
Toward modeling flocculation in turbulence-resolving simulations for cohesive 
sediment transport

2. Size class-based flocculation model – Verney 
et al (2011)
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VARIABLES AND PARAMETERS :

𝛼 = Collision efficiency (assumed constant) = 0.25
𝛽 = Fragmentation rate (assumed constant) = 0.028
𝑓𝑑 = Fractal dimension = 2.4
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1. Motivation

▪ Fine-grained sediments, commonly known as cohesive sediments, are
ubiquitous in estuaries and on continental shelves.

▪ Flocs are vehicles of nutrients, organic carbon and pollutants, and hence
their fate is the key to the understanding of coastal ecosystem,
morphodynamics, water quality, and carbon cycle.

▪ Cohesive sediment transport is a tightly coupled system among flows,
sediment resuspension and deposition, and flocculation.

Source: Trowbridge and Lentz (2018)

Inhomogeneous turbulent flow 
for fine sediment transport

Coupling between Flocculation 
and Large Eddy Simulation 
(LES) or Reynolds-averaged 

models (RANS)

Direct Numerical Simulation (DNS) of 
turbulence in wave bottom boundary 

layer and fine sediment transport 
(Ozdemir et al. 2010, Yue et al. 2020).

• The LES study by Liu et al.
(2019) exclude the bottom
boundary layer.

• RANS study by Sherwood et al.
2018) focus on estuarine scale
processes.

• Neglect flocculation.
• Assume constant Settling velocity
• Exchange of sediments in wave-

current boundary layer is poorly
understood (e.g., Hill et al. 2001).

Couple DNS with a size-class 
based flocculation model
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5. Weak coupling for dilute flow

Extracting eddy diffusivity in ensemble average equations
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8. Conclusions and Future work
▪ A loose coupling between Direct Numerical Simulation and size-class
flocculation model in dilute condition predicts a large vertical variability of
settling velocity between the viscous sublayer, buffer layer, and log layer.

▪ Large vertical variability of settling velocity below the log-layer (𝑥3
+) is due

to large variabilities of turbulent shear and sediment concentration.
Settling velocity in the log-layer can be approximated as a constant value.

▪ This loose coupling methodology will be extended for wave-current
bottom boundary layer in the near future.

DNS provides the 
accurate turbulent 

shear rate 𝐺 = Τ𝜀 𝜈

5. Turbulent shear rate 𝑮∗

4. Ensemble averaged profiles

Streamwise velocity
Sediment concentration with a 

constant 𝑤𝑠
∗ = 0.5 𝑚𝑚/𝑠

Turbulence resolving simulation indicates 𝑆𝑐𝑡 ≈ 1, consistent 

with the equilibrium approximation.

3. DNS for Open Channel Flow – Yue et al (2020)
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where sub-index 𝑖 = 1, 2, 3 represents the streamwise 𝑥1
∗, the spanwise 𝑥2

∗

and the vertical 𝑥3
∗ directions, respectively. 𝑣𝑖

∗ is the velocity of sediment
phase, 𝑢𝑖

∗ is carrier flow velocity, 𝑤𝑠
∗ the sediment settling velocity, 𝑛𝑖 is a

normalized vector representing the direction of the gravitational
acceleration, 𝑡∗ is time, 𝑝∗ is pressure, 𝜈 is the kinematic viscosity, 𝑅 is
defined as 𝑅 = 𝑠 − 1 with 𝑠 = 𝜌𝑠/𝜌𝑓 = 2.65 is the specific gravity, 𝜙 is

the volumetric concentration of sediment, 𝐾 is the effective diffusivity of
sediment, 𝑆𝑖

∗ is spatially averaged pressure gradient, which is the driving
force of the model.
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6. Sediment concentration in different size class 
calculated by the flocculation model
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𝑊𝑒 = Weight contribution 
𝑐𝑓𝑖 = Concentration for each floc size class

𝑐∗ 12𝑡 = Ensemble averaged concentration profile

7. Vertical profiles of weighted average floc 
properties  (first interaction)
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Discrete properties of the floc
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