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Abstract

▶ Real astrophysical transients like supernovas (explosion of
stars) are rare events compared to the large amount of
artifacts or bogus that surveys and machines generate in
the pre-process steps of the data. This fact and the large
amount of data that surveys collect every year create the
necessity of an automatic classification of astrophysical
images.

▶ We present a Convolutional Neural Network (CNN)-
based model for the separation of astrophysical transients
from image artifacts, a task known as real-bogus (RB) clas-
sification, that does not rely on template subtraction (or Dif-
ference Image Analysis, DIA).

▶ We compared the efficiency of two models with similar archi-
tectures, one that uses image triplets composed of template
(temp), search (srch), and difference image (diff), and one
that takes as input the temp and srch only.

▶ Although we notice a small performance decrease remov-
ing diff, our work demonstrated that research in this direction
can produce a CNN RB classification model that performs at
the state of the art bypassing the DIA entirely, the most
computationally expensive step in the detection of as-
trophysical transients.

▶ We investigate what information is used by each model by
exploring the models’ maps of pixel importance.

Difference Image Analysis (DIA)

Currently the way “real” transients are discovered:
▶ High-quality image composed by multiple night images:

temp.
▶ Single night image: srch.
▶ Point Spread Function matching: Degrade temp to “match”

srch.
▶ Difference between images: diff .

Computational expensive and time consuming.
Example of real objects

Difference Image Analysis (DIA)

DIA processes produce artifacts or bogus objects:

CNNs vs feature-based models

“Real” and “Bogus” could have similar behaviours,
feature extraction, based on statistic values, would
not represent correctly the data.
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Data: 1st Season Dark Energy Survey

▶ 454,092: “real” (0)
▶ 444,871 artifacts as classified by human: “bogus”(1)

Architecture of DIA and noDIA CNNs

▶ Created two CNNs, one using the diff+srch+temp and other
with srch+temp.

▶ Similar architecture to enable comparison.
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Accuracy and loss curve
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▶ For the noDIA model the input data contains less information,
this model takes longer to learn features from the data to be
able to classify them.

Confusion Matrices
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Maps of Pixel Importance (Saliency maps)
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▶ These maps enable a visual understanding of the importance
of each element of the combined image in the real-bogus
classification.

Pixel Importance Metric

0.2 0.4 0.6 0.8
Idiff

0

500

1000

1500 TP
TN

0.2 0.4 0.6 0.8
Idiff

0

20

40

60
FP
FN

0.2 0.4 0.6
Isrch

0

500

1000

1500

Fr
eq

ue
nc

y

TP
TN

0.1 0.2 0.3 0.4 0.5
Isrch

0

20

40

60 FP
FN

0.0 0.2 0.4 0.6 0.8
Itemp

0

1000

2000

TP
TN

0.0 0.2 0.4 0.6
Itemp

0

25

50

75

100
FP
FN

Idiff =
∑

pd spd∑
p sp

0.2 0.4 0.6 0.8
Isrch

0

500

1000

1500

2000

Fr
eq

ue
nc

y

TP
TN

0.2 0.4 0.6 0.8
Isrch

0

50

100

150 FP
FN

0.2 0.4 0.6 0.8
Itemp

0

500

1000

1500

2000
TP
TN

0.2 0.4 0.6 0.8
Itemp

0

50

100

150 FP
FN

▶ The distribution of Idiff (top) is the greatest than from Isearch
(middle), and Itemp (bottom) for the DIA model.
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