
Community Resource: Writing and De-Bugging Stata Do-files

The first section will provide a quick review of some basics relating to writing and de-bugging
Stata do-files. For more detailed information on naming structures, do-file templates, and basic
commands, you can visit the class community resource page, where these resources have already
been created and posted. Link: https://jearl.faculty.arizona.edu/content/stata-resources-data-
management

The second section will provide a walk-through of some problems you may encounter when
writing a do-file, with pictures and explanations to illustrate what these errors look like and how
to solve them.

Review

Replicability:

- One main goal when writing a do-file should be to make it replicable
- Absolute vs. Relative Path

o An absolute path will locate specific files on a device with a very long path name
o A relative path assumes we are in the right directory, and uses just the file name
o Whenever possible, use a relative path to ensure replicability regardless of

device
- Version

o You can use the command “version” to specify which version of Stata you are
using, but be wary that this could cause problems with replicability if you are
working on a team where people have different versions of Stata installed

- Renaming and Saving the Master Dataset
o When beginning a project, always rename your master dataset and save as

something new
§ This ensures you do not overwrite original variables
§ When saving as a new dataset, use the command “, replace”

o If you want to check how your do-file runs at the end of your process, you can run
it all the way through using the original dataset

Naming structures:

- One way to keep you do-files organized is to use a specific naming structure
o For example, you could use two different labels to differentiate things that are

data management and things that are analysis
§ ‘CR_’ for things that are data management or prepping to be analyzed
§ ‘AN_’ for things that are analysis

- You might want to separate these categories because the do-files could get long, and/or
you might work on them at different times

- For more on naming structures, see the resources linked at the top of the page

Notes/ Commenting:

- Notes and commenting are crucial to keeping your do-files organized and replicable

- In the beginning of a do-file, you may want to include a note that gives basic information
about when the do-file was written, last updated, what updates were made, and any
dependencies the reader should know about

- Commenting in your do-file:
o To keep organized and make it easy to follow your logic later on, use comments

to say what you are going to do before you do it
o It may be useful to employ an asterisk system to denote what your comments

mean when looking back
§ *: Use a single asterisk to denote a comment that tells you what you are

about to do/describes a step
§ ***: Use three asterisks if you are making note of something or describing

the logic behind your decision
§ ****Big Task***: Use asterisks as bookends to separate sections and

denote the big task/goal for that section

De-Bugging and Errors:

- There are two types of errors you may encounter in writing/running your do-file: ones
Stata will tell you about and ones it won’t

o Stata will tell you if it can’t perform a function
o Stata won’t tell you if you make a mistake in your logic, as long as it can still run

the function
- Common errors to be on the lookout for/troubleshoot:

o Make sure you close previous logs before you open a new one
o Don’t confuse assignment and evaluation: = is assignment, == is evaluation
o Check your spelling when specifying commands and variables
o Make sure you know what type of data you are working with (string vs. numeric)

§ String data need quotations (“variable”); numeric data do not need
quotations (variable)

De-Bugging Examples and Walk-Throughs

Let’s say you are interested in running an analysis using the data set “birthorder.dta”, which
includes three main variables of interest for you: wage, education, and father’s education. One of
the first things you want to do when you start working with the data is to recode the father’s
education into a dummy variable that will tell you whether the father has more than a high school
education (more than 12 years of education).

In trying to recode this variable, you run into a few problems. Let’s break them down.

Problem #1:

To recode the variable for father’s education (“feduc”) into a new dummy variable (“fatherHS”),
you write the following code:

Stata does not display any errors, so you think you are good to go! Just to be sure, you decide to
check your variable transformations in a table:

Even though Stata did not report
an error, you realize you’ve
made a mistake! You didn’t
account for Stata coding missing
variables as + infinity, so you
accidentally transformed your
missing variables as “1”.

This mistake serves as a good reminder to always make sure to use tables and/or lists to check
that you have transformed your variables correctly and accounted for missing variables.
You will need to alter your code so that missing data is coded as missing, not 1.

Problem #2:

To correct this error, you alter your transformation command to account for the missing
variables. You write the following code:

Unlike your previous attempt, this code accounts for the missing variables by telling Stata to
recode the fatherHS=1 when father’s education is more than 12 years and does not equal “.”,
which means it is missing. You feel confident about this code until you run it and see that Stata
gives you an error message.

You consult your notes and remember that the error “type mismatch” means that you have
mistakenly coded numeric data as string data. Because your data are numeric, you do not
need to include quotations (“.”) when specifying the variables. You should only use these
quotations if you are working with string variables. You run your code again without the
quotations:

This time, you do not get an error about type mismatch. Just to be sure, you use the table
command again to ensure that all your variables have been transformed correctly. You see that
your code has successfully transformed your variables! Years 0-12 of education are coded as 0,
years 13+ are coded as 1, and the 194 missing values are coded as missing. See the table below
for confirmation.

Quick Tip:

Before you move on—make sure that when recoding a dummy variable like we did here, you
don’t accidentally exclude the number on the precipice of the two categories. For example, we
would have been incorrect if we wrote:

This would be incorrect because we account for years of education greater and less than 12, but
we skip over 12 years. In this case, our dummy variable ‘0’ would include people who had 11
years of education or less, and our ‘1’ would include people who had 13+ years of education, but
those with 12 years would be excluded. If we are interested in who had more than a HS
education, we would need to ensure that those who had a high school education (12 years of
school) are included in our ‘0’. To ensure this, we write our code as with 12 included in ‘0’ (gen
fatherHS=0 if feduc<=12).

Problem #3

Now that you have accounted for father’s level of education, you want to create a dummy
variable for education of the respondent. You plan to use the same categorical division to see if

Here we can see that
our missing variables
are coded as missing,
not 0 or 1. We can also
confirm that years 0-12
are coded as 0 and
years 13+ are coded as
1.

respondents had more than a high school education. You write the next line of code but run into
a problem early on:

When you go to run the line of code, Stata reports the following error:

Here, you have mistakenly confused assignment for evaluation. In Stata, a single equal (=)
acts as an assignment, whereas a double equal (==) acts as an evaluation. When you are
generating and labeling new variables, you want to assign the variable value using a single equal
(=), not a double. This is a common mistake, but a quick fix. All you have to do is remove the
second = and carry on with your coding:

Great work—you should now have successfully generated dummy variables for respondent
education and father’s education.

Problem #4

At this point, you want to run a quick cross-tabulation of your two transformed variables, to see
the overall trends in the relationship between father’s education and respondent’s education. You
type the following command:

When running this command, you get another error message:

Stata is telling you that the variable ‘fathersHS’ is not found, but you feel confident that you just
generated this variable. When you encounter an error like this, you should always make sure to
first check your spelling. It may seem simple, but it is a fairly common mistake to misspell a
command or a variable name. Looking closer, you see that you accidentally typed “fathersHS”,
when really the variable name should be “fatherHS”. Correcting this spelling will solve your
problem.

