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Abstract
We present a novel method for detrending systematic 
noise from time series data using Principal Component 
Analysis (PCA) in Fast Fourier Transforms (FFT). This 
method is demonstrated on time series data obtained 
from Campaign 4 of the Kepler K2 mission, as well as two 
additional objects of interest. Unlike previous detrending 
techniques that utilize PCA, this method performs the 
detrending in Fourier space rather than temporal space. 
The advantage of performing the analysis in frequency 
space is that the technique is sensitive purely to the 
periodicity of the unwanted signal and not to its 
morphological characteristics. This method could improve 
measurements of low signal-to-noise photometric 
features by reducing systematics. We also discuss 
challenges and limitations associated with this technique.
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Far left: A synthetic illustrative dataset; 
Mid left: Principal Components of the 
data are identified on top of the dataset. 
Near left: The original data is transformed 
by PCA. The first component captures the 
majority of the variance of the dataset. 
The grey shaded regions indicate the 
standard deviation along PC1 and PC2 axis 
(eigenvectors).

Left: First five principal components of the power spectra, shown in ascending order from top to bottom. A sharp peak at a frequency 
of 4.09 days (5.86 hours) is noticeable in the 1st and 2nd components, and less prominently in all other components shown.
Upper right: Box-and-whisker plots of the coefficients of the PCs of the power spectra of 1000 lightcurves. Each box represents the 
interquartile range of the distribution of PC coefficients for PC-1 through PC-5, as indicated at the top; the orange line represents the 
median value, the whiskers the edges of the distribution, and points represent ``outliers‘’. 
Lower right: Cumulative variance of the discrete Fourier transform PCs explained by successive coefficients. The dotted black line is 
95% explained variance.

Left: Results of FFTPCA on the first 
two PCs of the power spectra 
ensemble. The full PCs are shown 
on the left, and a zoomed-in region 
indicated by the grey dashed box is 
shown on the right. 

Top Right: Excerpt of a lightcurve
with high PC-1 coefficients pre-
and post-processing. We note: 1) 
the signal is largely intact; 2) using 
only 400 component may have 
affected the sharpness of signal. 

Bottom Right: Power spectra of 
pre- and post-processed 
lightcurves shown above

Left: Corner plot of the posterior distributions of the segmented Gabor filter parameters, where s is the standard deviation of the Gaussian
envelope, l is the wavelength of the sinusoid, m is the vertical offset, and ``offset1'' and ``offset2'' are the left and right horizontal offsets,
respectively.
Right: Largest flare in EPIC 21032702 before ringing removal beside same flare with ringing reduced using a MCMC-optimized Gabor filter.

Left: Sample Kepler lightcurve of 
an M7.5 brown dwarf and the 
conjugate square of its Discrete 
Fourier Transform (DFT), i.e. the 
power spectrum (PS). The high-
amplitude spike is an astrophysical 
signal caused by photospheric
variability. The smaller spike, 
indicted by the red arrow, is the 
systematic Kepler roll frequency.

(1)

(2)

The Kepler Space Telescope (pictured left) was 
designed to detect periodic astrophysical signals such 
as:
• Exoplanet transits
• Photospheric variability
• Eclipsing binaries
but the Kepler catalogue includes periodic systematic 
noise due to scheduled rolling motion every 6 hours. 
Spectral analysis tools like Fast Fourier Transforms 
(FFT) can help analyze not only astrophysical 
periodicity, but systematics as well.

Principal Component Analysis (PCA), is a dimensionality reduction technique that transforms the data into a 
new orthonormal coordinate space, the basis vectors of which are the principal components (PCs). The 
associated eigenvalues of each PC indicate what fraction of a data point, in our case a vector of flux points, 
is projected along that axis.
• The eigenvalues represent how much of the variance present in the data is explained by each PC.
• The components can be sorted by the amount of data variance explained (i.e. the first component is the 

one that alone explains the largest fraction of the variance in the data).

To detect and characterize systematic periodic noise in a set of synchronous, evenly sampled 
lightcurves, the following steps are performed:
• the power spectrum of each lightcurve is obtained by taking the conjugate square of the Fourier 

Transform (Oliphant 2006),
• a PCA decomposition was generated using the power spectra as inputs,
• high order PCs were inspected.
The first 5 PCs of the power spectra ensemble are shown below in ascending order from top to 
bottom. The coefficients of the first PC are uniformly positive and non 0 for (almost) all lightcurves, 
which means that PC-1, with its prominent peak at 4.09 days-1, is required to reconstruct every 
lightcurve in the dataset, connecting PC-1 to a systematic phenomenon.

Flares are sudden brightening events on a star's photosphere associated with magnetic 
reconnection events. Discrete Fourier Transforms and bandpass filtering produce 
oscillatory artifacts in the vicinity of discontinuities, a phenomenon known as "ringing".
I designed a method that used a 1D Gabor filter (1), optimized by a Markov Chain Monte 
Carlo (MCMC) routine (2). 
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The systematic 
periodic signatures in 
our sample of Kepler 
lightcurves were 
removed according to 
Algorithm 1 and
some sample results 
are shown below.


