SOC 561: Programing for the Social Sciences
Community Resource — Append, Merge, and Collapse
Steven Lizzol

A QUICK STATA GUIDE:
APPEND, MERGE, AND COLLAPSE

1. APPEND

2. MERGE

3. COLLAPSE
APPENDIX

- A quick word on preserve / restore
- Merge Warning

Before we begin, it is highly recommended that when performing append, merge, or collapse
procedures the user performs the preserve / restore command beforehand to ensure their
data are maintained. If you need a quick review, see the appendix.

1. APPEND
Adding cases / observations

Command:
append using dataset.dta

The append command combines the dataset in memory, known as the master dataset, with a
dataset on disk, known as the using dataset. Typically, a user would implement the append
command when they would like to add observations to an existing dataset with the same or
similar variables. Let’s assume we are interested in combining the following datasets:

. use city sizel . use city sizeZ.dta
. list . list
city popula~n gq miles clity popula~n sq miles
1. Boston 685094 90 1. Los Angeles 4000000 503
2. Chicago 2716000 234 2. FKansas City 488943 319
3. NHew York 8623000 468 3. Denver 704621 155
4. Fhiladelphia 1581000 142 4. S5t. Lomis 308626 66

Each dataset provides three variables: city, population, and square miles. All variables are named
and formatted the same for each dataset. To append “city_size2.dta” to “city_sizel.dta” we use
the following:

. nse clity sizel, clear

. append using city size2, generate (new_obs) nclabel nonotes

. list

oity popula~n sqg miles new obs
1. Boston 685054 S0 0
2. Chicago 2716000 234 0
3. New York 8623000 468 0
4., Philadelphia 1581000 142 0
5. Los Angeles 4000000 503 1
6. Fansas City 4838943 319 1
7. Denver 704621 155 1
8. St. Lomis 308626 66 1

The command produced a new dataset that combined the observations from the master dataset,
(city_sizel.dta) with the using dataset (city_size2.dta). Notice no new variables with the
exception of “new_obs” were created in the process; only additional observations. The additional
commands after the coma are optional and are not required to execute the command. The *,
generate (new_obs)” option above provided a “new_obs” variable that identifies which
observations were appended to the master dataset. Additionally, the options “nolabel
nonotes” prevented any labels or notes from the using dataset copying over to the appended

master dataset. A different option allows the user to omit variables from the using dataset. For
example:

. nse city sizel, clear

. append using city size2, generate (new_obs) nolabel nonotes keep (population)

. list

city popula~n sq miles new_obs
1. Boston 685094 90 0
2. Chicago 2716000 234 o
3. New York 8623000 468 o
4, Philadelphia 1581000 142 0
5. 4000000 1
6. 488943 1
T. 704621 . 1
8. 308626 . 1

The “keep (population)” identified only one variable to copy over while leaving the other
fields (“city” and “sq_miles for this example) as missing.

If you attempt to append a using dataset with variables that do not match with the master dataset,
they will be added to the appended dataset as additional variables. For example:

. mse city sizel, clear

. append nsing city sizeZsqgrm, generate (new_obs)

. list

city popula~n sq miles new_obs sqr _mi~s
1. Boston 685094 90 0
2. Chicago 2716000 234 0
3. New York 8623000 468 0
4, Philadelphia 1581000 142 0 .
5. Los Angeles 4000000 1 503
G. Kansas City 488943 1 319
7. Denver T04621 1 155
g. St. Louis 308626 . 1 66

Even though the variables “sq_miles” and “sqr_miles” provide the same measure, they remained
separate and provided missing data in observations where the variable name did not match.

Another consideration is if you are attempting to append a using dataset with a variable by the
same name as the master dataset, but in a different format. For example, if you attempt to append
the using dataset with a string variable (sq_miles) to a master dataset with a numeric variable by
the same name (sq_miles), you will receive the following error message:

. mse city sizel, clear

. append using city sizelstrg

variable sq miles is double in master but str3 in using data

ify append's force option to ignu

wvariable would then be treated as if

If we use the “force” option in this situation, Stata will append the using dataset and inform
you that the variable from the using dataset will assume the format of the master dataset.
Additionally, the values form the using datasets will change to missing.

. append using city sizeZstrg, force
(note: wariable sq miles was str3 in the using data, but will be double now)

. list
city popula~n sq miles
1. Boston 685094 a0
2. Chicago 2716000 234
3. New York G623000 468
4, Philadelphia 1581000 142
5. Los Angeles 4000000
6. Kansas City 488943
7. Denver 704621
g. St. Louis 308626
Major Options:

generate (newvar) newvar marks source of resulting observations
keep (varlist) keep specified variables from appending dataset(s)

nolabel do not copy value-label definitions from dataset(s) on disk
nonotes do not copy notes from dataset(s) on disk
force append string to numeric or numeric to string without error

For additional information and examples, you can view the online append manual here.

https://www.stata.com/manuals13/dappend.pdf

2. MERGE
Adding variables

Command:
merge using dataset.dta

The merge command combines the dataset in memory, known as the master dataset, with a
dataset on disk, known as the using dataset. While append added observations to a master
dataset, the general purpose of merge is to add variables to existing observations. In its simplest
form from past Stata versions (the command above), datasets are merged based on their
observation (or row) order (e.g., the first observation is paired with the first outcomes for each
variable). This older syntax is not recommended as it can be potentially dangerous if the two
datasets are sorted differently or possess more or less id variables (see merge warning in the
appendix). You can produce the same results using the following command recognized by newer
Stata versions:

merge 1l:1 n using filename

However, the new Stata commands in versions 10 or later mitigate chances for mismatched
variables and observations. We will now focus on the two primary types: ‘one-to-one’ and a
‘one-to-many’ (or ‘many-to-one’).

One-to-one merging:

Command:
merge 1:1 varlist using filename

For this command “1:1” specifies that there is one id variable in each dataset that needs to be
merged. For example, imagine you had a master dataset, “city_size.dta” that possessed the id
variable “city” with multiple size variables (e.g., population, total square miles), and a separate
using dataset, “city _market.dta” that possessed the same id variables with corresponding market
variables (e.g., number of grocery retailers and total GDP). Given that you wanted to merge
these two datasets and the presence of one identifier, “city” in this case, you would perform a
one-to-one merge.

. mse city market

. nse city size

. list
. list
olty grocer~1 GDFP
city popula~n =q miles
1. Boston G54 293
1. Boston 685094 90 2. Hew York 303 1550
2. New York 8623000 468 3. Chicago 262 525
3. Chicago 2716000 234 4., Philadelphia 180 347
4, Philadelphia 1581000 142 5. Fansas City 62 161
. mse city size.dta
. merge 1:1 city msing city market.dta
Eesult # of obs.
not matched 1
from master o [_merge==1)
from using 1 [merge==2)
matched 4 [merge==3)
. list
oity popula~n sq miles grocer~1 GDP _merge
1. Boston 685094 a0 G4 293 matched (3)
2. Chicago 2716000 234 262 525 matched (3)
3. Hew York 8623000 468 303 1550 matched (3)
4. Philadelphia 1581000 142 180 347 matched (3)
5. Fansas City . . 62 161 nsing only (2)

Stata merged the using dataset, ““city_market.dta” variables to the corresponding observations in
the “city” variable within the master dataset, “city size.dta.” Also, the merge occurs based on the
id variable regardless of sort order. The command will also create an additional variable “merge”
that identifies if an observation was matched in the merge. It provides three indicators:

1 = observation found only in the master dataset
2 = observation found only in the using dataset
3 = observation found in both master and using dataset (complete match)

The “Kansas City” observation received a “2” identifier because this observation was only
provided in the using dataset. Additionally, it resulted in missing values for the variables in the
master dataset. The merge can occur based on other id variables if desired.

Many-to-one & one-to-many merge:

Command:
merge l:m varlist using filename

merge m:1 varlist using filename

You can also merge datasets that have similar id variables with observations at different levels of
analysis. For example, let’s suppose in addition to the “city_size.dta” and “city _market.dta” files,
you have a “city person.dta” dataset with variables that capture a person’s city of residence and
yearly income.

. mse city person,clear

. list

city per_id income~r

36000
80000
54000
130000
TO000

Boston

New York
Chicago
Philadelphia
Fansas City

[R
ok W MW=

34000
81000
65000
94000
45000

Boston
Philadelphia
New York
New York
Chicago 1

=1 M|
== LT = s S B =1

=
O

This dataset includes a personal id variable. Using “city” as the id variable, you can merge
“city_size.dta” as the using dataset with “city person.dta” as the master dataset. Performing a
many-to-one merge produces the following output:

. merge m:1 city using city_size

Result # of obs.
not matched 1
from master 1 (_merge==1)
from using o (_merge==2)
matched] (_merge==3)

. sort city per_ id

. list
aoity per_id income-~r popnla~n =g miles _merge
1. Boston 1 36000 685094 S0 matched (3)
2. Boston & 34000 685094 S0 matched (3)
3. Chicago 3 54000 2716000 234 matched (3)
4, Chicago i0 49000 2716000 234 matched (3)
5. Kansas City 5 TOo000 . . master only (1)
6. HNew York 2 80000 8623000 468 matched (3)
7. Hew York 8 65000 8623000 468 matched (3)
8. Hew York 9 94000 8623000 468 matched (3)
9. Philadelphia 4 1320000 1581000 142 matched (3)
10. Philadelphia 7 81000 1581000 142 matched (3)

Now, all city level measures are assigned to each person depending on which city they reside in.
Notice that values for “population” and “sq_miles” are missing since “Kansas City” is an
identifier only provided in the “city_person.dta” dataset, thus the merge==1 result. If we
attempt a one-to-many command with the same using and master dataset arrangement, Stata will
present an error:

. merge 1:m city using city =size
variable city does not uniquely identify observations in the master data
r(459);

The “city_person.dta” dataset fails to provide an id variable that Stata can recognize as a unique
identifier (e.g., “Boston” is assigned to more than one observation). If we switch the datasets
where “city_size.dta” is the master dataset and “city person.dta” is the using dataset, a one-to-
many merge is possible.

. n=e city size, clear

. merge 1:m city msing city person

Result # of obs.
not matched 1
from master 1] (_merge==1)
from using 1 (_merge==2)
matched] (_merge==3)
. sort eity per id
. list
city popula~n sq _miles per_id income~r _merge
1. Boston 685094 g0 1 36000 matched (3)
2. Boston 685094 90 3 34000 matched (3)
3. Chicago 2716000 234 3 54000 matched (3)
4. Chicago 2716000 234 10 43000 matched (3)
5. Kansas City . . 5 70000 nsing only (2)
&. New York B623000 468 2 80000 matched (3)
7. HNew York 8623000 468 g 65000 matched (3)
8. Hew York 8623000 468 9 94000 matched (3)
9. Philadelphia 1581000 142 4 130000 matched (3)
10. Philadelphia 1581000 142 T 81000 matched (3)

Notice the one-to-many merged dataset sorted on “city” and “per_id” produces the same output
as the many-to-one merged dataset.

A many-to-many merge can occur when you are unaware of how many of the same identifiers
exist between two datasets, but believe there is at least one pair. A many-to-many command is
not recommended. As stated in the Stata Data Management Reference Manual (Release 15):

Because m:m merges are such a bad idea, we are not going to show you an example. If
you think that you need an m:m merge, then you probably need to work with your data so
that you can use a 1:m or m:1 merge.

It is recommended that the user is familiar enough with the datasets they desire to merge that a
many-to-one or one-to-many is used for the desired outcomes.

Major options:
keepusing (varlist) allows you to merge only select variables from the using dataset.
generate (newvar) changes“ merge” variable name to one of your choosing

nogenerate “ merge” variable not created after a merge

nolabel prevents value/label definitions copying over from the using dataset
nonotes prevents notes copying over form the using dataset

noreport prevents the match results from showing after the merge

For additional information and examples, you can view the online me rge manual here.

https://www.stata.com/manuals13/dmerge.pdf

3. Collapse

Command:
collapse (statistic) varl, by (var2)

This command takes an open (or master) dataset and creates a new dataset by summarizing
statistics on a selected variable. Let’s use the “city_person_cp.dta” dataset to go through some
examples. For these examples we add three new variables: “female” (1 = female, 0 = male),
“like_live” (rating of how much a person likes the city they live in (1 = completely dislike to 6 =
completely like), and “willing move” (rating of how willing a person is to move to a different
city (1 = strongly unwilling to 6 = strongly willing).

. mse city person cp.dta

. list

city per_id income~1 female like l-~e willing move

1. Boston 1 36000 1 4 somewhat willing
2. New York 2 80000 1 3 strongly willing
3. Chicago 3 54000 1] 2 strongly unwilling
4. FPhiladelphia 4 130000 1 6 willing
5. Fansas City 5 70000 o 4 somewhat nnwilling
6. Boston & 34000 o 2 strongly willing
7. Philadelphia 7 81000 1 3 somewhat nnwilling
8. Hew York 8 65000 1] 1 somewhat nnwilling
g, New York] 94000 1 6 nnwilling
10. Chicago io 49000 1 3 strongly willing

The collapse command will allow us to find a statistic by a specific variable. For example, if
we wanted to find the mean yearly income for each city based on the individual dataset, we
would use the following:

. collapse income yr, by (city)

. list
city income ¥r
1. Boston 35000
2. Chicago 51500
3. Kansas City 70000
4, NHew York T9666.667T
5. Philadelphia 105500

The command ‘collapsed’ all individual yearly incomes in the dataset and produced a new
dataset presenting the mean for each city. By default, col1apse will provide the mean for each
numeric variable listed. The collapse output can be changed to a variety of statistics. For
example:

. mse city person cp.dta, clear

. collapse (max) income yr (mean) female like_live, by (city)

. list
city income~t female like live
1. Boston 36000 .5 3
2. Chicago 54000 .5 2.5
3. FKansas City To000 1] 4
4. Hew York 94000 .B666666T 3.3333333
5. Philadelphia 130000 1 4.5

Here we ask Stata to find the maximum yearly income and the mean for female and like_live for
each city. The output shows the highest yearly income for those in the sample who live in New
York being $94,000 with roughly 67% of the New York respondents identifying as female and a
mean score of how much they like living in New York being 3.33 (somewhat dislike). If we were
to include the “willing move” variable, Stata posts an error message identifying a “type
mismatch” and require you to change this variable from a string to numeric format to perform the
collapse.

. collapse (max) income yr (mean) female like live willing move, by (city)
type mismatch
r(109):

Using multiple statistical outcomes from one collapse can make keeping track of statistic output
somewhat difficult by looking at the variable name alone. Fortunately, Stata develops labels for
each variable providing details on which statistic occurred from a collapse.

. describe

Contains data

obs: 5

vars: 4

size: 1a0

storage display wvalue

wvariable name type format label wvariable label
city strlz Fl2s
income yr doukle %10.0g (max) income yr
female double %10.0g (mean) female
like live double %10.0g (mean) like live

Sorted by: city
Note: Dataset has changed since last saved.

If you wanted to perform more than one statistic for the same variable, you will need to tell Stata
the new variable name. For example, if we wanted the max and the mean for yearly income, we
would perform the following command:

. use city person cp, clear

. collapse (max) income yr (mean) female like live income mean=income yr, by (city)

. list

city income-~r female like live income_~n
1. Boston 36000 .5 3 35000
2. Chicago 54000 .5 2.5 51500
3. Kansas City 70000 0 4 70000
4. New York 94000 .66666667 3.3333333 79666.667
5. Philadelphia 130000 1 4.5 105500

. describe

Contains data

obs: 5

vars: 5

size: 220

storage display value

variable name type format label variable label
city strl2 %12s
income yr double %10.0g (max) income yr
female double %10.0g (mean) female
like live double %10.0g (mean) like live
income mean double %10.0g (mean) income yr

Sorted by: ecity
Note: Dataset has changed since last saved.

Stata will also allow a collapse to condition on combinations of variables. For example, we could
perform the same collapse as the previous command, however instead of collapsing on just the
city, we could collapse on the city and whether or not you identify as a female. For this next
example, we will ask Stata to provide a count for the number of observations that occur for the
specified collapse categories. For this to work, you must use a variable that has no missing
values; “per_id” is a good fit for this case.

. use city person cp.dta, clear

. collapse (max) income yr (mean) like live income mean=income yr (count) count=per id, by (city female)

. list

city female income~xr like l~e income~n count

1. Boston 0 34000 2 34000 1
2. Boston 1 36000 4 36000 1
3. Chicago 0 54000 2 54000 1
4. Chicago 1 49000 3 49000 1
5. Kansas City 0 70000 4 70000 1

. New York 0 65000 1 65000 1

7. New York 1 94000 4.5 87000 2
8. Philadelphia 1 130000 4.5 105500 2

The output shows that the statistics based on the city and stratified on whether you identify as a
female or not. For example, the max yearly income for those who live in New York and identify

as female is $94,000, with the mean yearly income being $87,000 and an average “like live”
rating of 4.5 (like). This can be compared to those who live in New York who do not identify as
a female (1 person in this simple dataset) with a yearly income of $65,000 and a “like live”
rating of 1 (strongly dislike). Additionally, Philadelphia does not have a “0” category because the
dataset only captured two female observations.

Let’s now use a fictitious longitudinal dataset “city hsgrad.dta” with variables that identify the
city, city population, and percentage of high school graduates for the years 2017 and 2018
respectively. If we were interested in capturing the mean percentage of high school grads for the
two different years, we could perform the following commands:

. use city hsgrad, clear

. list

city year popula~n percnt~d
1. Boston 2017 685094 72.4
2. Boston 2018 670000 73.1
3. Chicago 2017 2716000 73.5
4. Chicago 2018 2591000 72.9
5. New York 2017 8623000 71.1
6. New York 2018 8498000 70.3
7. Philadelphia 2017 1581000 8l1.2
8. Philadelphia 2018 1526000 79.6

. collapse (mean) percnt _hsgrad, by (year)

. list

year percnt~d

1. 2017 74.55
2. 2018 73.975

However, our results assume equal weighting of the graduate percentages regardless of city
population and provide inaccurate outputs. A more precise approach involves using a weight
command that accounts for each percentage on their respective population size.

. collapse (mean) percnt_hsgrad [fw=population], by (year)

. list

year percnt ~d

1. 2017 72.818262
2. 2018 72.016553

Major Options:
by (varlist) groups over which stat is to be calculated
cw casewise deletion instead of all possible observations

For additional information and examples, you can view the online col1lapse manual here.

https://www.stata.com/manuals13/dcollapse.pdf

Appendix

A quick word on preserve / restore:

If you are writing a Stata program that temporarily changes the dataset by the following append,
merge, or collapse commands, it is highly recommended that you preserve your original dataset
by using the preserve command. After preserve is entered, you can experiment with different
dataset manipulation commands without worry of permanently changing your original dataset.
Simply use the command restore to go back to the preserved dataset.

preserve

[commands that alter the dataset]

restore

Additionally, if you are writing a Stata program that temporarily changes the order of the data
and you want the data to be sorted in its original order at the end of execution, you can save a bit
of programming by including sortpreserve on your program statement.

Program statdatasetfile, sortpreserve

Stata will automatically sort into its original order at the end of execution.

Merge Warning
Suppose we wanted to merge the following two files: autoexpense.dta and autosize_sortdif.dta.

. nse antosize sortdif, clear

use antoexpense, clear ({1978 Automobile Data)
- r

(1878 Automobile Data)

list
list
make weight length
make price mpg 1. | patsun 210 2,020 165
2. Toyota Celica 2,410 174
1. Toyota Celica 5,895 18 3 BMW 320i 2 650 177
2. | BMW 3201 9,735 25 4. | Pont. Grand Prix 3,210 201
3. Cad. Seville 15,906 21 5 Plym. Arrow 3 260 170
. . ;

4. Pont. Grand Prix 5,222 15

5. | Datsun 210 4,589 35 &. | cad. Sewville 4,290 204

Notice how the autosize_sortdif.dta file has the same car makes with the exception of the
“Cadillac Seville,” but they are in a different order. If a simple merge command is used, Stata
will do so based on the order within each dataset (e.g., the first observation is paired with the
first outcomes for each variable). Here’s the result:

. merge using auntosize sortdif
(note: you are using old merge syntax; see [D] merge for new syntax)

. list

make price mpg weight length _merge
1. Toyota Celica 5,699 18 2,020 165 3
2. BMW 3201 9,735 25 2,410 174 3
3. Cad. Seville 15,906 21 2,650 177 3
4, Pont. Grand Prix 5,222 13 3,210 201 3
5. Datsun 210 4,589 35 3,260 170 3
6. Cad. Seville . . 4,290 204 2

The master dataset is now merged with the using dataset with a new “ merge” variable that
indicates observations found in both master and using dataset (3) with the exception of the
“Cadillac Seville” where observations were found only from the using dataset. There are two
assumptions Stata was operating on: (1) the first variable was the id variable, and (2) the id
variables were sorted in the same order. In this case Stata did not account for the different
ordering of the “make” variable, and the datasets were merged incorrectly (e.g., the weight and
length outcomes for the “Datsum 210 were assigned to the “Toyota Celica” in the merged
dataset).

