Effect of Allosteric Inhibitors on the Integrase Conformation Probed by All-Atom Simulations Lev Levintov, Juan R. Perilla

Department of Chemistry & Biochemistry, University of Delaware, Newark, DE USA

- The binding site of ALLINIs is well-characterized but the exact mechanism of inhibition remains unclear.
- How ALLINIs affect the structural integrity of HIV-1 IN?
- Which protein interface at the binding site has a greater contribution to the binding of the ALLINIs?
- Specifically, which amino acid side-chains play a key role in the recognition of the ALLINIs?

System Setup

All-atom molecular dynamics (MD) simulations were employed to probe the dynamics of HIV-1 IN in the presence and absence of two ALLINIs.

NAMD simulation software was utilized with CHARMM forcefield to conduct MD simulations.

BI-D and STP0404 were parameterized using QM calculations along with CGENFF software.

Simulation details

System	System Size (atoms)	Simulation Time (ns)
Apo HIV-1 IN	132,742	460
HIV-1 IN w/ BI-D	134,344	580
HIV-1 IN w/ STP0404	142,889	680

Apo HIV-1 IN simulation domain

HIV-1 IN w/ BI-D simulation domain Water

HIV-1 IN w/ STP0404 simulation domain

NVERSITYOF ELANABE