
SOC 561: Programing for the Social Sciences

Community Resource – Append, Merge, and Collapse

Steven Lizzol

A QUICK STATA GUIDE:

APPEND, MERGE, AND COLLAPSE

1. APPEND

2. MERGE

3. COLLAPSE

APPENDIX

- A quick word on preserve / restore

- Merge Warning

Before we begin, it is highly recommended that when performing append, merge, or collapse

procedures the user performs the preserve / restore command beforehand to ensure their

data are maintained. If you need a quick review, see the appendix.

1. APPEND

Adding cases / observations

Command:
append using dataset.dta

The append command combines the dataset in memory, known as the master dataset, with a

dataset on disk, known as the using dataset. Typically, a user would implement the append

command when they would like to add observations to an existing dataset with the same or

similar variables. Let’s assume we are interested in combining the following datasets:

Each dataset provides three variables: city, population, and square miles. All variables are named

and formatted the same for each dataset. To append “city_size2.dta” to “city_size1.dta” we use

the following:

The command produced a new dataset that combined the observations from the master dataset,

(city_size1.dta) with the using dataset (city_size2.dta). Notice no new variables with the

exception of “new_obs” were created in the process; only additional observations. The additional

commands after the coma are optional and are not required to execute the command. The “,

generate (new_obs)” option above provided a “new_obs” variable that identifies which

observations were appended to the master dataset. Additionally, the options “nolabel

nonotes” prevented any labels or notes from the using dataset copying over to the appended

master dataset. A different option allows the user to omit variables from the using dataset. For

example:

The “keep (population)” identified only one variable to copy over while leaving the other

fields (“city” and “sq_miles for this example) as missing.

If you attempt to append a using dataset with variables that do not match with the master dataset,

they will be added to the appended dataset as additional variables. For example:

Even though the variables “sq_miles” and “sqr_miles” provide the same measure, they remained

separate and provided missing data in observations where the variable name did not match.

Another consideration is if you are attempting to append a using dataset with a variable by the

same name as the master dataset, but in a different format. For example, if you attempt to append

the using dataset with a string variable (sq_miles) to a master dataset with a numeric variable by

the same name (sq_miles), you will receive the following error message:

If we use the “force” option in this situation, Stata will append the using dataset and inform

you that the variable from the using dataset will assume the format of the master dataset.

Additionally, the values form the using datasets will change to missing.

Major Options:

generate(newvar) newvar marks source of resulting observations

keep(varlist) keep specified variables from appending dataset(s)
nolabel do not copy value-label definitions from dataset(s) on disk

nonotes do not copy notes from dataset(s) on disk

force append string to numeric or numeric to string without error

For additional information and examples, you can view the online append manual here.

https://www.stata.com/manuals13/dappend.pdf

2. MERGE

Adding variables

Command:
merge using dataset.dta

The merge command combines the dataset in memory, known as the master dataset, with a

dataset on disk, known as the using dataset. While append added observations to a master

dataset, the general purpose of merge is to add variables to existing observations. In its simplest

form from past Stata versions (the command above), datasets are merged based on their

observation (or row) order (e.g., the first observation is paired with the first outcomes for each

variable). This older syntax is not recommended as it can be potentially dangerous if the two

datasets are sorted differently or possess more or less id variables (see merge warning in the

appendix). You can produce the same results using the following command recognized by newer

Stata versions:

merge 1:1 _n using filename

However, the new Stata commands in versions 10 or later mitigate chances for mismatched

variables and observations. We will now focus on the two primary types: ‘one-to-one’ and a

‘one-to-many’ (or ‘many-to-one’).

One-to-one merging:

Command:
merge 1:1 varlist using filename

For this command “1:1” specifies that there is one id variable in each dataset that needs to be

merged. For example, imagine you had a master dataset, “city_size.dta” that possessed the id

variable “city” with multiple size variables (e.g., population, total square miles), and a separate

using dataset, “city_market.dta” that possessed the same id variables with corresponding market

variables (e.g., number of grocery retailers and total GDP). Given that you wanted to merge

these two datasets and the presence of one identifier, “city” in this case, you would perform a

one-to-one merge.

Stata merged the using dataset, “city_market.dta” variables to the corresponding observations in

the “city” variable within the master dataset, “city_size.dta.” Also, the merge occurs based on the

id variable regardless of sort order. The command will also create an additional variable “merge”

that identifies if an observation was matched in the merge. It provides three indicators:

1 = observation found only in the master dataset

2 = observation found only in the using dataset

3 = observation found in both master and using dataset (complete match)

The “Kansas City” observation received a “2” identifier because this observation was only

provided in the using dataset. Additionally, it resulted in missing values for the variables in the

master dataset. The merge can occur based on other id variables if desired.

 Many-to-one & one-to-many merge:

Command:
merge 1:m varlist using filename

merge m:1 varlist using filename

You can also merge datasets that have similar id variables with observations at different levels of

analysis. For example, let’s suppose in addition to the “city_size.dta” and “city_market.dta” files,

you have a “city_person.dta” dataset with variables that capture a person’s city of residence and

yearly income.

This dataset includes a personal id variable. Using “city” as the id variable, you can merge

“city_size.dta” as the using dataset with “city_person.dta” as the master dataset. Performing a

many-to-one merge produces the following output:

Now, all city level measures are assigned to each person depending on which city they reside in.

Notice that values for “population” and “sq_miles” are missing since “Kansas City” is an

identifier only provided in the “city_person.dta” dataset, thus the _merge==1 result. If we

attempt a one-to-many command with the same using and master dataset arrangement, Stata will

present an error:

The “city_person.dta” dataset fails to provide an id variable that Stata can recognize as a unique

identifier (e.g., “Boston” is assigned to more than one observation). If we switch the datasets

where “city_size.dta” is the master dataset and “city_person.dta” is the using dataset, a one-to-

many merge is possible.

Notice the one-to-many merged dataset sorted on “city” and “per_id” produces the same output

as the many-to-one merged dataset.

A many-to-many merge can occur when you are unaware of how many of the same identifiers

exist between two datasets, but believe there is at least one pair. A many-to-many command is

not recommended. As stated in the Stata Data Management Reference Manual (Release 15):

Because m:m merges are such a bad idea, we are not going to show you an example. If

you think that you need an m:m merge, then you probably need to work with your data so

that you can use a 1:m or m:1 merge.

It is recommended that the user is familiar enough with the datasets they desire to merge that a

many-to-one or one-to-many is used for the desired outcomes.

Major options:

keepusing (varlist) allows you to merge only select variables from the using dataset.
generate (newvar) changes “_merge” variable name to one of your choosing

nogenerate “_merge” variable not created after a merge
nolabel prevents value/label definitions copying over from the using dataset
nonotes prevents notes copying over form the using dataset

noreport prevents the match results from showing after the merge

For additional information and examples, you can view the online merge manual here.

https://www.stata.com/manuals13/dmerge.pdf

3. Collapse

Command:
collapse (statistic) var1, by (var2)

This command takes an open (or master) dataset and creates a new dataset by summarizing

statistics on a selected variable. Let’s use the “city_person_cp.dta” dataset to go through some

examples. For these examples we add three new variables: “female” (1 = female, 0 = male),

“like_live” (rating of how much a person likes the city they live in (1 = completely dislike to 6 =

completely like), and “willing_move” (rating of how willing a person is to move to a different

city (1 = strongly unwilling to 6 = strongly willing).

The collapse command will allow us to find a statistic by a specific variable. For example, if

we wanted to find the mean yearly income for each city based on the individual dataset, we

would use the following:

The command ‘collapsed’ all individual yearly incomes in the dataset and produced a new

dataset presenting the mean for each city. By default, collapse will provide the mean for each

numeric variable listed. The collapse output can be changed to a variety of statistics. For

example:

Here we ask Stata to find the maximum yearly income and the mean for female and like_live for

each city. The output shows the highest yearly income for those in the sample who live in New

York being $94,000 with roughly 67% of the New York respondents identifying as female and a

mean score of how much they like living in New York being 3.33 (somewhat dislike). If we were

to include the “willing_move” variable, Stata posts an error message identifying a “type

mismatch” and require you to change this variable from a string to numeric format to perform the

collapse.

Using multiple statistical outcomes from one collapse can make keeping track of statistic output

somewhat difficult by looking at the variable name alone. Fortunately, Stata develops labels for

each variable providing details on which statistic occurred from a collapse.

If you wanted to perform more than one statistic for the same variable, you will need to tell Stata

the new variable name. For example, if we wanted the max and the mean for yearly income, we

would perform the following command:

Stata will also allow a collapse to condition on combinations of variables. For example, we could

perform the same collapse as the previous command, however instead of collapsing on just the

city, we could collapse on the city and whether or not you identify as a female. For this next

example, we will ask Stata to provide a count for the number of observations that occur for the

specified collapse categories. For this to work, you must use a variable that has no missing

values; “per_id” is a good fit for this case.

The output shows that the statistics based on the city and stratified on whether you identify as a

female or not. For example, the max yearly income for those who live in New York and identify

as female is $94,000, with the mean yearly income being $87,000 and an average “like_live”

rating of 4.5 (like). This can be compared to those who live in New York who do not identify as

a female (1 person in this simple dataset) with a yearly income of $65,000 and a “like_live”

rating of 1 (strongly dislike). Additionally, Philadelphia does not have a “0” category because the

dataset only captured two female observations.

Let’s now use a fictitious longitudinal dataset “city_hsgrad.dta” with variables that identify the

city, city population, and percentage of high school graduates for the years 2017 and 2018

respectively. If we were interested in capturing the mean percentage of high school grads for the

two different years, we could perform the following commands:

However, our results assume equal weighting of the graduate percentages regardless of city

population and provide inaccurate outputs. A more precise approach involves using a weight

command that accounts for each percentage on their respective population size.

Major Options:
by(varlist) groups over which stat is to be calculated
cw casewise deletion instead of all possible observations

For additional information and examples, you can view the online collapse manual here.

https://www.stata.com/manuals13/dcollapse.pdf

Appendix

A quick word on preserve / restore:

If you are writing a Stata program that temporarily changes the dataset by the following append,

merge, or collapse commands, it is highly recommended that you preserve your original dataset

by using the preserve command. After preserve is entered, you can experiment with different

dataset manipulation commands without worry of permanently changing your original dataset.

Simply use the command restore to go back to the preserved dataset.

preserve

[commands that alter the dataset]

restore

Additionally, if you are writing a Stata program that temporarily changes the order of the data

and you want the data to be sorted in its original order at the end of execution, you can save a bit

of programming by including sortpreserve on your program statement.

Program statdatasetfile, sortpreserve

Stata will automatically sort into its original order at the end of execution.

Merge Warning

Suppose we wanted to merge the following two files: autoexpense.dta and autosize_sortdif.dta.

Notice how the autosize_sortdif.dta file has the same car makes with the exception of the

“Cadillac Seville,” but they are in a different order. If a simple merge command is used, Stata

will do so based on the order within each dataset (e.g., the first observation is paired with the

first outcomes for each variable). Here’s the result:

The master dataset is now merged with the using dataset with a new “_merge” variable that

indicates observations found in both master and using dataset (3) with the exception of the

“Cadillac Seville” where observations were found only from the using dataset. There are two

assumptions Stata was operating on: (1) the first variable was the id variable, and (2) the id

variables were sorted in the same order. In this case Stata did not account for the different

ordering of the “make” variable, and the datasets were merged incorrectly (e.g., the weight and

length outcomes for the “Datsum 210” were assigned to the “Toyota Celica” in the merged

dataset).

