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Carson River

Modeled domain from USGS gage
CCG through Lahontan Reservoir
(~110 Km)

Semi-arid river with peak flows
generally occurring in the spring

Catastrophic floods (e.g.. 1997-
Ttoened Boontay flood) are generated with rare,

. rain-on-snow events that occur
during the winter months

- Carson City gage (CCG)
- Deer Run Road (DRR)
- Dayton (DAY)

Foncharchl(FoR) | The meandering river is
entrenched with steep sides of
complexly structured alluvial fill
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<+ RIVMOD
< Floodplain flow

+ WASP

+ Real sediment transport
capabilities (3 separate
particles and colloids)

< Bank moisture history
< Overbank Deposition

+ MERCA4

< No changes
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<+ Bank Erosion

< Evaluate fine sediment
and areal erosion
estimates

« Adjust 3 parameters
<+ Mercury
<+ May 1994 (Med. Flow)

< June 1995 (High Flow)
« Adjust 2 parameters
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Geomorphic Surve

Extensive survey
conducted in the spring of
1997 using geomorphic
techniques of aerial
photography (taken in
1991 and 1997) and
floodpla
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Modifications to RIVMOD

1. Handles a more
complex shape

2. Computes
dynamic width
adjustment in
which eroded
mass updates

channel width

/I D1 =Low flow inner channel depth (f, m) = Intermediate flow transition slope
D VI d € d C h anne I D2  =Intermediate flow channel depth (ft, m) = High flow transition slope

BW1 =Low flow inner channel width (ft, m) = Inner floodplain slope
ap p roac h was BW2 = Intermediate flow channel top width (f, m) = Quter floodplain slope
BW3 =Main Channel width (ft, m)

applled tO the BW4 = Inner floodplain width (ft, m)
momentum
equation




® Modified RIVMOD HEC-UNET

Previous RIVMOD
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Modeling Bank Erosion: In-Channel Flows

Assumptions

The mass erosion rate, MER (Kg/s) is proportional to the shear stress
applied to the bank

MER is inversely proportional to the square-root of the channel bottom
slope

Where D is the water depth starting at the vertical face of the channel bank
(m), and S, is the bottom slope, v is the water velocity (m/s), n is
Mannmg s coefficient, and Lq Is the segment length (m)




I .

Modeling Bank Erosion: Overbank Flows

A second term was added to account for the underlying change of character
as the river exceeds bankfull flow (Ervine et al., 2000) such that, when D>h

Where h is the height of the vertical bank face.
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Modeling Overbank Deposition

Course Suspended Load
Modified version of Walling and He (1997)

Washload
WEPP (Foster et al., 1995)
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Calibration In-Channel Bank Erosion (‘¥,) and
Washload Overbank Deposition (‘¥,)
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Calibration Overbank Bank Erosion (\V,)

[JModeled Values
(1 Observed Values

Calibration of
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Channel Width Increases
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Overbank CSS Deposition
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Overbank Washload Deposition

O Observed
B Predicted
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Sources of Hg to the Water Column

Mill Tailings

Bank Erosion
at
high flows

Diffusion
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Inorganic Hg from Bank Erosion
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Complexed

Inorganic Mercury

Washload

LogK , =4.78

Methylation

g N

Soluble

Soluble

CSS

LogK g - 1.19

Hg #* MeHg

Bedload

LogK , =0.32

A W 4

Demethylation
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Mercury Speciation

Complexed

Organic Mercury

Washload

Logk , =3.63

CSS

Logk , =0.90

Bedload

LogK , =0.24




MeHg Bank Concentrations

Water content

Percent MeHg
Methylation rates

Non-linear contribution of
MeHg from bank erosion?
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Inorganic Mercury & MeHg Calibration & Verification

~
2
0’7\
—

Naw”
I
@
LL
b
©
=
L=
LL

100,000

10,000

1,000

=
o

- Bank erosion
| dominates Hg

"~ Diffusion from
| bottom

- sediments

- dominates Hg
- loading

|

1997 Flood

@ Calibration
O Verification




b
Calibration Hg;, Transport: Pre-1997 flood
A = 2,500 ng/kg

100,000
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Verification Hg;, Transport: 1997 flood and beyond

100,000

Shadded region
pertain to periods of
diffusion dominated

Hg loading
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Verification Hg;, Transport: 1997 flood and beyond

100,000 Shadded regions pertain to
periods of diffusion
dominated Hg loading

S ON / Data associated with
L 8,‘ Mineral Canyon flash
S flood event
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Verification using July 23-29, 1997
(low flow Q = 43 ft3/s)
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Location
Water Column
River Bed
River Bank
Reservoir Bed
* calibrated

Methylation
Q1o

Kao(day™)
0
0.0041
0.0060*
0.0028

2.03
2.03
2.03
2.03

Demethylation

Kao(day™)
0
0.4483
0.4483
1.2522

Q1o

2.03
2.03
2.03
2.03

Range (Km)
0-115.0
0-79.25
0-79.25

79.25-115.0
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Calibration MeHg Transport: Pre-1997 flood
K,o(M,.,.) = 0.0060 day!

5 May 16, 1994 (medium flow Q = 600 ft3/s)
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Verification MeHg Transport: 1997 flood and
beyond

Shadded regions pertain
to periods of diffusion
dominated MeHg loading

1997 Flood
Event
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Verification MeHg Transport: 1997 flood and

N
ol

Shadded regions pertain to periods of
diffusion dominated MeHg loading

20

Data
associated
with Mineral
Canyon flash
flood event
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Reservoir physical
characterization

Reservoir net settling

Characterize erosion
uncertainty

Perform Monte Carlo
analysis to determine
probable range of predicted
system behavior
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Conclusions

Simplistic model of bank erosion predicts in-stream sediment
concentrations well over a large flow domain and channel
widening well over a large spatial domain

Overbank deposition of Course Suspended Sediment is
predicted well without calibration over a large spatial domain

Overbank deposition of Washload is correctly over-predicted,
but this does not validate the approach

In-stream Inorganic and methyl mercury concentrations are
predicted well over a large spatial and flow domain
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Recommendations

Determine measures of
mercury bioavailability

» Re-define mercury
methylation and
demethylation kinetics

< First-order?

« Important environmental
) factors and associated
/a corrections

Deal with and express

\\ impacts from parameter
uncertainties




