A Decade of Applied Processing Crop Research At the University of Delaware

Dr. Gordon Johnson Extension Fruit and Vegetable Special Department of Plant and Soil Science University of Delaware

Effects of Nitrogen Rates and Sources on Yield and Quality of Pickling Cucumbers; Magnesium and Sulfur in Pickling Cucumbers; Gynoecious and Parthenocarpic Pickle Variety Trials; Pickle Downy Mildew Studies; Parthenocarpic Pickle Yield Stability Studies

> Dr. Gordon Johnson Extension Fruit and Vegetable Specialist Department of Plant and Soil Sciences University of Delaware

UNIVERSITY OF DELAWARD

Light skin color was a problem

Pickle Length, Length: Diameter Issues

- Environment
 - Cooler = longer
 - Hotter = shorter
- Cell elongation
 - Hormones
- Rapid growth
 - Too much N?

Fertility and Pickle Quality - N

<u>N rate (Ibs/a)</u>	CM Expedition	CM Vlaspik	
80	36 b	33 c	
120	31 b	36 b	1100
<u>160</u>	40 a	<u>40 a</u>	
<u>N rate (Ibs/a)</u>	Visual rating (1-5	<u>, 5 full green)</u>	
80	4.1 b		
120	4.1 b		
160	4.6 a		134

Effects of Nitrogen Rates and Sources on Pickle Color, Trial1, 2012							
			NITROG	EN TREA	TMENTS	(lbs/a N)	
						80+40	80+80
VAR	SIZE	80	120	160	200	AS	AS
			Cł	nlorophyll I	Meter Valu	les	
	3A	27.9 с	31.0 b	31.0 b	33.8 ab	38.1 a	34.3 ab
EXP	3B	31.6	33.2	32.1	30.8	34.3	29.9
	Total	29.8 b	32.1 ab	31.6 ab	32.3 ab	36.2 a	32.1 ab
	3A	31.5	30.6	27.5	29.9	26.6	28.7
VLAS	3B	24.7	27.1	22.8	26.9	26.9	28.7
	Total	28.3	28.8	25.3	28.4	26.7	28.7
То	tal	29.1	30.5	28.5	30.4	31.4	30.4

Variety		Nitrogen Treatment (Trial 1)						
	80	120	160	200	80+40	80+80		
			L:	D				
Expedition	2.94	2.96	3.12	2.93	<mark>3.16</mark>	2.97		
Vlaspik	3.25 ab	2.99 b	2.89 b	3.01 b	<mark>3.60 a</mark>	3.00 b		
Total	3.11	2.98	3.01	2.97	3.38	2.99		

• 10 Treatments

- Control no added S or Mg
- S provided by gypsum 500 lbs/A preplant
- S provided by ammonium sulfate 200 lbs/A preplant
- Sidedressed S as ammonium sulfate 200 lbs/A
- Foliar S, 2 lbs S per acre equivalent
- Mg provided by 1000 lbs/A dolomitic limestone preplant
- Mg and S provided by K-mag 500 lbs/A preplant
- Mg provided by MgSO4 sidedress
- Mg provided by MgSO4 foliar
- Mg and S provided by K-mag foliar

Sulfur and Magnesium Experiments

- 2 Varieties
 - Expedition
 - Vlaspik
- RCBD, 4 reps, 10 m x 2 row .76 m plots, harvest fruits from single row

Conclusions

- Increasing N provided more green areas on pickle fruits, more chlorophyll in most trials.
- High N rate to achieve color not desired, did not increase yields
- Length was not affected by N rate but was by N source
- Ammonium sulfate treatments had significantly longer pickle fruits
- There was an indication that ammonium sulfate produced more highly colored pickles.
- The nitrogen:sulfur balance appears to be important for pickle color and may be an issue on our light textured (sandy) soils.
- The nitrogen:sulfur ratio in the fruit may be a critical factor in producing well colored pickle fruits on coastal plain soils in the eastern US.

Variety Effects on Color

UNIVERSITY OF DELAWARI COOPERATIVE EXTENSION

Pickle Industry Standard - Expedition

Variety Trials

UNIVERSITY OF

Current Delmarva Gynoecious Varieties

Cucumber Recommendations

		Soi	l Phosp	horus L	evel	So	Soil Potassium Level			
	Pounds			High	Very			High	Very	_
	Ν	Low	Med	(Opt.)	High	Low	Med	(Opt.)	High	
Cucumbers	per Acre	Por	unds P2	05 per A	cre	Po	Pounds K2O per Acre			Nutrient Timing and Method
	80-150	150	100	50	01	200	150	100	01	Total nutrient recommended.
	25-50	125	75	25	01	175	125	75	01	Broadcast and disk-in.
	25	25	25	25	0	25	25	25	0	Band place with planter.
	25-75	0	0	0	0	0	0	0	0	Sidedress when vines begin to run.

For plasticulture production, fertilization rates are based on a standard row spacing of 6-feet.

¹In Virginia, crop replacement values of 25 lbs. P₂O₅ and 50 lbs. K₂O per acre are recommended on soils testing Very High.

Nitrogen Study

Overall yield of five gynoecious cucumbers by N rate. Georgetown, DE 2018

Bu/a vs. N Rate

Downy Mildew Resistant Pickle Varieties and Fungicide Programs

Gordon Johnson Extension Fruit and Vegetable Specialist Department of Plant and Soil Sciences University of Delaware

Downy Mildew Tolerant Varieties 2018

Table 4. Yield by fungicide treatment in downy mildew resistant variety and fungicide timing studies, Trial 3, September 7, 2018 harvest date, Georgetown, Delaware, under heavy downy mildew pressure.

Fungicide Treatment	Yield	*
	(bu/a)	
Orondis Opti 1.75 oz/a + BWS 1 pint per acre at 2-4 leaf August 17	288	а
followed by Ranman 2.75 oz/a + BWS 2 pint per acre August 28		
Orondis Opti 1.75 oz/a + BWS 1 pint per acre at flop August 28	275	а
Orondis Opti 1.75 oz/a + BWS 1 pint per acre at 2-4 leaf August 17	274	а
Ranman 2.75 oz/a + BWS 2 pint per acre 2-4 leaf August 17	259	а
Bravo Weather Stik (BWS) 2 pt./a 1x at 2-4 leaf August 17	213	b
Control	164	с
*Means followed by the same letter are not significantly different	р	
at the 0.05 level	<0.0001	

Downy Mildew Tolerant Varieties 2018

Table 3. Yield by variety in downy mildew resistant variety and fungicide timing studies, Trial 3, September 7, 2018 harvest date, Georgetown, Delaware, under heavy downy mildew pressure.

Variety ^v	Yield×	
	(bu/a)	
6404 + SV2789CL	288	а
Citadel + SV2789CL	259	ab
Peacemaker + SV2789CL	248	bc
Expedition + Sire	219	с
Vlaspik + Sire	215	с
^x Means followed by the same letter are not significantly	р	
different at the 0.05 level	<0.0012	
^Y gynoecious variety + pollenizer		

Downy Mildew Tolerant Varieties 2018

Table 2. Yield by variety in downy mildew resistant variety and fungicide timing studies, Trial 2, August 6, 2018 harvest date, Georgetown, Delaware, under moderate downy mildew pressure.

Variety ^y	Yield×	
	(bu/a)	
Peacemaker + SV2789CL	344	а
Citadel + SV2789CL	325	а
6404 + SV2789CL	287	ab
Vlaspik + Sire	249	bc
Expedition + Sire	203	с
^x Means followed by the same letter are not significantly	р	
different at the 0.05 level	<0.0002	
^Y gynoecious variety + pollenizer		

Parthenocarpic Pickles

- Several breeding programs
 - Quality much improved
- Gaining acreage worldwide
- Seedless
- Requires isolation
- Does not need bees
- Lower populations
 - 50-60% lower
- No pollenizers
- Higher potential yield
- Better size specific
 - Parth varieties sets its fruit in flushes
- Better color often
- Fewer culls, straighter

Variable Performance in Delaware So Far – However, the Potential is there

NIVERSITY OF DELAWARE

Ð

UNIVERSITY OF DELAWARE

Promising Parthenocarpic Varieties

UNIVERSITY OF DELAWARE COOPERATIVE

Plant populations for Parthenocarpic Pickles

Pop

Parthenocarpic pickle small plot trials – May/June and July planted

UNIVERSITY OF DELAWARE COOPERATIVE EXTENSION

	Variety	3B%	3A%	2B%	2A%	C&N%	No/a 1-4	L:D	Bu/a 2-3
	12-115	33.8	33.8	9.9	4.1	1.8	67518	2.8	370
	Amarok	3.9	16.7	32.8	25.4	6.8	66429	2.76	211
	Ansor	4.8	16.9	23.3	33.2	1.4	50312	2.71	151
	Aristan	18.7	35.0	21.9	9.5	4.8	75359	2.69	334
	Bowie	11.0	10.6	22.5	28.8	9.9	60984	2.89	225
	Gershwin	16.7	19.2	22.0	15.9	16.8	69260	2.75	311
	Liszt	21.2	20.8	20.3	7.1	4.4	37244	3.12	155
	Nun103	12.5	40.8	23.0	8.1	11.0	74923	2.85	392
	Nun110	19.1	47.3	18.4	6.2	0.9	75504	2.76	421
	Nun111	34.0	21.0	12.8	9.4	6.5	53361	3.03	292
	Nun118	18.8	43.4	25.5	3.7	3.3	58370	2.98	337
	Nun53016	23.5	48.8	19.2	1.7	1.0	63380	3.07	381
	Nun53025	26.4	46.8	17.7	3.1	3.2	75141	3.27	469
	Nun53028	26.3	23.7	15.6	5.5	15.7	54014	3.15	300
	Rubenstein	9.7	19.8	28.6	17.6	4.0	62073	2.78	231
	RZ72	10.1	16.6	28.7	24.5	4.9	77537	2.91	260
	RZ76	6.9	11.6	27.2	23.5	7.7	64251	2.82	197
	RZ78	15.2	19.1	19.4	12.4	1.1	35937	2.85	128
COOPERA	RZ79	11.9	35.9	26.2	6.4	16.2	60113	3.09	312
EXTENSIO	RZ80	7.8	9.8	27.4	23.7	15.9	53579	2.73	182

F

Nun53025	469	Α
Nun110	421	AB
Nun103	392	ABC
Nun53016	381	ABC
12-115	370	ABC
Nun118	337	BCD
Aristan	334	BCDE
RZ79	312	BCDEF
Gershwin	311	BCDEF
Nun53028	300	CDEFG

Variety	3B%	3A%	2B%	2A%	C&N%	No/a 1-4	L:D	bu/a 2-3
12-115	12.1	24.7	28.4	14.6	7.2	67300	3.01	282
Amarok	3.6	18.8	18.0	18.3	2.0	73762	2.54	190
Ansor	9.7	14.5	43.8	15.6	1.0	44431	2.75	174
Aristan	3.2	19.1	20.6	20.3	4.3	71729	2.55	198
Bowie	4.6	9.5	6.6	17.4	23.5	60694	3.16	140
Gershwin	14.8	21.1	16.6	10.2	21.9	64469	2.86	280
Liszt	27.4	16.1	16.3	13.9	4.4	69914	2.52	324
Nun103	5.1	20.7	35.1	21.0	4.3	81893	2.79	321
Nun110	5.6	22.4	26.3	19.8	6.7	76230	2.89	268
Nun111	15.1	25.0	24.8	12.2	4.8	55975	2.61	248
Nun118	12.7	22.7	22.8	16.5	6.2	73181	2.9	274
Nun53016	5.3	20.3	38.7	15.3	8.4	69696	2.75	236
Nun53025	8.9	16.6	31.0	19.1	5.1	88209	2.83	288
Nun53028	5.4	21.9	32.0	12.3	11.4	63307	3	244
Rubinstein	4.9	13.3	20.8	13.4	11.8	84506	2.96	226
RZ72	12.0	16.6	28.9	17.8	3.9	69478	2.76	255
RZ76	8.2	17.1	18.6	15.2	8.3	79715	2.77	245
RZ78	9.5	9.7	23.7	21.6	8.4	66211	2.77	177
RZ79	22.6	30.2	21.4	11.3	4.4	77537	2.95	409
RZ80	7.8	23.6	25.7	13.7	6.5	67518	2.95	248

RZ79	409	Α
Liszt	324	AB
Nun103	321	AB
Nun53025	288	ABC
12-115	282	ABC
Gershwin	279	ABC
Nun118	274	ABC
Nun110	267	ABC

Factors affecting yield stability in parthenocarpic cucumbers on Delmarva

Issues

- Parthocarpic pickles have been trialed on Delmarva with mixed results.
- One issue is the variability of yield responses in parthenocarpic pickle cultivars.
- Cultivars with more stable yields over multiple environments are most desirable.
- There is a lack of information on those factors that affect parthenocarpic cucumber yield stability: temperature, water (rainfall and irrigation), fertility, and planting date (daylength and heat units) as examples.

Parthenocarpic varieties for 3 seed companies were tested Two locations: Georgetown DE, Salisbury MD, 2019 – 2 N rates, 2 irrigation rates

- Nun 53025
- RZ4 = Bowie
- RZ7 = Liszt
- RZ 11 = RZ-76
- Amarok
- Aristan

Factors affecting yield stability in parthenocarpic cucumbers on Delmarva 2021

H=120 lbs N L= 80 lbs N

Multiple hand harvests

Variety	N rate	Мау	June	July	August	Total	Mean	SD	bu/a
		#	#	#	#	#			total
Absolut	Н	390	285	241	167	1083	271	93	524
Absolut	L	398	405	263	291	1357	339	73	557
Amarok	Н	474	423	348	303	1548	387	76	662
Amarok	L	422	494	362	350	1628	407	66	628
Aristan	Н	435	432	295	233	1395	349	101	646
Aristan	L	314	333	250	235	1132	283	48	446
Bowie	Н	534	478	340	318	1670	418	105	713
Bowie	L	520	447	417	375	1759	440	61	656
Liszt	Н	402	364	262	253	1281	320	74	589
Liszt	L	418	316	246	317	1297	324	71	551
RZ-76	Н	464	482	292	416	1654	414	86	694
RZ-76	L	469	311	352	251	1383	346	92	556
V5016	Н	405	268	238	211	1122	281	86	529
V5016	L	355	378	309	216	1258	315	72	579
V5025	Н	516	466	375	372	1729	432	71	687
V5025	L	462	366	327	327	1482	371	64	618
V5031	Н	379	346	318	352	1395	349	25	577
V5031	L	446	417	367	340	1570	393	48	630

COOPERATIVE The most stable varieties in this set of trials were Amarok, V5025, and V5031. Bowie had high yield potential but with less stability at higher N rate.

Acknowledgements

- **Pickle Packers International** ۲
- Seed Companies Seminis, Rijk Zwaan, Nunhems, Bejo
- Emily Zobel University of Maryland
- Student and summer workers Jennifer Jones, Joseph Jones, Khashad Gillespie, Jake Jones, Lori Ockels and many others
- UD and UMD farm staff ۲

I Love Pickles.org

Copyright 2021

Pickle Packers International, Inc.

Other Processing Crop Applied Research

UNIVERSITY OF DELAWARE COOPERATIVE EXTENSION

Lima Bean Culture

- No-till
- Inoculation
- Seed production
- Populations
- Fordhook production
- Specialty types
- Regrowth cropping

Lima Bean Disease

- Root Knot Nematode
 - Distribution/mapping
 - Chemical control
 - Biofumigation
 - Rotation
- Phytophthora capsica
 - Chemical control
 - Cultural control

Sweet Corn

- Nitrogen Rates, precision
- No-till
- Cover crops
- Planting density

Heat Stress Mitigation

- Particle Film
- Growth regulators
- No-till
- Varieties
- Inoculation

Soil health

- Compost
- Cover Crops
- Biofumigants
- Rotations
- No-till, Strip till
- Inoculants
- Compaction mitigation

Variety Trials

- Greens
- Pickles
- Processing peppers
- Beets
- Broccoli, specialty brassicas
- Brussels sprouts

Fertility and Nutrition

- Nitrogen
- Sulfur
- Calcium
- Magnesium

Crop Management

- Irrigation rates
- No-Till Lima, pea, corn, snap bean
- Populations
- Planting dates
- Overwintering
- Cutting management

Usage

- Specialty limas
 - Lima products
 - Consumer appeal
- Freezing
- Dry seed production

New Processing Crop Grant

UNIVERSITY OF DELAWARE COOPERATIVE EXTENSION

Processing Broccoli

- July 21-22 Direct Seeded
- 21 Varieties, 12 varieties
- Harvested October to November
- Cut floret evaluation
 - Recovery
 - Sizes
 - Core
 - Blonding
- Freezing

ELAWARE.

Variety ordered by Blonding (ascending)

Frozen Sample Evaluations 2022

Specialty Cole Crops – Broccolini, Caulilini, Sprouting Broccoli, Gai Lan

Brussels Sprouts 2023

UNIVERSITY OF DELAWARE COOPERATIVE EXTENSION

Brussels Sprouts 2023

Frozen Samples for Evaluation

Thank you!!

- I will be retiring in June
- Programs will continue Dr. Emmalea Ernest will be your contact.
- Wish you all good fortune.

It has been a privilege to serve you for the last 12 years as Extension Fruit and Vegetable Specialist!

