
MARCH 2019

LOOPS, MACROS
AND TEMPVARS

1
L O C A L M A C R O
A macro is an abbreviation that you can use to
represent a long string or expression. Local
macros are only valid until the end of the do-file
or stata session.

You define a local macro either of these ways:
local macroname "string"
local macroname = expression

You can call on a macro using a grave accent and
a normal accent like `this' . Try using display and
in any other command:
display `macroname'

2
G L O B A L M A C R O
Global macros persist across instances of stata
until you delete them. Defining your own global
macros is not recommended because they have
the potential to cause conflicts across do-files or
ado-files.

You can call on a global macro using $macroname

3
S C A L A R S
A scalar is usually a numeric expression and
functions similarly to a local macro. However,
scalars hold higher numerical precision than
locals and are able to store binary data.

You define a scalar using the code:
scalar scalarname = 123
scalar scalarname = "hello"

displaying the scalar is simple, just write the
scalar name:

display scalarname

There are various ways to store information in Stata
besides permanent variables. This cheat sheet will remind
you how to keep your code clean and elegant using temp
variables, macros and loops.

by Kelsey Gonzalez

T E M P O R A R Y V A R I A B L E S
A temporary variable is a variable that is only
defined for the current session of Stata. You can
use the tempvar in operations and expressions,
but it will not appear when the dataset is saved.

The coding is quite simple. Define any number of
temporary variables with the code:
tempvar var1 var2

You call on the tempvar the same way you would
a local:
gen `var1' = age^2

T E M P O R A R Y F I L E S
In addition to temporary variables, we can also
store temporary datasets. This works like the
preserve and restore commands, however,
those can only hold 1 dataset. You can create
multiple tempfiles.

Define any number of temporar variables with
the code:
tempfile filename

You call on the tempfile the same way you
would a local or a tempvar:
save `filename'
use `filename'

4

5

Soc 561

6
B A S I C S O F A L O O P
Loops refer to commands which execute a group
of commands multiple times (Long 2009:92). A
rule of thumb while programming is any time you
feel like copying and pasting a chunk of code and
making tiny changes, you should be using a loop
instead. Loops help to avoid errors, update
coding, and make debugging easier.

7
F O R V A L U E S
Forvalues is a specific loop for patterned numeric
values. Patterns can be set using
 1(2)10 = one to ten in steps of two
 1/5 = one to five in steps of one
 1 4 to 12 = one to twelve in steps of three

The code for a forvalues macro looks like this:

forval macro = X(Y)Z {
 commands referring to `macro'
}

F O R E A C H O F
Foreach is a general loop which can contain any
type of list, though foreach of is much more
restrictive that foreach in. In using foreach of,
you must include a list type. These include
local, global, varlist, newlist, and numlist.
Failure to define the correct list type will cause
the loop to fail.

The code for a foreach of looks like this:

foreach macro of listtype X Y Z {
 commands referring to `macro'
}

F O R E A C H I N
Foreach in is a much more commonly used loop
that can loop around any type of list, including a
combination of types within one list.

The code for a foreach in looks like this:

foreach macro in X Y Z {
 commands referring to `macro'
}

8

9

MARCH 2019 Soc 561

R E F E R E N C E S & A D D I T I O N A L R E S O U R C E S
Long, J. Scott. 2009. "The Workflow of Data Analysis using Stata".
Stata Press. pp. 83-105.

http://www.ssc.wisc.edu/sscc/pubs/stata_prog1.htm

https://www.stata.com/statalist/archive/2004-01/msg00542.html

https://www.ssc.wisc.edu/sscc/pubs/stata_prog1.htm

https://stats.idre.ucla.edu/stata/modules/working-across-
variables-using-foreach/

All loops have a basic structure that looks
something like this:

for____ macro ___ X Y Z {
 commands referring to `macro'
}

