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Abstract: Cancer is a global health problem in need of transformative treatment solutions for 

improved patient outcomes. Many conventional treatments prove ineffective and produce 

undesirable side effects because they are incapable of targeting only cancer cells within tumors and 

metastases post administration. There is a desperate need for targeted therapies that can maximize 

treatment success and minimize toxicity. Nanoparticles (NPs) with tunable physicochemical 

properties have potential to meet the need for high precision cancer therapies. At the forefront of 

nanomedicine is biomimetic nanotechnology, which hides NPs from the immune system and 

provides superior targeting capabilities by cloaking NPs in cell-derived membranes. Cancer cell 

membranes expressing “markers of self” and “self-recognition molecules” can be removed from 

cancer cells and wrapped around a variety of NPs, providing homotypic targeting and 

circumventing the challenge of synthetically replicating natural cell surfaces. Compared to 

unwrapped NPs, cancer cell membrane-wrapped NPs (CCNPs) provide reduced accumulation in 

healthy tissues and higher accumulation in tumors and metastases. The unique biointerfacing 

capabilities of CCNPs enable their use as targeted nanovehicles for enhanced drug delivery, 

localized phototherapy, intensified imaging, or more potent immunotherapy. This review 

summarizes the state-of-the-art in CCNP technology and provides insight to the path forward for 

clinical implementation. 

Keywords: biomimetic; nanocarrier; membrane-wrapped; cancer; targeted delivery; drug delivery; 

immunotherapy; photothermal therapy; photodynamic therapy; imaging 

 

1. Introduction to Cancer and Nanomedicine 

Cancer is a devastating global public health problem in desperate need of transformative 

solutions. It is the second leading cause of death in the United States and predicted to take 1700 lives 

per day in 2019 [1]. There is approximately a 37% chance a person will be diagnosed with cancer in 

their lifetime [1]. These alarming statistics indicate a critical need for technologies that can improve 

the early diagnosis and effective treatment of cancer.  

Conventional methods to treat cancer involve the surgical resection of tumors followed or 

preceded by aggressive chemotherapy and localized radiotherapy [2,3]. However, if tumors are non-

resectable or metastasized, chemotherapy is the only therapeutic resolution to attempt to control the 

size and spread of the cancer [3]. Despite being the main clinical strategy, cytotoxic 

chemotherapeutics are incapable of targeting only cancer cells post-systemic administration [3,4]. 

Only a small fraction of drugs will accumulate in the desired tumor regions and metastatic lesions 

before being cleared from the body or entering non-targeted tissues [2,3,5]. Consequently, adverse 

side effects to healthy tissues limit the dosage of free drugs that can be administered, which reduces 

efficacy [6,7]. Further, due to the heterogeneous nature of tumors, which contain multiple cellular 
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phenotypes, clinical practice and exploratory studies have shown that treatment regimens that 

employ only a single therapeutic agent are incapable of eliminating whole tumors and are even less 

effective in reducing and preventing metastasis [6]. There is a need for multimodal and synergistic 

cancer therapies that can improve patient outcomes [6,7].  

Nanotechnology offers the opportunity to create nanovehicles that can carry either single or 

multiple therapeutic cargos, as well as contrast agents, to tumors for improved treatment and 

imaging. Nanoparticles (NPs) can be “smart designed” for enhanced drug delivery, phototherapy, 

vaccination, immunotherapy, and imaging [6,8]. Additionally, NPs can be synthesized with diverse 

physicochemical and surface properties that can be tailored to enhance cellular and molecular 

delivery, increase circulation times, facilitate crossing of biological barriers, and control cargo release 

[7–9]. Some nanomaterials can be designed with inherent optical or chemical properties that can be 

harnessed to enable stimuli-responsive therapy [10]. Nanovehicles can also be designed to integrate 

multiple therapeutic modalities in a single system to overcome the barriers experienced by cancer 

monotherapies [6]. 

The tumor microenvironment is characterized by leaky tumor vasculature and poor lymphatic 

drainage [3,8,9]. All systemically administered nanovehicles exploit this tumor pathophysiology to 

passively accumulate and be retained in tumor tissue; this is known as the enhanced permeability 

and retention (EPR) effect [4,11–14]. However, for NPs to utilize the EPR effect, they must first 

navigate the bloodstream, where they will be exposed to various proteins that may alter their surface 

chemistry. When NPs are coated with opsonin proteins, they are rapidly cleared by tissue resident 

macrophages of the liver and spleen, which limits their tumor delivery. For nanovehicles to efficiently 

enter tumors and be effective, they must evade detection by the immune system to exhibit long 

circulation, and protect their cargo from degradation or premature release [3,4,15]. Historically, NPs 

have been decorated with surface modifications, such as polyethylene glycol (PEG), to decrease their 

rapid opsonization and phagocytosis and increase their anti-tumor efficacy [3,4,7,16–19]. However, 

PEG-functionalized NPs can induce an “anti-PEG” immunological response and PEG does not 

impart NPs with cell-specific binding capabilities [3,16]. Additionally, PEGylated NPs are still cleared 

from the body, necessitating the use of more diverse and effective coatings. Researchers have coated 

NPs with ligands designed to enhance their cell-specific internalization via receptor-mediated 

processes to increase tumor retention and reduce off-target effects [17,18,20,21]. Still, there is 

substantial room for improvement.  

While ligand-targeted NP delivery to desired tumor cells is often depicted as a straightforward 

and easily accomplished task, it is extremely challenging to achieve this goal [21]. In part, this is due 

to the immense diversity in the abundance, variety, and complexity of proteins found on cancer cell 

membranes that might be targeted by NPs [3,10,22]. In addition to choosing the right molecule or 

combination of molecules to target, researchers must also carefully select the conjugation chemistry 

for ligand attachment to NPs [17,23]. Ligands that are too densely packed on an NP surface can cause 

a non-cooperative effect on target receptor binding, increased uptake by immune cells, and 

nonspecific binding to perivascular cells after extravasation [21,23,24]. This limits the NPs’ success 

due to low circulation time, early clearance from the body, and unwanted immune responses 

[16,18,19]. Further, serum proteins and opsonins can quickly coat ligand-targeted NPs in the 

bloodstream, rendering the targeting agents ineffective and increasing the rate of NP clearance from 

the body. These shortcomings create a need for surface modifications that can better disguise 

nanovehicles from the immune system, prolong circulation time, and provide enhanced targeting 

and cell internalization capabilities.  

Biomimetic nanotechnology harnesses the unique biological makeup of cell membranes and 

combines it with the flexibility of NP substrates and a wide range of payloads to improve targeted 

delivery. The general concept is to wrap NPs with cell-derived membranes that provide the complex 

biological entities found on natural cell membranes (Figure 1), which are nearly impossible to 

synthetically replicate via ligand attachments [22,25,26]. Since cell membranes contain both “markers 

of self” and “self-recognition molecules”, NPs wrapped in cell membranes can avoid immune 

recognition to maximally accumulate in tumors. Cell membrane coating technology was first 
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introduced as a method to prolong NP circulation by using red blood cell (RBC) membranes to 

provide “stealth” properties to synthetic NPs [27]. It was shown that RBC-coated NPs exhibited a 

circulation half-life of 39.6 hours, substantially improved versus the 15.8-hour half-life of PEGylated 

NPs [27]. The field of cell membrane coating nanotechnology has since exploded with variations on 

this design [15,28–32]. Currently, cell membrane coating technology has been applied with many cell 

types, including platelets, leukocytes, cancer cells, stem cells, and more [33–39]. Cell membrane 

coatings have also been wrapped around a variety of materials, ranging from polymers to metals, to 

enhance their biointerfacing capabilities [2,8,22,40]. The two main advantages obtained from cell 

membrane wrapping are (1) reduced nonspecific uptake and (2) higher levels of specific targeting 

compared to non-wrapped NPs [2,25]. Notably, the hydrophobicity, charge, size, and structure of the 

core nanovehicles can be tailored to load desired cargoes within the interior without inhibiting the 

stealth or targeting properties of the membrane coating exterior [10]. Accordingly, cell membrane-

coated NPs prove superior to previous NP synthesis techniques that have tried to reverse-engineer 

biological functions and interactions with limited success [3,4,41].  

 

Figure 1. Scheme depicting the components of a representative membrane-wrapped nanoparticle. 

Cancer cell membranes are the ideal candidate to wrap around NPs for oncological applications 

[8,22]. Cancer cells are robust and easy to culture in large volumes in vitro for mass membrane 

collection and also possess the unique ability to self-target homologous cells (also known as 

homotypic targeting), unlike most other membrane donors [8,9,40,42]. This unique ability translates 

to cancer cell membrane-wrapped NPs (CCNPs), which retain the ability to homotypically target 

primary tumors and metastatic nodules [40,42–45] (Figure 2). Additionally, CCNPs display 

unprecedented binding and selective uptake in tumor cells matched to those from which they were 

derived, as well as have reduced immune clearance after systemic administration compared to non-

coated NPs [22,40,42,44,46,47]. These unique properties enable CCNPs to be used as nanovehicles for 

enhanced chemotherapeutic drug delivery, localized phototherapy, intensified tumor imaging, or 

potent immune modulation. 

 

Figure 2. Scheme depicting the delivery of cancer cell membrane-wrapped nanoparticles (CCNPs) to 

tumors. Upon systemic administration, CCNPs exhibit long circulation due to the presence of 

“markers of self” on the membrane surface that minimize immune recognition. Additionally, CCNP 

membranes contain “self-recognition” molecules that allow the NPs to bind homotypic tumor cells 

after escaping from tumor vessels. 
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In the following sections, we describe the synthesis and characterization of CCNPs and the 

different types of treatments these unique NPs can accomplish. We also provide a forward-looking 

perspective on the challenges to be addressed as this technology progresses from the laboratory 

setting to the clinic. 

2. Cancer Cell Membrane-Wrapped Nanovehicles 

2.1. Multi-step Synthesis of Cell Membrane-Wrapped Nanovehicles 

The synthesis of cell membrane-coated nanovehicles involves three steps: (1) membrane 

extraction from source cells, (2) fabrication of the nanoparticulate core, and (3) fusion of the 

membranes and nanoparticulate cores to form core-shell membrane-wrapped NPs (Figure 3). Below, 

each step is described in detail. 

2.1.1. Membrane Extraction 

At its most basic level, membrane extraction requires that internal cell components are removed 

while leaving the functional components of the membrane intact. This membrane extraction 

procedure requires large volumes of cells to be harvested from culture dishes or blood and tissue 

samples [8,22,31,48,49]. This process has been accomplished in many ways including freeze–thaw 

cycling [36,48,50], electroporation [51], and osmosis-based lysis coupled with physical 

homogenization [22,48] (Figure 3A). For freeze–thaw techniques, cells are frozen at −80 °C and 

thawed at either room temperature or 37 °C in repeated cycles. These cycles cause damage to cell 

membranes due to breakage of ice crystals, which leads to the removal of the cytosol and retention 

of the membranes. This technique is most appropriate for non-nucleated cells, such as RBCs or 

platelets, since the freeze steps can potentially cause damage such as loss of membrane structure, 

reduced protein stability, and consequent protein unfolding and reduced membrane function 

[10,36,48].  

 

Figure 3. Illustration of the synthesis of membrane-wrapped nanoparticles. (A) Cell membranes can 

be extracted from their source cells by applying one of three methods. (B) Membranes can be wrapped 

around different types of nanoparticles using one of the three membrane–core fusion methods. (C) 
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Transmission electron microscopy images of a (i) 4T1 breast cancer cell membrane vesicle, (ii) bare 

poly(lactic-co-glycolic acid) (PLGA) nanoparticle, and (iii) 4T1 cancer-cell membrane-wrapped PLGA 

nanoparticle prepared by the authors using the hypotonic lysis method depicted in (A) and the 

physical extrusion method depicted in (B). 

Electroporation lyses cells by exposing them to strong electric fields, causing temporary loss of 

semi-permeability, and pore formation in the cell membrane, releasing intracellular components [51]. 

Consequently, electroporation disruption of membranes results in irreversible deterioration of 

structural integrity, denaturation of membrane proteins, and loss of lipid asymmetry. Therefore, care 

must be taken when designing the experimental set-up of electroporation as conditions that are too 

harsh can cause loss of natural membrane potential [51,52].  

The most popular method to extract cancer cell membranes involves osmosis-based cell lysis 

with a mild hypotonic solution, followed by mechanical membrane disruption with a homogenizer 

[48]. Discontinuous gradient centrifugation removes intracellular biomacromolecules, intracellular 

vesicles, and nuclei, and the membrane-rich fraction is washed with isotonic buffers to obtain 

membrane vesicles [23,53]. These vesicles can then be further sonicated or extruded through 

polycarbonate membranes to produce vesicles of the desired size [48]. Cancer cells require milder 

lysis conditions and greater ultracentrifugation speeds compared to non-nucleated cells. The 

differences in osmosis-based membrane extraction methods deviate between cell types due to 

eukaryotic cells’ phospholipid bilayer fluidity and smaller cell size [10].  

2.1.2. Selection of Nanoparticle Core 

As a variety of NP core designs may be utilized to produce CCNPs, depending on the intended 

application, it is unwarranted to describe any one specific NP synthesis here. The main criterion, 

independent of core material, is that the NPs have a negative zeta potential. This will facilitate proper 

orientation of the membrane around the NP owing to electrostatic repulsion between the NP surface 

and negative extracellular membrane components [27]. To date, the types of synthetic NPs that have 

been wrapped with cell-derived membranes for cancer therapies include nanocrystals [54], 

nanocages [42], mineral-based or mesoporous silica [35,49,55–58], polymeric cores [30,40,45,59–64], 

organic and inorganic metal frameworks [44,51,65–67], protein cores [68,69], and gold-based or 

magnetic nanoparticles [70–72] (Figure 4, Table 1). Poly(lactic-co-glycolic) acid (PLGA) is one of the 

most widely used NP cores due to its biodegradability, FDA approval, and ability to encapsulate 

many products [17–19]. Metallic-based NPs have also been widely used because they can aid in 

imaging and thus provide multiple functions [32,61,65,71,72]. Overall, the composition of the 

nanovehicle core is an important consideration when designing CCNPs as it dictates the release and 

efficacy of the cargo once it has been guided to the desired cells by the membrane coating. 
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Figure 4. Summary of various nanoparticle formulations that have been wrapped with cell-derived 

membranes to enable cancer treatment and imaging. 

Table 1. Breakdown of cancer cell membrane-wrapped nanovehicles mentioned in the text and their 

purposes. 

Membrane 

Source 
Core NP Material Cargo Loaded 

Particle Purpose (Besides 

Homotypic Targeting) 
Year Ref. 

4T1 
poly(caprolactone);  

Pluronic F-68 
paclitaxel drug delivery 2016 [40] 

4T1 gold nanocages doxorubicin 
PTT; hyperthermia-triggered 

drug release 
2017 [42] 

4T1 

poly(cyclopentadithioph

ene-alt-

benzothiadiazole) 

 
PTT; PDT;  

PA imaging 
2018 [61] 

4T1 PCN-224 tirapazamine PDT; drug delivery 2017 [73] 

MDA-MB-435 
Ln-doped upconversion 

nanocrystal 
 FL imaging 2016 [54] 

MDA-MB-435 PLGA 
DiD 

fluorophore 
FL imaging 2014 [45] 

Luciferase- 

expressing 

MDA-MB-231 

PLGA  FL imaging 2019 [43] 

MCF-7 1 PLGA 
indocyanine 

green 
PTT; PA/FL imaging 2016 [74] 

MCF-7 1 PLGA 
doxorubicin; 

hemoglobin 

PDT;  

drug delivery 
2017 [63] 

MCF-7 2 melanin  PTT; PA imaging 2019 [68] 

B16-F10 2 hollow copper sulfide doxorubicin drug delivery 2018 [57] 

B16-F10 mesoporous silica glucose oxidase 
immunotherapy;  

starvation therapy 
2019 [55] 

B16-F10 
hollow manganese 

dioxide 

chlorin e6; 

glucose oxidase 

PDT;  

starvation therapy 
2019 [67] 

B16-F10 PLGA CpG 1826 Immunotherapy 4 2017 [75] 

B16-F10 PLGA 
monophosphor

yl lipid A 
Immunotherapy 4 2014 [45] 

B16-OVA 3 PLGA imiquimod Immunotherapy 4 2018 [64] 

HeLa iron oxide doxorubicin drug delivery 2016 [44] 

HeLa PLGA 
doxorubicin; 

siRNA 
drug delivery 2019 [46] 
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HeLa  

doxorubicin;  

indocyanine 

green 

PTT;  

drug delivery (carrier free) 
2018 [76] 

HepG2 PLGA doxorubicin drug delivery 2019 [62] 

H22 iron oxide doxorubicin drug delivery 2016 [44] 

SMMC-7721 
superparamagnetic iron 

oxide 
chlorin e6 

PDT; 

MR/NIR imaging 
2018 [72] 

UM-SCC-7 iron oxide doxorubicin drug delivery 2016 [44] 

CAL 27 
Ln-doped upconversion 

nanocrystal 
 FL imaging 2016 [54] 

LNCaP-Al mesoporous silica 

doxorubicin; 

calcium 

carbonate 

drug delivery;  

pH sensitive release 
2019 [56] 

DU 145 
Ln-doped upconversion 

nanocrystal 
 FL imaging 2016 [54] 

U87 PLGA  Immunotherapy 4 2019 [43] 

HCT 116 
Ln-doped upconversion 

nanocrystal 
 FL imaging 2016 [54] 

1 Membranes were mixed with PEGylated phospholipid (DSPE-PEG) before coating; 2 Membranes 

were mixed with red blood cell membranes before coating; 3 Membranes were modified with 

mannose after coating; 4 Particles were not used for homotypic targeting; Note: Murine mammary 

(4T1), human mammary (MDA-MB-435, MDA-MB-231, MCF-7), murine melanoma (B16-F10, B16-

OVA), human cervical (HeLa), human hepatocellular (HepG2, H22, SMMC-7721), human squamous 

(UM-SCC-7, CAL 27), human prostate (LNCaP-Al, DU 145), human glioma (U87), human colorectal 

(HCT 116). 

2.1.3. Fusion of Membrane Vesicles with Nanoparticle Cores 

Methods of coating NPs with membranes can be divided into three generalized strategies: 

physical extrusion, sonication, and microfluidic coating (Figure 3B). All of these methods take 

advantage of electrostatic interactions between the nanoparticulate core and membrane components 

to form a stable and energetically favorable core-shell structure with the right-side-out membrane 

topological orientation [27,36,48]. In physical extrusion, nanovehicles and membrane vesicles are co-

extruded through a porous membrane, similar to how membrane vesicles are formed by mechanical 

extrusion [27]. The force provided by the extrusion disrupts the membrane structure and enables it 

to reform around the NP cores [27,48]. A representative transmission electron micrograph of a CCNP 

prepared by extrusion in the authors’ lab is shown in Figure 3C. Here, the CCNP is composed of a 

PLGA core surrounded by a membrane derived from a 4T1 mouse breast cancer cell. In the authors’ 

experience, the extrusion method is very robust in terms of reproducibility and creating CCNPs with 

consistent characteristics (size, zeta potential, membrane thickness, etc.). In sonication-based 

methods, nanovehicles and membranes are again combined, and ultrasonic energy provides 

disruptive forces that result in spontaneous formation of core-shell nanostructures [53,59]. This 

technique has the added benefit of losing less material than physical extrusion. Lastly, a relatively 

new approach to enable membrane coating is to employ microfluidics. This fabrication technique 

combines rapid mixing of NPs and membrane vesicles with electroporation and has successfully been 

used to coat RBC membranes around magnetic NPs [51]. For this strategy to be successful, the process 

pulse voltage, duration, and flow velocity all have to be optimized, making it a potentially more 

difficult method to attempt for those not already familiar with microfluidics.  

2.2. Characterization of Membrane-Coated Nanoparticles 

It is critical to compare various features between bare and wrapped NPs to confirm complete 

membrane wrapping. Successful wrapping can be validated by observing a 10–20 nanometer increase 

in particle size after wrapping, equating to the thickness of the membrane layer. This can be measured 

by dynamic light scattering (DLS), transmission electron microscopy (TEM) (Figure 3C), or 

nanoparticle tracking analysis (NTA). Analysis of the NPs’ zeta potential, or surface charge, can also 
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be used to confirm membrane wrapping. The final charge of the CCNPs must be similar to that of the 

membrane vesicles used to prepare them, as the bare NPs inherit the surface charge of the membranes 

after successful wrapping. To further confirm successful membrane wrapping and the removal of 

intracellular components, Western blotting and SDS-PAGE can be performed to identify the main 

protein components of whole cell lysate, membrane lysate, and membrane-wrapped NPs. 

Membrane-wrapped NPs should share nearly identical protein content to the membrane lysate, but 

lack the nuclear and mitochondrial components of the whole cell lysate. Individual membrane 

surface markers can also be identified and their intensity compared between samples to confirm their 

successful translocation onto NPs from source cells during membrane wrapping. For example, Fang 

et al. showed by Western blotting that CCNPs prepared by physically extruding PLGA NPs with 

B16-F10 mouse melanoma membranes collected by hypotonic lysis were positive for the membrane 

markers pan-cadherin, Na+/K+-ATPase, and gp100, but lacked the intracellular markers histone H3, 

cytochrome c oxidase, and glyceraldehyde 3-phosphate dehydrogenase [45]. These data indicate that 

the preparation of CCNPs by hypotonic membrane lysis followed by physical extrusion with core 

NPs offers excellent preservation of the components of the original cell membrane. In the future, 

researchers utilizing other methods to prepare CCNPs should perform similar analyses to reveal 

which method imparts CCNPs with the greatest resemblance to their source cells. 

3. Applications of Membrane-Wrapped Nanoparticles in Cancer 

3.1. Drug Delivery 

Cancer drug delivery is one field in which membrane-wrapped nanovehicles, and CCNPs in 

particular, have substantial potential to improve the state-of-the-art. Encapsulating drug cargo within 

nanocarriers that offer tailorable control of release kinetics, such as polymer-based cores, can 

dramatically improve bioavailability, and tumor-specific delivery can be further enhanced by coating 

these vehicles with cancer cell membranes [17–19]. Moreover, synthetic NPs’ physicochemical 

properties can be modified for sustainable or triggered cargo release, resulting in less systemic 

toxicity than freely delivered cargo [4,22,47,77]. As an extra benefit, membrane coatings can provide 

an additional decrease in premature drug release by slowing diffusion and allowing nanovehicles to 

accumulate in tumors before too much drug is lost [10,22]. Increasing the ratio of drug that reaches 

tumors versus normal tissue is critical to maximize therapeutic effects and safety.  

Doxorubicin (DOX) is a commonly used chemotherapeutic that intercalates into DNA to yield 

topoisomerase II-mediated DNA damage followed by cell death [78]. DOX has been used clinically 

to treat many cancers, including breast cancer, ovarian cancer, and various lymphomas and 

leukemias [78]. Several researchers have shown that encapsulating DOX in membrane-wrapped NPs 

is advantageous compared to freely delivered DOX [56,62,63]. For example, Xu et al. developed 

PLGA-DOX NPs wrapped in membranes derived from HepG2 hepatocarcinoma cells and showed 

these NPs could deliver an effective drug payload to Hep2G tumors in mice [62]. Additionally, the 

CCNPs exhibited less systemic toxicity than freely delivered DOX. This was attributed to enhanced 

DOX accumulation at the tumor site (and less accumulation at off-target sites) due to lack of 

premature release from the particles [62]. Another chemotherapeutic small molecule, paclitaxel 

(PTX), which is clinically used to treat AIDS-related Kaposi sarcoma, breast, non-small cell lung, and 

ovarian cancers [79–85], has been explored in conjugation with membrane-wrapped NPs. In one 

study, PTX was loaded into poly(caprolactone) (PCL) and pluronic copolymer F68 cores that were 

wrapped with 4T1 mouse mammary breast cancer cell membranes [40]. The homotypic targeting and 

drug delivery capabilities of these cancer cell membrane-wrapped PTX-loaded polymeric 

nanoparticles (CPPNs) were explored in a highly metastatic 4T1 in vivo tumor model. CPPNs 

remarkably targeted and inhibited the growth of homotypic 4T1 primary tumors and metastatic 

nodules in orthotopic mammary tumor models and in blood-vessel-metastasis mouse models, with 

6.5-fold fewer metastatic nodules than unwrapped PPNs [40]. The intact 4T1 cell membrane 

wrapping decreased phagocytic uptake and increased blood-circulation time to increase the 

antitumor effect of the drug payload. 
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In addition to single drugs, multiple cargoes with synergistic actions can be encapsulated in 

CCNPs. This ensures the cargos are delivered to the same cells within tumor sites for improved 

anticancer effects. This was demonstrated with PLGA cores that were loaded with hemoglobin (Hb) 

and DOX and coated with MCF-7 human breast cancer cell membranes with a PEGylated 

phospholipid to overcome hypoxia-induced chemoresistance [63]. By suppressing the expression of 

hypoxia-inducible factor-1α, multidrug resistance gene 1, and P-glycoprotein, the biomimetic oxygen 

nanocarriers were able to perform safe and highly efficient O2-interfered chemotherapy by reducing 

the exocytosis of DOX. Simultaneously, the system achieved higher tumor specificity and lower DOX 

toxicity due to the cancer cell adhesion molecules retained on the NP surface [63]. This was an 

excellent demonstration of the potential for CCNPs to achieve multi-therapeutic delivery. In a similar 

approach, Chen et al. developed CCNPs to deliver DOX in combination with small interfering RNA 

(siRNA) against PD-L1, a gene that is overexpressed on tumor cells and whose inhibition could lead 

to an increased anti-tumor immune response [46]. Here, both cargos were loaded into PLGA NP cores 

and homotypic targeting was achieved by wrapping the NPs with HeLa cervical cancer cell 

membranes [46]. The CCNPs exhibited preferential uptake by HeLa cells versus non-targeted MDA-

MB-231 breast cancer cells, and were able to suppress PD-L1 expression and reduce cell viability. 

Future studies are necessary to evaluate the impact of this system in vivo. 

CCNPs that incorporate stimuli-responsive features have also been designed to take advantage 

of the acidic tumor microenvironment as a trigger for localized drug release [63]. In one example, 

mesoporous silica nanoparticle (MSN) cores were used to encapsulate DOX with the addition of a 

unique CaCO3 interlayer [56]. The interlayer acted as sheddable pH-sensitive gatekeeper to allow 

drug release only in the acidic tumor microenvironment. MSNs were wrapped with LNCaP-AI 

prostate cancer cell membranes (MSN/DOX@CaCO3@CM) to improve the colloidal stability and 

tumor accumulation of the system. In comparison to free DOX, MSN/DOX@CaCO3@CM NPs 

exhibited increased cell uptake and induced higher rates of apoptotic death in prostate cancer cells. 

In vivo experiments demonstrated that the NPs had remarkable antitumor effects and suppressed 

tumor growth [56]. Overall, this study demonstrated that coupling the increased localization of 

CCNPs in tumor microenvironments with pH-stimulated release of chemotherapeutic drugs is a 

potent strategy to enhance therapeutic ratios.  

Importantly, across various platforms, it has been shown that cancer cell membrane coatings do 

not negatively interfere with drug loading inside NPs. As demonstrated by the examples discussed, 

there is great promise in the field for CCNPs to enhance drug delivery to desired sites to improve 

safety and efficacy. This opens the door for the development of many new treatment strategies.  

3.2. Photothermal and Photodynamic Therapy 

While some NPs exploit features of the tumor microenvironment such as low pH or presence of 

specific enzymes to enable stimuli-responsive drug release and high precision therapy, another route 

to enable site-specific treatment of tumors is to utilize nanomaterials that are inactive until they are 

triggered with externally applied light. The two main examples of this are photothermal therapy 

(PTT) and photodynamic therapy (PDT), and both have recently been explored in conjugation with 

membrane-wrapped NPs. In photothermal therapy, NPs with unique optical properties are delivered 

into tumors, which are then irradiated with near-infrared light that causes the NPs to produce heat 

capable of thermally damaging cancer cells [86–92]. Similarly, in PDT, photosensitizers are delivered 

into tumors, and subsequent irradiation of the tumor causes the photosensitizer to transfer the 

absorbed energy to adjacent tissue oxygen molecules, producing toxic singlet oxygen that destroys 

cancer cells [89]. While there are some examples of membrane-wrapped NPs being used strictly for 

PTT or PDT to treat cancer [70,93–98], these singular treatments use non-cancer cell membranes. 

When cancer cell membranes are used for wrapping, they are commonly studied in combination with 

other therapeutic strategies, such as drug delivery. Some accomplishments in this field are 

summarized below. 

3.2.1. Combination Photothermal Therapy and Chemotherapy 



Cancers 2019, 11, 1836 10 of 19 

 

Combining PTT with chemotherapy offers many advantages versus either treatment alone. 

Several studies have shown that PTT can elevate drug delivery into tumors or into cancer cells by 

increasing vascular permeability and cancer cell membrane permeability [86,99]. Additionally, PTT 

alone is best suited for primary tumors, as it cannot be readily applied to disseminated metastatic 

tumors. Combining PTT with chemotherapy offers a way to treat both primary tumors and metastatic 

lesions. Further, there is some evidence that under the right conditions, combined PTT and 

chemotherapy can lead to anti-cancer immune responses that maximize the duration of response 

[100]. Given these advantages, researchers have explored the co-delivery of photothermal agents and 

cytotoxic drugs to cancer using CCNPs. 

Combination PTT and chemotherapy mediated by CCNPs has been most widely explored using 

DOX as the chemotherapeutic agent [42,57,76]. In all cases, the DOX had improved tumor delivery 

due to the cancer cell membrane coating of the system and DOX was able to act successfully in 

combination with PTT to decrease tumor growth. In one study that co-loaded DOX and indocyanine 

green (ICG) photothermal agents in membrane-wrapped NPs, DOX was delivered in a “bomb-like” 

manner to the tumor surroundings [76]. This was due to the HeLa cervical cancer cell membrane 

wrapped around the cargo being disrupted by PTT, which led to enhanced chemo-PTT efficacy [76]. 

In an unusual case of using multiple types of membranes to coat NPs, RBC and B16-F10 mouse 

melanoma membranes were mixed to create a hybrid membrane that provided increased immune 

evasion and tumor targeting, respectively. The membranes were wrapped around DOX-loaded 

copper sulfide NPs, and these NPs exhibited synergistic effects with close to 100% tumor growth 

inhibition [57]. Lastly, when DOX was loaded into the core of gold nanocages, the hyperthermia 

induced-release of DOX in the targeted cells inhibited the growth of both primary tumors and 

metastatic nodules in a highly metastatic 4T1 mouse mammary tumor model [42]. These findings 

demonstrate the immense potential of combining PTT with chemotherapy using CCNPs. 

3.2.2. Photodynamic Therapy Combined with Chemotherapy or Starvation Therapy 

The benefits of combining chemotherapy with PDT include having reactive oxygen species 

(ROS) available to initiate drug release and promote intracellular drug delivery, as well inducing 

hypoxia in the tumor region for activating encapsulated drugs [6]. Conversely, a limitation of PDT is 

that it relies on tumor oxygen, and is therefore not effective in hypoxic tumor regions. By combining 

PDT with drugs that are not hindered by hypoxia, more thorough tumor treatment can be achieved. 

In one example of dual PDT/chemotherapy, a porphyrinic metal organic framework (a PDT 

photosensitizer) was combined with tirapazamine (TPZ, a bioreactive chemotherapeutic) [73]. These 

agents were wrapped in membranes derived from 4T1 breast cancer cells, and the resultant NPs were 

delivered to mice bearing orthotopic 4T1 breast cancer tumors. Following irradiation, the porphyrinic 

metal organic frameworks produced ROS, leading to local hypoxia within the tumors, which 

accelerated the activation of TPZ for an enhanced chemotherapeutic effect. Because the treatment was 

activated only in the presence of light at the tumor site, negligible side effects were observed [73]. 

Besides being combined with chemotherapy, PDT has also been combined with starvation 

therapy. In starvation therapy, glucose oxidase (GOx) is delivered to tumors. GOx will transform 

glucose into gluconic acid and hydrogen peroxide, starving the cells of glucose, a vital nutrient for 

tumor growth. In one example, a cascade reaction system made of hollow manganese dioxide (MnO2) 

NPs encapsulating a photosensitizer and coated with GOx were wrapped in B16-F10 cancer cell 

membranes [67]. Once delivered to tumors, the MnO2 reactors were irradiated for continuous oxygen 

generation, supported by the conversion of glucose to singlet oxygen. This system has potential to 

solve hypoxia issues in tumors and promote starvation. Starvation therapy mediated by membrane-

wrapped NPs has also been explored without PDT [55]. In this study, GOx-loaded membrane-

wrapped mesoporous silica NPs were combined with PD-1 antibody treatment and shown to be more 

effective at stimulating an anti-cancer immune response than the single therapies, resulting in better 

cancer ablation. The above examples demonstrate that CCNPs have the ability to target tumor cells 

throughout the body and enable PTT or PDT in combination with chemotherapy or starvation 

therapy. These combinatorial delivery systems are more effective than monotherapies and offer 
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extremely high precision treatment of tumors since they are activated only when light and NPs are 

combined at the tumor site. Continued development of these platforms will likely yield impressive 

results against a variety of tumor types. 

3.3. Tumor Imaging 

In many cases, it is desirable to monitor the accumulation of membrane-wrapped NPs within 

tumors, as this can guide and inform drug delivery, PDT, and PTT [44,61,72,74]. Most NP cores that 

enable imaging with high contrast are metallic-based, such as iron oxide or lanthanide-doped 

nanocrystals, but development of organic or polymer-based nanoparticles as imaging agents has also 

been explored [44,54,72,74]. 

In a study whose sole purpose was to view homologous targeting of upconversion nanoprobes 

(UCNPs), researchers used multiple types of cancer cell membranes (breast, prostate, colorectal, and 

squamous cell cancer) to prepare corresponding batches of wrapped lanthanide-doped nanocrystals 

[54]. These NPs could convert near-infrared (NIR) light into visible light, providing high signal-to-

noise ratio. The specificity of homotypic membrane-mediated targeting was beautifully exhibited 

when mice bearing MDA-MB-435 breast cancer tumors were separately treated with each type of 

membrane-wrapped UCNPs, as only UCNPs wrapped in membranes derived from MDA-MB-435 

cells exhibited notable tumor retention. This indicates that while the cancer-membrane-wrapped NPs 

possess the same immune evasion potential as RBC-wrapped NPs, mismatch of the donor 

membranes and host tumor cells leads to little tumor targeting. In a similar study, researchers 

developed magnetic iron oxide NPs loaded with DOX-HCl and coated them in either UM-SCC-7 

squamous cell carcinoma or H22 hepatocellular carcinoma membranes [44]. The team used magnetic 

resonance imaging to show in mice bearing each type of tumor that the particles could bypass the 

heterologous tumor and preferentially target their homotypic tumor (Figure 5). Future research could 

evaluate the degree of mismatch that is acceptable when preparing CCNPs to maintain homotypic 

binding. While both of these studies used cells derived from different tumor types to demonstrate 

that homotypic binding requires membrane:tumor matching, it would be interesting to investigate if 

membranes derived from cancer cells that are from the same tissue but exhibit different biomarkers 

can provide targeted delivery. 

 

Figure 5. Demonstration of homotypic tumor targeting by CCNPs. (A) Illustration of experimental 

design for data shown in (B). Mice bearing human squamous carcinoma (UM-SCC-7) tumors were 

treated with doxorubicin (DOX) alone or with DOX and magnetic iron oxide nanoparticles that were 

wrapped with membranes derived from three different sources (COS7 monkey kidney cells, HeLa 

cervical cancer cells, or homotypic UM-SCC-7 squamous carcinoma cells). (B) In vivo fluorescence 

images of mice bearing UM-SCC-7 tumors 24 hours post-injection with membrane-wrapped 

nanoparticles prepared with (a) UM-SCC-7, (b) COS7, or (c) HeLa membranes as described in A, or 

post-injection with (d) DOX at an equivalent DOX dosage. The highest tumor accumulation is 

observed for homotypic membrane-wrapped nanoparticles. (C) Illustration of the dual tumor-bearing 
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mouse model in which one flank harbored a hepatocellular carcinoma (H22) tumor and the other 

harbored a UM-SCC-7 tumor. The animals were injected with membrane-wrapped NPs designed to 

homotypically target one tumor or the other. Twelve hours post-injection, in vivo fluorescence images 

and ex vivo images of tumors were acquired. Both types of membrane-wrapped nanoparticles 

evaluated exhibited preferential accumulation in homotypic tumors (matched to the source 

membrane) versus heterotypic tumors with membrane mismatch. Reprinted (adapted) with 

permission from Reference [44]: Zhu, J.Y.; Zheng, D.W.; Zhang, M.K.; et al. Nano Lett. 2016, 16, 5895–

5901. Copyright (2016) American Chemical Society. 

Membrane-wrapped NPs that incorporate both contrast agents and photoactive agents have also 

been used for tumor imaging and phototherapies. In one study, ICG-loaded NPs wrapped with MCF-

7-PEG fused membranes exhibited a PTT response, but also had fluorescence and photoacoustic (PA) 

imaging capabilities [74]. PEG incorporation in this system diminished non-specific binding of serum 

proteins and helped stop aggregation and opsonization leading to phagocytosis in vivo. This particle 

formulation ablated tumors after a single dose and laser irradiation, and provided high spatial 

resolution imaging of the tumor microstructure through PA imaging of the ICG signal in and around 

tumor microvesicles. In another study, MCF-7 membranes were fused with RBC membranes to coat 

melanin nanoparticles [68]. The biocompatible melanin core provided both PTT and PA imaging and 

the size dependence of the particles for optimal PTT and PA imaging were explored to find the 

balance between the two.  

Similarly, dual-modal imaging has been used with PDT by loading photosensitizers into 

magnetic nanobeads to target hepatocellular carcinoma [72]. Both near-infrared (NIR) fluorescence 

imaging and magnetic resonance (MR) imaging could be accomplished with this system, with NIR 

enabled by the loaded chlorin e6 (Ce6) photosensitizers that also provided PDT capabilities, and MR 

provided by the superparamagnetic iron oxide nanostructures. In an even more complex system, 

multimodal cancer phototheranostics were explored for the early diagnosis and precision therapy of 

cancer [61]. Here, organic, multimodal, NIR-semiconducting polymer NPs were produced, 

generating NIR and PA signals for imaging, as well as singlet oxygen and cytotoxic heat for 

combinatorial PDT-PTT effects. These NPs were coated in either activated fibroblast membranes or 

4T1 cancer cell membranes, where interestingly, the fibroblast-coated NPs performed better than 

their cancer cell membrane-coated counterparts [61]. Although the 4T1 membrane NPs targeted 

cancer cells, they were limited by the abundance of cancer-associated fibroblasts in the tumor 

environments, making their accumulation only marginally higher than non-targeted particles. The 

activated fibroblast-coated NPs, in contrast, exhibited heightened tumor accumulation through their 

homotypic targeting of cancer-associated fibroblasts at the tumor site. 

3.4. Immune Stimulation 

There is growing interest in the field of oncology in using technologies to stimulate the body’s 

immune system to attack tumor cells. Immunotherapy can be applied as either a cancer treatment or 

as a preventative cancer vaccination, and is advantageous over cytotoxic agents because of its high 

specificity and low toxicity [2,6,18,75,101–106]. Effective immune stimulation typically requires that 

both adjuvants and tumor antigens be delivered to the body. One advantage of CCNPs is that their 

membrane coatings carry a full array of cancer cell membrane antigens that can stimulate an 

anticancer immune response. Thus, combining CCNPs with adjuvant technologies is a promising 

strategy to elicit robust anti-tumor responses. In the following sections, it is assumed readers have a 

basic familiarity with cancer immunotherapy. For detailed reviews, we refer the readers to recent 

publications [102,105–110]. 

Exploring the immune stimulatory capabilities of membrane-wrapped NPs, Fang et al. prepared 

PLGA NPs wrapped in B16-F10 melanoma or MDA-MB-435 human breast cancer membranes and 

utilized these NPs to deliver antigens to source tumor cells and antigen presenting cells (APCs) [45]. 

The CCNPs enhanced source cell-specific binding and uptake compared to RBC-wrapped NPs and 

bare NPs. They also successfully delivered membrane-bound tumor-associated antigens to APCs. 
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However, this was insufficient to induce dendritic cell maturation due to the limited immunogenicity 

of syngeneic cancer cell membrane material. To overcome this issue, the team incorporated 

monophosphoryl lipid A (MPLA), an immunoadjuvant lipopolysaccharide derivative that binds to 

toll-like receptor 4 (TLR-4), into the CCNPs, and this significantly increased the APC maturation to 

promote an anticancer immune response [45]. In a similar approach, Kroll et al. developed B16-F10 

melanoma membrane-wrapped PLGA NPs loaded with CpG oligodeoxynucleotide 1826 (CpG), a 

nucleic acid-based immunological adjuvant known to trigger APC maturation, and tested these in 

combination with a CTLA4 and anti-PD-1 checkpoint blockade cocktail [75]. The nanovehicles 

simultaneously delivered syngeneic cancer antigens with a powerful immunological adjuvant to 

promote antigen presentation. When applied separately in vivo, the CpG-CCNPs or checkpoint 

blockade cocktail did not significantly impair the growth of B16-F10 tumors. However, when 

combined, the systems synergistically promoted a strong antitumor response and modulated various 

aspects of the immune system [75]. Together, both of these studies indicate the potential for CCNPs 

to trigger superior anti-cancer immune responses by enabling codelivery of tumor antigens and 

adjuvants. 

As the field matures, researchers will continue to design new ways to enhance immunotherapy 

mediated by CCNPs. Yang et al. recently showed that CCNP delivery to dendritic cells (DCs) could 

be enhanced by modifying CCNPs with mannose (which binds receptors on DCs) through lipid 

anchors [64]. The CCNPs consisted of PLGA cores encapsulating R837, an agonist against toll-like 

receptor 7 (TLR-7), wrapped with B16-OVA melanoma cancer cells and functionalized with mannose. 

The mannose-modified nanovaccine exhibited impressive DC uptake, triggering DC maturation. It 

also successfully traveled to draining lymph nodes post-transdermal injection and facilitated potent 

tumor-specific immune responses [64]. In another unique nanovaccine design, melanoma cell 

membrane fractions were coated onto PLGA NPs and their ability to effect fibroblast-mediated 

invasion, change experimental metastasis, and induce an immune response in immunocompetent 

mice was evaluated [43]. The nanovaccine successfully inhibited cancer cell migration toward 

fibroblasts, significantly decreased metastatic burden, and increased cytotoxic T lymphocytes, 

indicating membrane-wrapped nanovaccines not only show potential as antigen delivery vehicles 

for primary tumor elimination, but also as metastasis inhibitors.  

In summary, CCNPs have great potential as either prophylactic vaccines to protect patients from 

tumor cell challenges or as therapeutic agents to shrink tumors by inducing anti-cancer immune 

responses. It is observed that tumor antigen presentation from the membrane coating alone, even in 

highly immunogenic contexts, may not be powerful enough to overcome the immunosuppressive 

tumor microenvironment. Therefore, technologies must be combined with adjuvants, immune 

checkpoint blockade therapies, or other approaches to achieve optimal anti-cancer effects. 

Nevertheless, the biocompatible nature of CCNPs makes them promising as personalized therapies 

to induce cancer-specific immune responses for individual cancer patients.  

4. Challenges and Path Forward 

While many of the described successes of CCNP systems are extremely encouraging, there are 

still many challenges to address before these technologies become commercially available. One 

potential issue is the need for patient education, as concern may develop over having cancer cell-

derived material injected into the body. Although patients who already have cancer may be willing 

to overlook this concern if it provides a chance to eradicate their disease, healthy patients who are at-

risk for certain types of cancer and wish to use this technology as a preventative vaccine may be less 

receptive. In addition to educating the population, stringent testing and procedures will have to be 

developed to ensure that the membrane coatings are pure (lacking any internal component of the 

source cells) and do not contain any molecules that might promote cancer growth. As the 

development of membrane-wrapped NPs is already becoming more mature, with proper tests this 

should not be an issue and this hurdle could be feasibly overcome.  

One of the biggest draws of using cell membranes to coat NPs is the ability to have a 

personalized treatment. NPs coated with membranes derived from a patient’s own cells should be 
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able to evade unwanted immune responses that can occur when foreign material is introduced to the 

body. However, the feasibility of creating CCNPs for each individual patient is a significant question. 

Preparing patient-specific CCNPs will require strict quality control and regulatory methods. 

Additionally, while biopsy samples could be used to create CCNPs for patients with existing tumors, 

the production of CCNPs for prophylactic vaccination will require a different approach. Donor cells 

could possibly be used, but immunostimulatory issues may arise. One way this could be mitigated is 

by preparing particles with mixed membrane coatings, as several studies have shown this can imbue 

the NPs with properties of both membranes [57,68,111]. In this case, donor cancer cell membranes 

could be mixed with RBC or platelet membranes from the patient, lessening the portion of foreign 

membrane material to minimize an immune response. This strategy needs to be explored in many 

models in order to validate its use. An additional consideration for the use of CCNPs in a prophylactic 

setting is the need to define the appropriate patient population based on genetic testing or family 

history of specific cancers. However, if the concerns mentioned here can be sufficiently addressed, 

the potential impact of CCNPs for personalized cancer therapy is vast.  

Lastly, for CCNPs to be successful in the clinic, methods for manufacturing scale-up need to be 

developed. Particle replication on a small laboratory scale is already difficult due to the complex 

biological components involved and concerns of batch to batch consistency need to be addressed. 

One of the largest hurdles in scaling up the process is the need for large quantities of membranes. 

This requires millions, if not billions, of cells, and the facilities to grow them. Besides producing the 

necessary amount of membrane material, the scaling up of the NP cores is another concern, especially 

if the design is more complex or a multi-component system. The more complicated a nanotherapy 

fabrication is, the more difficult it is to create reproducible and identical particles at large scale. 

Finally, the assembly of how membrane vesicles are fused with NP cores could be difficult to replicate 

at a large scale. In short, the more steps to the process, the more difficult it will be to produce 

commercial quantities of high-quality material. This must be addressed before membrane-wrapped 

NP technologies can reach clinical trials or achieve FDA approval. 

5. Conclusion 

This review has highlighted the current state-of-the-art in developing CCNPs for the 

management of cancer. CCNPs have immense potential as tools to improve the imaging and 

treatment of tumors, but they also face substantial challenges in translating to the clinic. The future 

of the field lies in solving these issues or working around them to deliver specific, personalized 

therapy to single patients. While difficult to accomplish, the chance of eradicating even a single type 

of cancer, whether by therapy or vaccine, will continue to drive the many paths of research 

surrounding CCNPs described in this Review. 
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