There’s no difference: Convolutional Neural Networks for transient
detection without template subtraction
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Currently the way “real” transients are discovered:
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» Difference between images: diff. 1st Season Dark Energy Survey Confusion Matrices

Computational expensive and time consuming.
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» The distribution of Iy (top) is the greatest than from leearch
0:eal 1: Bogus 0:Real 1:Bogus (middle), and liemp (bottom) for the DIA model.
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