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Abstract Simulation Setup Viscosity vs. Temperature Across Lipid Types Supporting Information
Lipid membrane viscosity is critical to biological function. Bacte- Five replicas of all of the following lipids were run at the listed temper-
rial cells grown in different environments have been shown to alter atures, in roughly (10 nm)” simulation boxes. After equilibrating under . . .

’ ‘ 50 50 ‘< 99

their lipid composition in order to maintain a specific viscosity, and NPT, the simulations were run for 150-200 ns under NVT. 100 - T Subtracting™ the Water Viscosity
membrane viscosity has been linked to the rate of cellular respira- 19 19 & DLPC : : . L :
. : . . . —~ 1 40 40 ® DMPC The direct output of the simulation is the pressure tensor for the entire simulation
tion. In order to understand the factors which determine the viscosity 2 80 ¢ : .. . . :

e : . . . , s ® DPPC box. It is a very accurate approximation to assume that the simulation box is a
of a membrz.m.e, we ran equilibrium all-at(.)m .81mu.la.1t10ns of §1ngle Lipid Tail(s) T,, (from [4]) Tsim 3 60 | 30 -I 30 I @ DSPC slab of lipids of thickness A, and a slab of water of thickness F/ — h. The stresses
component lipid bilayers and calculated their viscosities. The viscos- DLPC 12:0 271 286, 329 A T T & DOPC within the simulation box aél din a verv simple manner:
ity was calculated via a Green-Kubo relation, with the stress tensor DMPC 14:0 297 312, 329 L 40 _I 20{ ¢ 204 ¢ DAPC Y AP '
autocorrelation function fit to a stretched exponential by a maximum- DPPC 16:0 314 329 = [ E o 3 i_i ¥ PSM HPY =hPyl + (H—h)Prp
likelihood Markov chain Monte Carlo method. By simulating a se- POPC 16:0/18:1 271 283, ...,329 = 20 - T 10 A I & 10 A 2 II & POPC o .
ries of lipids at different temperatures, we establish the dependence of DSPC 18:0 327 343 L) o :i =5 o ; L3 -7 which implies
viscosity on several aspects of lipid chemistry, including hydrocarbon DOPC 18:1 756 283, 329 0280 200 350 340 0280 200 350 340 0 e 20 75 100 195 fimem = H Nsys — (H — h) nogp(T) -
chain length, unsaturation and backbone structure. Sphingomyelin is DAPC 20:4 204 320 To evaluate this approximation, and to ascertain the independence of box height,
found to have a remarkably high viscosity, roughly 10-20 times that PSM 16:0/SM(d18:1) 314 329 Tsim (K) Tsim (K) Tsim — T (K) a series of DMPC simulations was run with box heights of roughly 8, 13, and
of DPPC. Left: All results, showing the much higher viscosity of PSM Center: All results, excluding PSM Right: Shifted x-axis, showing 15nm. The viscosities for all three thicknesses were in clear agreement:
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Viscosity Dependence on Chain Length and Unsaturation
Water Viscosity
TIP3P viscosity data from [2] was fit to a VFT (Arrhenius-like) model [1] for
interpolation to other temperatures, with great success.
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The overall goal was to employ a Green-Kubo relation for viscosity =4 4 4 - =
to equilibrium lipid bilayer simulations in order to determine their = —
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Autocorrelation functions are often fit to stretched exponentials [3]. The 329 K series, excluding PSM. The rightmost plot is a good illustration that the transition temperature 7, is a function of both N
In this particular case: and NVyngat-
N\ /8 Autocorrelation Function and Integral
(Ppy(t)Ppy(t + 7)) =~ exp|— (T_o)
s : Summary of Results
Flttlng the lntegl‘als 10000 - i _\
E — DOPC 103-
It proved more useful in this analysis to fit the integral of the stretched = DAPC 1041 o o
1 —~ 5000 : : : e :
exponential: E; 0 Temperature Dependence of POPC VlSCOSlty e This method was successful at measuring surface viscosity in simulation.
x , , § 0- J\/\/\/\/\/\/\/\f‘ -1 0§ l e Viscosity was found to decrease with temperature, and was accurately fit with
R 4 7\’ ’ 5. (T /7 = . . -10° . a VET model.
UGl B e S A e A 0 200 1fs  1ps  luns
0 time (fs) 60 Dot e At constant temperature, viscosity increased with chain length, and de-
where (3, | is the lower incomplete gamma function. s creased with unsaturation.
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