existing matrix.

1 matrix affiltranspose = totalaffiliations'
2 matrix list affiltranspose

The transpose of a matrix is one in which the rows and columns have been
switched:

affiltranspose(5,8]

Attila Beksahn Cindy Dee Eliza Jurgita Kate Laureen
ASA 1 1 1 1 1 1 1 1
SAS 1 1 1)) 1 8)
SSA 1 8 1 1) 1 8 8
AAS 8 8 1 8) 1 1 8
SSS 8 8 1 8 1 8 8 8

When we multiply the original matrix by its transpose, we exploit the duality of
individuals and groups to demonstrate how groups mediate relations between
individuals. (This is because individuals were in the rows in the first matrix.)

1 matrix PtoP = totalaffiliations * totalaffiliations'
2 matrix list PtoP

symmetric PtoP[8,8]

Attila Beksahn Cindy Dee Eliza Jurgita Kate Laureen

Attila 3
Beksahn 2 2

Cindy 3 2 5

Dee 2 1 2 2

Eliza 1 1 2 1 2
Jurgita 3 2 4 2 1 &

Kate 1 1 2 1 1 2 2
Laureen 1 1 1 1 1 1 1 1

If we understand organizations as network foci, then we can understand them as
potentially connecting individuals, so these relations are of substantive interest. We
see that Attila and Beksahn, for instance, share membership in two organizations,
whereas Cindy and Jurgita share membership in four organizations. The diagonal
represents the number of organizations ego shares membership with him- or
herself — in other words, the total number of organizations to which he or she
belongs.

Let us also look at the relationships between the organizations. Researchers have
historically looked at this type of data as representing the structure of the
“organizational field” and to generate measures of interorganizational competition
within organizational ecology. Here, we exploit the duality of individuals and groups
to show how individuals mediate the interorganizational relations. (In this example,
the transposed matrix is the premultiplier and therefore the organizations are in the
rows.)

1 matrix 0Oto0 = totalaffiliations' * totalaffiliations
2 matrix list OtoO

symmetric Oto0[5,5]
ASA SAS SSA AAS SSS

ASA 8

SAS B 4

SSA < 3 <

AAS 3 2 2 3

SSS 2 1 1 1 2

We can interpret this matrix in a manner similar to the last. ASA shares four
members with SAS, while SAS shares one member with SSS. Likewise, the diagonal
represents the number of members of each organization within our sample.

Finally, I'd like to point out that all the matrices we have created at this point are not
available to us in the places we would traditionally look for our data in STATA’s data
editor. To look at what matrices we’ve created thus far, you'll need to remember the
matrix dir command. This command provides the list of matrices you've
constructed, along with each matrix’s dimensions.

. matrix dir
0to0[5,5]
PtoP[8,8]
affiltranspose([5,8]
totalaffiliations([8,5]
forgotanorg([8,1]
affiliations2([3,4]
affiliations([5,4]
relations[5,5]
AB[2,3]
B[2,3]
AplusA[2,2]
numbers([2,2]
X[2,2]
Vi[1,4]
Al2,2]
AminusA([2,2]
v2(4,1]
C[1,1]
NR[2,2]

