
Do-file Templates & Do-File Basics

Do-files provide an effective way to write, edit, and share code, but do-files
are most effective when they are clearly organized and well annotated. It is
considered good practice to have your own standard template to use in
your do-files. This post provides and discusses an example of a basic do-
file template that you can use in your own coding practice. The template
provided here is not a universal, standardized do-file template (such a thing
doesn’t exist as there are various approaches to writing and documenting
code); however, this template includes key basic commands and
introduces a simple organizational structure for your code and comments.
Feel free to modify and incorporate this template into your own practice as
you see fit.

Why standardize and annotate your do-files?

1. A well organized and consistent do-file is easier to read and
understand

2. Makes it easier for you and others to catch and edit errors in your
code

3. Consistent and annotated do-files make your code/research
replicable.

4. Comments can keep track of your work as you update your code and
continue working on the project. I.e. comments orient you on where
each do-file fits in your project.

5. Comments explain your code and why you employed certain data
analysis/manipulation. This prevents confusion for
others/collaborators or yourself when you return to your work.

6. Standardizing and annotating your do-files allow your do-files to be
more robust and legible. Robust and legible do-files are self-
contained, replicable, and easy to read and understand. For more
information on how to make your work legible and robust, see Dr.
Jenn Earl’s notes on do-files here:
http://jearl.faculty.arizona.edu/sites/jearl.faculty.arizona.edu/files/Jan2
7_2014_material_wiki.pdf

The following template is constructed with these goals in mind…

 Basic Do-file Template:

Amalia
Line

Amalia
Line

Amalia
Line

Amalia
Line

Amalia
Line

Amalia
Typewritten Text
Setting working directory and opening a log

Amalia
Typewritten Text

Amalia
Typewritten Text

Amalia
Typewritten Text

Amalia
Typewritten Text

Amalia
Typewritten Text

Amalia
Typewritten Text

Amalia
Typewritten Text

Amalia
Typewritten Text
Header that includes information about the project, the author's information, and the date it was created. ** You can also include notes of what to do next or how the do-file was previously changed/updated.

Amalia
Typewritten Text

Amalia
Typewritten Text
Initial commands

Amalia
Typewritten Text
Opening dataset; include comments on data such as the variables used or whether or not you are using raw data.

Amalia
Typewritten Text

Amalia
Typewritten Text
Closing commands to savethe manipulated dataset andto close/save the log.

Commands Explained

1. cd “/[path]/[working directory]/”
a. This sets your working directory; where you retrieve your

data and save your work/files.
2. capture log close

a. log close- closes an already open log; if a log is already
open, the code log using will break/fail to run.

b. capture- prevents an error message and allows do-file to
continue running if a log is already closed. If a log is NOT
opened, the log close command will fail without using
capture.

3. version [12]
a. Version control; sets your stata command interpreter to a

certain version.
b. You cannot version control to a newer version than the

version installed on your machine/computer.
c. This allows you to run the do-file in the version the code was

written, therefore any discrepancies in stata versions will not
break your code.

4. clear all
a. Removes data, labels, and stored results while closing open

files, windows, and dialog boxes. This allows you to clear all
previous work done in stata to run a new do-file.

5. set linesize [80]
a. Sets/restricts the number of characters per line (maximum

width) of Stata output
6. set more off

a. Prevents Stata from pausing and displaying the ---more---
message.

7. Use “[pathway]/[filename]”
a. Opens/retrieves data from working directory

8. Save “[pathway]/[filename]”
a. Saves data to working directory

Comments/Notes Explained
These notes/annotations explain code and make do-files easier to

 read. When comments are preceded by the following symbols, they
 are not interpreted as Stata commands and instead are highlighted in
 green.

1. ***

a. Section break- indicates a new section of the do-file.
b. It’s a good idea to use this to organize coding/data

cleaning sections of the do-file from data analysis
sections (especially in a master.do)

c. Unspecified number of asterisks.
2. //

a. Section and/or do-file header; Title or brief description of
each section.

3. ***
a. Subheader and description of a task or lines of code.

i. Can include number of lines this comment applies
to. (e.g. “*** The next 3 lines recode the gender
variable”)

4. *
a. A note or explanation of what a line of code is doing
b. A note to self

Other symbols for notes in Stata:

1. /
2. /*

Feel free to use these indicators of notation as you see fit according to
your own preferred method of organization.

Expanded Do-file Template: An Example
 This do-file uses the same template presented above. This example
 provides expanded commands and notes so you can see how your
 own code, comments, directories might look in a complete do-file.

Bugs and Debugging
 Common Do-file Errors

1. Mistyping variable names
a. Use Stata’s autocomplete function
b. OR copy variable names from the variable window and

pasting it into command in the do-file.
2. Mistyping commands

a. The font of commands is dark blue in Stata do-files. If Stata
does not recognize a command (because it is misspelled or
otherwise incorrect) it will NOT be blue in the do-file.

b. E.g. recode sex (1=0) (2=1), gen(female)
3. Using log close at the beginning of a program when a log is

already open
a. Use capture log close to close log at beginning of a

program.
4. Forgetting to add , replace to save and log commands.

a. Add , replace to commands to save logs and new data
sets to overwrite existing files.

5. Option error
a. Use help [operation] to check if you are using a valid

option and syntax.
b. Make sure you use a comma [,] between the operation and

the option.
6. Putting by in the wrong place

a. Use help [operation]command to check the correct
syntax and order.

7. Loop Errors
a. Use set trace on to see how Stata interprets/evaluates

each step of the loop.
8. Confusing assignment [=] and Evaluation [==]

a. Assignment
i. ex: gen var1=5
ii. “assign a new value to…"

b. Evaluation (a test of equivalence)
i. ex. replace var1=6 if evnmth==12
ii. “is the same as, is equal to”

Other Troubleshooting Methods
 If you can’t identify the error or debug your do-file, try these
 methods to get your do-file running.

1. Break the program down and run it a few lines at a time to locate
where the error is.

2. Run clear all and macro drop _all
3. Restart Stata
4. Reboot your computer
5. Google the error message or command
6. Check Statalist, an online stata forum: http://www.statalist.org/
7. Copy and paste a similar command above it to proof by eye
8. Share your code with another pair of eyes- maybe they can find

the error
9. Post your question/problem to statalist as a LAST resort

a. Search stataforum first.

Don’t forget-
 Your programs and do-files should be created with the intention to
make your work efficient, replicable, and legible. Incorporating
standardized do-files and detailed comments into your regular coding
practice will help you work efficiently and facilitate collaboration.

Best of luck!

