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1 The Issues 

 
In this report, we explore health trends in 2018, focusing on diabetes, obesity, and inactivity rates 

across US counties. Our objective is to present a lucid and non-technical analysis of these health 

issues impacting the diabetic population. 

The data for this analysis is sourced from the Center for Disease Control and Prevention (CDC), a 

repository of up-to-date information on disease analysis in countries, with a focus on devising 

preventive methods. Our analysis addresses the following key questions: 

 

• Correlation Exploration: What is the correlation between diabetes, obesity, and inactivity 

in U.S. counties? 

 

• Predictive Modeling: Can linear regression unveil predictive insights about diabetes based 

on obesity and inactivity rates? 

 

• Data Quality Concerns: How do outliers, missing values, and duplicates impact the 

robustness of our analyses? 

 

Our code systematically handles these challenges, ensuring the reliability of our findings and 

contributing valuable insights into public health concerns. 

 

 

2 Findings 

 
We analyzed the data to understand how the rates of diabetes correlate with rates of obesity and 

inactivity across different counties in the United States. Our correlation analysis results were 

derived from the examination of the relationships between the variables (% DIABETIC, % 

OBESE, and % INACTIVE) in the dataset.  we used statistical methods to calculate the correlation 

coefficients between these variables. The correlation coefficient provides a measure of the strength 

and direction of the linear relationship between two variables. In our case, positive correlation 

coefficients would indicate that higher values in one variable are associated with higher values in 

another. This insight is crucial for understanding the broader health trends and potential risk factors 

across different regions. 

Linear regression models predict diabetes rates based on obesity and inactivity, emphasizing the 

significance of these factors. We also conducted simple linear regression analyses focusing on 

obesity vs. diabetes and inactivity vs. diabetes. Outliers, missing values, and duplicates were 

addressed meticulously, enhancing the credibility of our results. 
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3 Discussions 
 

The discussion of our findings is presented in a straightforward manner, aiming to make it easily 

understandable. The positive correlations indicate that counties with higher obesity and inactivity 

rates tend to have higher diabetes rates. This observation emphasizes the need for a comprehensive 

approach to public health interventions, considering the interconnected nature of these factors. 

In terms of implications, our results highlight the importance of addressing obesity and inactivity 

as preventive measures for diabetes. Public health initiatives targeting these lifestyle factors may 

contribute to reducing the prevalence of diabetes in different regions. The linear regression models 

used not only provide predictive insights but also emphasize the significance of obesity and 

inactivity in understanding diabetes rates. 

 

4 Author Contributions 

 
In this project, both authors made significant contributions. Being responsible for data collection, 

preprocessing, and conducting the linear regression analysis. Contributing to data analysis, 

interpretation of results, and visualizations, including the creation of graphs and charts. The two 

authors collaborated closely in merging datasets, performing statistical tests, and discussing the 

implications of the findings. Their combined efforts ensured a comprehensive and insightful 

analysis of the relationships between diabetes, obesity, and physical inactivity across U.S. counties 

in 2018. 

 

5 Appendix A: Method 

 
Data Collection: 

The data was obtained from the Centers for Disease Control and Prevention (CDC). It provides 

county-level information on diabetes, obesity, and inactivity rates for the year 2018. 

 

Variable Creation: 

Diabetes rate (% DIABETIC) 

Obesity rate (% OBESE) 

Inactivity rate (% INACTIVE) 

 

Analytic Methods 

We used descriptive statistics to explore the data by using different methods as following: 

 

• Data Preprocessing: Before analysis, the data undergoes preprocessing. This involves 

handling issues like duplicate records, missing values, and outliers. In your code, you 

handle outliers using the Interquartile Range (IQR) method and remove duplicates. 

 

• Data Integration: The data from different sources (diabetes, obesity, and inactivity) are 

integrated by merging them based on common identifiers like "YEAR" and "FIPS" or 

"FIPDS," which represent the county codes. 
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• Exploratory Data Analysis (EDA): EDA is used to understand the data better. While not 

explicitly mentioned, this step may include visualizations, summary statistics, and 

checking for relationships between variables. 

 

• Linear Regression: Linear regression is applied to analyze the relationship between two 

continuous variables. In this project, you perform linear regression for different 

combinations of variables, such as: 

% OBESE vs. % DIABETIC 

% INACTIVE vs. % DIABETIC 

% OBESE and % INACTIVE vs. % DIABETIC (Multiple Linear Regression) 

 

• Train-Test Split: The data is split into training and testing sets to evaluate the performance 

of the regression models. 

 

• Model Fitting: Linear regression models are created using the training data, and the 

coefficients (slopes and intercept) are estimated. 

 

• Model Evaluation: The performance of the models is assessed using metrics like Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 

and hypothesis tests for heteroscedasticity. You also check the coefficients for significance. 

 

• Kurtosis and Skewness: Kurtosis and skewness of variables are calculated. These statistics 

describe the shape and symmetry of the data distribution. 

 

• Residual Analysis: The skewness, kurtosis, median, and standard deviation of residuals are 

examined to understand the model's predictive performance. 

 

• Visualization: You create scatterplots of actual vs. predicted values and regression lines. 

For multiple linear regression, you visualize the regression plane in 3D space. 

 

• Statistical Tests: You conduct statistical tests such as the Breusch-Pagan test for 

heteroscedasticity. 

 

6 Appendix B: Results 
 

Our dataset originally contained 3,142 data points. After merging the datasets, it reduced to 354 

data points, which included information about %DIABETIC, %OBESE, and %INACTIVE for all 

U.S. counties in the year 2018. 

 

Before we performed data transformation and preprocessing, the data points numbered 354. Once 

we completed these steps, the data points were reduced to 339. 

 

We calculated kurtosis, skewness, Mean Squared Error (MSE), and Root Mean Squared Error 

(RMSE) values for three factors (%DIABETIC, %OBESE, and %INACTIVE) both before and 

after applying linear regression. 
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Before Linear Regression: 

Kurtosis before linear regression - Diabetic: -0.15452043503385493 

Kurtosis before linear regression - Obesity: -0.4870496991420761 

Kurtosis before linear regression - Inactive: -0.8543300319009877 

Skewness before linear regression - Diabetic: -0.016571543970232954 

Skewness before linear regression - Obesity: 0.0739131829093501 

Skewness before linear regression - Inactivity: -0.016571543970232954 

MSE before linear regression - Diabetes: 0.3616292550030423 

RMSE before linear regression - Diabetes: 0.6013561798161239 

MSE before linear regression - Obesity: 0.3616292550030423 

RMSE before linear regression - Obesity: 0.6013561798161239 

MSE before linear regression - Inactivity: 0.3616292550030423 

RMSE before linear regression - Inactivity: 0.6013561798161239 

 

We performed Multiple Linear Regression to build a model that predicts diabetes based on 

obesity and inactivity. The model will take the form of an equation, such as: 

diabetes = a + b * obesity + c * inactivity + ϵ 
where a, b, and c are coefficients that will be estimated from the data. 

To evaluate the performance of a regression model we used different statistical metrics, they are: 

Mean Square Error (DIABETIC vs OBESE and INACTIVE): 0.3616292550030423 

Mean Absolute Error (DIABETIC vs OBESE and INACTIVE): 0.4093128490591154 

Root Mean Squared Error (DIABETIC vs OBESE and INACTIVE): 0.6013561798161239 

Kurtosis (DIABETIC vs OBESE and INACTIVE): 1.9566336099904058 

Skewness (DIABETIC vs OBESE and INACTIVE): -0.26259039480325724 

Median (DIABETIC vs OBESE and INACTIVE): 0.0010092517888140584 

Standard Deviation (DIABETIC vs OBESE and INACTIVE): 0.5945245486575608 

 

We also used OLS (Ordinary Least Squares) method to obtain the results of multiple regression 

model 

 
Figure 1. Result of OLS for DIABETIC vs OBESE and INACTIVE 
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Figure 1.1 DIABETIC vs OBESE and INACTIVE 

 

 
Figure 1.2 Correlation analysis of  DIABETIC vs OBESE and INACTIVE 

 

In our analysis of the relationship between diabetes and obesity, and how they relate to physical 

inactivity, we observed that the kurtosis value for this specific context is 1.9566. This value 

provides us with insights into the shape of the data distribution. 

A kurtosis value greater than 3, as is the case with our kurtosis of 1.9566, indicates positive 

kurtosis. In simpler terms, this means that the distribution of the data has 'heavier tails' and is more 

'leptokurtic' compared to a normal distribution. 

A skewness value indicates the asymmetry of the data distribution. A value of 0 suggests a 

perfectly symmetrical distribution, where the data is evenly distributed on both sides of the mean. 

A negative skewness, as we have here, implies that the data distribution is skewed to the left, or 

negatively skewed. In our context, this means that the tail of the distribution is longer on the left 

side, and there may be some outliers or lower values that are dragging the distribution in that 

direction. 

 

Then we performed simple Linear Regression on Obese vs Diabetics and Inactivity vs Diabetics  

and calculated Kurtosis, Skewness, RMSE and MSE and obtained these values: 
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Kurtosis after linear regression - Diabetic: 1.9439901869077971 

Kurtosis after linear regression - Obesity: 1.9566336099904058 

Kurtosis after linear regression - Inactive: 1.9566336099904058 

Skewness after linear regression - Diabetic: -0.2578514160894123 

Skewness after linear regression - Obesity: -0.192973836736394 

Skewness after linear regression - Inactivity: -0.26259039480325724 

MSE after linear regression - Diabetes: 0.3616292550030423 

RMSE after linear regression - Diabetes: 0.6013561798161239 

MSE after linear regression - Obesity: 0.29360723610109246 

RMSE after linear regression - Obesity: 0.5418553645587468 

MSE after linear regression - Inactivity: 0.3616292550030423 

RMSE after linear regression - Inactivity: 0.6013561798161239  

 
 

Figure 2 Result of OLS for %OBESE VS %DIABETIC 
 

 

 

 
 

Figure 2.1 Linear regression plot of %OBESE VS %DIABETIC 
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Figure 2.2 Correlation analysis of %OBESE VS %DIABETIC 

 

 

 
 

                Figure 3 Result of OLS for %INACTIVE VS %DIABETIC 
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Figure 3.1 Linear regression plot of %INACTIVE VS DIABETIC 

 

 
                                         Figure 3.2 %INACTIVE VS DIABETIC 

 

Kurtosis after linear regression: 

• The kurtosis values provided after linear regression represent the distribution of the 

residuals (differences between actual and predicted values) for each variable (Diabetic, 

Obesity, Inactivity). 

• For Diabetic, the kurtosis is 1.944, indicating a moderately peaked distribution with tails 

that are lighter than a normal distribution. 

• For Obesity and Inactivity, the kurtosis values are 1.957, suggesting similar characteristics. 

Skewness after linear regression: 

• Skewness measures the asymmetry in the distribution of data. 

• For Diabetic, the skewness is -0.258, implying that the distribution is slightly skewed to 

the left. 

• For Obesity, the skewness is -0.193, suggesting a similar but less pronounced left skew. 

• For Inactivity, the skewness is -0.263, indicating a slight left skew. 

Mean Squared Error (MSE) after linear regression: 
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• MSE quantifies the average squared difference between actual and predicted values. Lower 

MSE indicates a better fit. 

• For Diabetes and Inactivity, the MSE is 0.362, while for Obesity, it's 0.294. 

 

 

 
Normal Distribution of %DIABETIC 

 

 
Normal Distribution of %OBESE  
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Normal Distribution of %INACTIVE 

 

7 Appendix C: Data and Code 
import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression 

from sklearn import metrics 

from sklearn.metrics import mean_squared_error 

import matplotlib.pyplot as plt 

import numpy as np 

from scipy.stats import kurtosis, skew 

from statsmodels.stats.diagnostic import het_breuschpagan 

import statsmodels.api as sm 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

import scipy.stats as stats 

# Specify the path to your Excel file 

excel_file_path = r'C:\\Users\\Kruthika reddy\\Desktop\\mth\\cdc-diabetes-2018 (1).xlsx' 

# Read data from Excel sheets 

df_obesity = pd.read_excel(excel_file_path, sheet_name='Obesity') 

df_diabetic = pd.read_excel(excel_file_path, sheet_name='Diabetes') 

df_inactive = pd.read_excel(excel_file_path, sheet_name='Inactivity') 

 

# Before  preprocessing and transformation of data 

# Merge the datasets on FIPS code and YEAR 

print('df_diabetic:', df_diabetic.shape) 

print('df_obesity:', df_obesity.shape) 

df_merged = pd.merge(df_diabetic, df_obesity, on=['YEAR', 'FIPS']) 

print('After First Merge:', df_merged.shape) 
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df_merged = pd.merge(df_merged, df_inactive, left_on=['YEAR', 'FIPS'], right_on=['YEAR', 

'FIPDS']) 

print('After Second Merge:', df_merged.shape) 

print('Number of Rows and Columns in df_merged:', df_merged.shape) 

 

# After preprocessing and transformation of data 

# Function to handle outliers using IQR 

def handle_outliers(df, column_name): 

    Q1 = df[column_name].quantile(0.25) 

    Q3 = df[column_name].quantile(0.75) 

    IQR = Q3 - Q1 

 

    # Filtering values between Q1-1.5*IQR and Q3+1.5*IQR 

    df_no_outliers = df[(df[column_name] >= Q1 - 1.5 * IQR) & (df[column_name] <= Q3 + 1.5 

* IQR)] 

 

    return df_no_outliers 

 

# Function to preprocess and transform the data 

def preprocess_and_transform(df): 

    # Check for and handle duplicates 

    df = df.drop_duplicates() 

 

    # Check for missing values and handle them (if needed) 

    df = df.dropna()  # Uncomment this line if you want to remove rows with missing values 

 

    # Handle outliers 

    df = handle_outliers(df, df.columns[4])  # Assuming the numerical column is at index 4 

 

    # Add any additional preprocessing or transformation steps here 

 

    return df 

 

# Preprocess and transform each dataset 

df_obesity = preprocess_and_transform(df_obesity) 

df_diabetic = preprocess_and_transform(df_diabetic) 

df_inactive = preprocess_and_transform(df_inactive) 

 

# After preprocessing and transformation of data 

# Merge the datasets on FIPS code and YEAR 

print('df_diabetic:', df_diabetic.shape) 

print('df_obesity:', df_obesity.shape) 

print('df_inactive:', df_inactive.shape) 

# Merging diabetic and obesity datasets 

df_merged = pd.merge(df_diabetic, df_obesity, on=['YEAR', 'FIPS']) 

print('After First Merge:', df_merged.shape) 



12 

 

# Merging the above df merged and inactive dataset 

df_merged = pd.merge(df_merged, df_inactive, left_on=['YEAR', 'FIPS'], right_on=['YEAR', 

'FIPDS']) 

print('After Second Merge:', df_merged.shape) 

print('Number of Rows and Columns in df_merged:', df_merged.shape) 

 

# Kurtosis, skewness, mean squared error, root mean squared error before linear regression 

 

# Assuming y_test_diabetic_vs_obese_inactive and y_pred_diabetic_vs_obese_inactive are your 

variables 

y_test_diabetic = y_test_diabetic_vs_obese_inactive 

y_test_obesity = y_test_diabetic_vs_obese_inactive 

y_test_inactive = y_test_diabetic_vs_obese_inactive 

 

y_pred_diabetic = y_pred_diabetic_vs_obese_inactive 

y_pred_obesity = y_pred_diabetic_vs_obese_inactive 

y_pred_inactive = y_pred_diabetic_vs_obese_inactive 

 

# Calculate kurtosis before linear regression 

kurtosis_diabetic_before = kurtosis(df_diabetic['% DIABETIC']) 

kurtosis_obesity_before = kurtosis(df_obesity['% OBESE']) 

kurtosis_inactive_before = kurtosis(df_inactive['% INACTIVE']) 

 

print('Kurtosis before linear regression - Diabetic:', kurtosis_diabetic_before) 

print('Kurtosis before linear regression - Obesity:', kurtosis_obesity_before) 

print('Kurtosis before linear regression - Inactive:', kurtosis_inactive_before) 

 

# Calculate skewness before linear regression 

skew_diabetic_before = skew(y_test_diabetic) 

print('Skewness before linear regression - Diabetic:', skew_diabetic_before) 

skew_obese_before = skew(y_test_obese) 

print('Skewness before linear regression - Obesity:', skew_obese_before) 

skew_inactive_before = skew(y_test_inactive) 

print('Skewness before linear regression - Inactivity:', skew_inactive_before) 

 

# Diabetes 

mse_diabetic_before = mean_squared_error(y_test_diabetic , y_pred_diabetic) 

rmse_diabetic_before = np.sqrt(mse_diabetic_before) 

print('MSE before linear regression - Diabetes:', mse_diabetic_before) 

print('RMSE before linear regression - Diabetes:', rmse_diabetic_before) 

# Obesity 

mse_obese_before = mean_squared_error(y_test_obesity, y_pred_obesity) 

rmse_obese_before = np.sqrt(mse_obese_before) 

print('MSE before linear regression - Obesity:', mse_obese_before) 

print('RMSE before linear regression - Obesity:', rmse_obese_before) 
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# Inactivity 

mse_inactive_before = mean_squared_error(y_test_inactive, y_pred_inactive) 

rmse_inactive_before = np.sqrt(mse_inactive_before) 

print('MSE before linear regression - Inactivity:', mse_inactive_before) 

print('RMSE before linear regression - Inactivity:', rmse_inactive_before) 

 

# Select the independent variables (X) and dependent variable (y) 

X_diabetic_vs_obese_inactive = df_merged[['% OBESE', '% INACTIVE']] 

y_diabetic_vs_obese_inactive = df_merged['% DIABETIC'] 

 

# Split the data into training and testing sets 

X_train_diabetic_vs_obese_inactive, X_test_diabetic_vs_obese_inactive, 

y_train_diabetic_vs_obese_inactive, y_test_diabetic_vs_obese_inactive = train_test_split( 

    X_diabetic_vs_obese_inactive, y_diabetic_vs_obese_inactive, test_size=0.2, random_state=0) 

 

X_test_with_constant_diabetic_vs_obese_inactive = 

sm.add_constant(X_test_diabetic_vs_obese_inactive) 

 

# Create a linear regression model 

model_diabetic_vs_obese_inactive = LinearRegression() 

 

# Train the model 

model_diabetic_vs_obese_inactive.fit(X_train_diabetic_vs_obese_inactive, 

y_train_diabetic_vs_obese_inactive) 

 

# Make predictions on the test set 

y_pred_diabetic_vs_obese_inactive = 

model_diabetic_vs_obese_inactive.predict(X_test_diabetic_vs_obese_inactive) 

# Plot the regression plane for % DIABETIC vs % OBESE and % INACTIVE 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

 

# Plot the actual data points 

ax.scatter(X_test_diabetic_vs_obese_inactive['% OBESE'], 

           X_test_diabetic_vs_obese_inactive['% INACTIVE'], 

           y_test_diabetic_vs_obese_inactive, c='black', marker='o', label='Actual') 

 

# Plot the predicted values 

ax.scatter(X_test_diabetic_vs_obese_inactive['% OBESE'], 

           X_test_diabetic_vs_obese_inactive['% INACTIVE'], 

           y_pred_diabetic_vs_obese_inactive, c='red', marker='s', label='Predicted') 

 

# Create a meshgrid for the plane 

grid_x, grid_y = np.meshgrid(X_test_diabetic_vs_obese_inactive['% OBESE'], 

                             X_test_diabetic_vs_obese_inactive['% INACTIVE']) 

grid_z = (model_diabetic_vs_obese_inactive.coef_[0] * grid_x + 
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          model_diabetic_vs_obese_inactive.coef_[1] * grid_y + 

          model_diabetic_vs_obese_inactive.intercept_) 

 

# Plot the regression plane 

ax.plot_surface(grid_x, grid_y, grid_z, alpha=0.3, rstride=100, cstride=100, color='blue', 

label='Regression Plane') 

ax.set_xlabel('% OBESE') 

ax.set_ylabel('% INACTIVE') 

ax.set_zlabel('% DIABETIC') 

ax.set_title('Multiple Linear Regression: % DIABETIC vs % OBESE and % INACTIVE') 

 

plt.legend() 

plt.show() 

 

# Evaluate the model 

mse_diabetic_vs_obese_inactive = 

metrics.mean_squared_error(y_test_diabetic_vs_obese_inactive, 

y_pred_diabetic_vs_obese_inactive) 

mae_diabetic_vs_obese_inactive = 

metrics.mean_absolute_error(y_test_diabetic_vs_obese_inactive, 

y_pred_diabetic_vs_obese_inactive) 

rmse_diabetic_vs_obese_inactive = 

metrics.mean_squared_error(y_test_diabetic_vs_obese_inactive, 

y_pred_diabetic_vs_obese_inactive, squared=False) 

 

# Calculate kurtosis and skewness 

kurtosis_diabetic_vs_obese_inactive = kurtosis(residuals_diabetic_vs_obese_inactive) 

skewness_diabetic_vs_obese_inactive = skew(residuals_diabetic_vs_obese_inactive) 

 

# Calculate median and standard deviation 

median_diabetic_vs_obese_inactive = np.median(residuals_diabetic_vs_obese_inactive) 

std_dev_diabetic_vs_obese_inactive = np.std(residuals_diabetic_vs_obese_inactive) 

 

# Print the results 

print('Mean Square Error (DIABETIC vs OBESE and INACTIVE):', 

mse_diabetic_vs_obese_inactive) 

print('Mean Absolute Error (DIABETIC vs OBESE and INACTIVE):', 

mae_diabetic_vs_obese_inactive) 

print('Root Mean Squared Error (DIABETIC vs OBESE and INACTIVE):', 

rmse_diabetic_vs_obese_inactive) 

print('Kurtosis (DIABETIC vs OBESE and INACTIVE):', kurtosis_diabetic_vs_obese_inactive) 

print('Skewness (DIABETIC vs OBESE and INACTIVE):', 

skewness_diabetic_vs_obese_inactive) 

print('Median (DIABETIC vs OBESE and INACTIVE):', median_diabetic_vs_obese_inactive) 

print('Standard Deviation (DIABETIC vs OBESE and INACTIVE):', 

std_dev_diabetic_vs_obese_inactive) 
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# Create a linear regression model 

model_multiple_regression = LinearRegression() 

 

# Train the model 

model_multiple_regression.fit(X_train_diabetic_vs_obese_inactive, 

y_train_diabetic_vs_obese_inactive) 

 

# Add a constant to the predictor variables (required for statsmodels) 

X_with_constant_multiple_regression = sm.add_constant(X_train_diabetic_vs_obese_inactive) 

 

# Create an OLS (Ordinary Least Squares) model 

ols_model_multiple_regression = sm.OLS(y_train_diabetic_vs_obese_inactive, 

X_with_constant_multiple_regression) 

 

# Fit the OLS model 

ols_results_multiple_regression = ols_model_multiple_regression.fit() 

 

# Print the summary which contains p-values 

print(ols_results_multiple_regression.summary()) 

 

# Select the independent variable (X) and dependent variable (y) 

X_obese = df_merged[['% OBESE']] 

y_diabetic = df_merged['% DIABETIC'] 

 

# Split the data into training and testing sets 

X_train_obese, X_test_obese, y_train_diabetic, y_test_diabetic = train_test_split( 

    X_obese, y_diabetic, test_size=0.2, random_state=0) 

 

# Create a linear regression model 

model_obese_vs_diabetic = LinearRegression() 

 

# Train the model 

model_obese_vs_diabetic.fit(X_train_obese, y_train_diabetic) 

 

# Make predictions on the test set 

y_pred_diabetic = model_obese_vs_diabetic.predict(X_test_obese) 

 

# Print the coefficients 

print('Coefficients:', model_obese_vs_diabetic.coef_) 

print('Intercept:', model_obese_vs_diabetic.intercept_) 

 

# Evaluate the model 

mse = mean_squared_error(y_test_diabetic, y_pred_diabetic) 

print('Mean Squared Error:', mse) 
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# Plot the regression line 

plt.scatter(X_test_obese, y_test_diabetic, color='black', label='Actual') 

plt.plot(X_test_obese, y_pred_diabetic, color='blue', linewidth=3, label='Regression Line') 

plt.xlabel('% OBESE') 

plt.ylabel('% DIABETIC') 

plt.title('Linear Regression: % OBESE vs % DIABETIC') 

plt.legend() 

plt.show() 

 

# Display the summary with p-values 

X_with_constant_obese = sm.add_constant(X_train_obese) 

ols_model_obese_vs_diabetic = sm.OLS(y_train_diabetic, X_with_constant_obese) 

ols_results_obese_vs_diabetic = ols_model_obese_vs_diabetic.fit() 

print(ols_results_obese_vs_diabetic.summary()) 

 

# Select the independent variable (X) and dependent variable (y) 

X_inactive = df_merged[['% INACTIVE']] 

y_diabetic = df_merged['% DIABETIC'] 

 

# Split the data into training and testing sets 

X_train_inactive, X_test_inactive, y_train_diabetic, y_test_diabetic = train_test_split( 

    X_inactive, y_diabetic, test_size=0.2, random_state=0) 

 

# Create a linear regression model 

model_inactive_vs_diabetic = LinearRegression() 

 

# Train the model 

model_inactive_vs_diabetic.fit(X_train_inactive, y_train_diabetic) 

 

# Make predictions on the test set 

y_pred_diabetic = model_inactive_vs_diabetic.predict(X_test_inactive) 

 

# Print the coefficients 

print('Coefficients:', model_inactive_vs_diabetic.coef_) 

print('Intercept:', model_inactive_vs_diabetic.intercept_) 

 

# Evaluate the model 

mse = mean_squared_error(y_test_diabetic, y_pred_diabetic) 

print('Mean Squared Error:', mse) 

 

# Plot the regression line 

plt.scatter(X_test_inactive, y_test_diabetic, color='black', label='Actual') 

plt.plot(X_test_inactive, y_pred_diabetic, color='blue', linewidth=3, label='Regression Line') 

plt.xlabel('% INACTIVE') 

plt.ylabel('% DIABETIC') 

plt.title('Linear Regression: % INACTIVE vs % DIABETIC') 
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plt.legend() 

plt.show() 

 

# Display the summary with p-values 

X_with_constant_inactive = sm.add_constant(X_train_inactive) 

ols_model_inactive_vs_diabetic = sm.OLS(y_train_diabetic, X_with_constant_inactive) 

ols_results_inactive_vs_diabetic = ols_model_inactive_vs_diabetic.fit() 

print(ols_results_inactive_vs_diabetic.summary()) 

# Calculate kurtosis after linear regression 

residuals_diabetic = y_test_diabetic - y_pred_diabetic 

residuals_obesity = y_test_obesity - y_pred_obesity 

residuals_inactive = y_test_inactive - y_pred_inactive 

 

kurtosis_diabetic_after = kurtosis(residuals_diabetic) 

kurtosis_obesity_after = kurtosis(residuals_obesity) 

kurtosis_inactive_after = kurtosis(residuals_inactive) 

 

print('Kurtosis after linear regression - Diabetic:', kurtosis_diabetic_after) 

print('Kurtosis after linear regression - Obesity:', kurtosis_obesity_after) 

print('Kurtosis after linear regression - Inactive:', kurtosis_inactive_after) 

 

# Calculate skewness after linear regression 

 

skew_diabetic_after = skew(residuals_diabetic) 

print('Skewness after linear regression - Diabetic:', skew_diabetic_after) 

skew_obese_after = skew(residuals_obese) 

print('Skewness after linear regression - Obesity:', skew_obese_after) 

skew_inactive_after = skew(residuals_inactive) 

print('Skewness after linear regression - Inactivity:', skew_inactive_after) 

 

# Diabetes 

residuals_diabetic = y_test_diabetic_vs_obese_inactive - y_pred_diabetic_vs_obese_inactive 

mse_diabetic_after = mean_squared_error(y_test_diabetic_vs_obese_inactive, 

y_pred_diabetic_vs_obese_inactive) 

rmse_diabetic_after = np.sqrt(mse_diabetic_after) 

print('MSE after linear regression - Diabetes:', mse_diabetic_after) 

print('RMSE after linear regression - Diabetes:', rmse_diabetic_after) 

 

# Obesity 

residuals_obese = y_test_obese - y_pred_obese 

mse_obese_after = mean_squared_error(y_test_obese, y_pred_obese) 

rmse_obese_after = np.sqrt(mse_obese_after) 

print('MSE after linear regression - Obesity:', mse_obese_after) 

print('RMSE after linear regression - Obesity:', rmse_obese_after) 

 

# Inactivity 
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residuals_inactive = y_test_inactive - y_pred_inactive 

mse_inactive_after = mean_squared_error(y_test_inactive, y_pred_inactive) 

rmse_inactive_after = np.sqrt(mse_inactive_after) 

print('MSE after linear regression - Inactivity:', mse_inactive_after) 

print('RMSE after linear regression - Inactivity:', rmse_inactive_after) 

# Extract the % DIABETIC data from your DataFrame 

diabetic_data = df_merged['% DIABETIC'] 

 

# Calculate mean and standard deviation 

mean = diabetic_data.mean() 

std_dev = diabetic_data.std() 

 

# Create a histogram to visualize the distribution 

plt.hist(diabetic_data, bins=30, density=True, alpha=0.6, color='g') 

 

# Create a range of x values 

x = np.linspace(mean - 3 * std_dev, mean + 3 * std_dev, 100) 

# Calculate the corresponding probability density function (PDF) 

pdf = stats.norm.pdf(x, mean, std_dev) 

 

# Plot the PDF as a smooth curve 

plt.plot(x, pdf, 'k-', linewidth=2) 

 

# Add labels and a title 

plt.xlabel('% DIABETIC') 

plt.ylabel('Probability Density') 

plt.title('Normal Distribution of % DIABETIC') 

 

# Show the plot 

plt.show() 

# Extract the % OBESE data from your DataFrame 

obese_data = df_merged['% OBESE'] 

 

# Calculate mean and standard deviation 

mean = obese_data.mean() 

std_dev = obese_data.std() 

 

# Create a histogram to visualize the distribution 

plt.hist(obese_data, bins=30, density=True, alpha=0.6, color='b') 

 

# Create a range of x values 

x = np.linspace(mean - 3 * std_dev, mean + 3 * std_dev, 100) 

# Calculate the corresponding probability density function (PDF) 

pdf = stats.norm.pdf(x, mean, std_dev) 

 

# Plot the PDF as a smooth curve 
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plt.plot(x, pdf, 'k-', linewidth=2) 

 

# Add labels and a title 

plt.xlabel('% OBESE') 

plt.ylabel('Probability Density') 

plt.title('Normal Distribution of % OBESE') 

 

# Show the plot 

plt.show() 

 

# Extract the % INACTIVE data from your DataFrame 

inactive_data = df_merged['% INACTIVE'] 

 

# Calculate mean and standard deviation 

mean = inactive_data.mean() 

std_dev = inactive_data.std() 

 

# Create a histogram to visualize the distribution 

plt.hist(inactive_data, bins=30, density=True, alpha=0.6, color='r') 

 

# Create a range of x values 

x = np.linspace(mean - 3 * std_dev, mean + 3 * std_dev, 100) 

# Calculate the corresponding probability density function (PDF) 

pdf = stats.norm.pdf(x, mean, std_dev) 

 

# Plot the PDF as a smooth curve 

plt.plot(x, pdf, 'k-', linewidth=2) 

 

# Add labels and a title 

plt.xlabel('% INACTIVE') 

plt.ylabel('Probability Density') 

plt.title('Normal Distribution of % INACTIVE') 

 

# Show the plot 

plt.show() 

#correlational analysis 

# Scatter plot: % DIABETIC vs % OBESE 

plt.scatter(df_merged['% OBESE'], y_diabetic_vs_obese_inactive, color='blue') 

plt.title('% DIABETIC vs % OBESE') 

plt.xlabel('% OBESE') 

plt.ylabel('% DIABETIC') 

plt.show() 

 

# Scatter plot: % DIABETIC vs % INACTIVE 

plt.scatter(df_merged['% INACTIVE'], y_diabetic_vs_obese_inactive, color='green') 

plt.title('% DIABETIC vs % INACTIVE') 
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plt.xlabel('% INACTIVE') 

plt.ylabel('% DIABETIC') 

plt.show() 

 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

 

# Assuming df_merged contains the DataFrame with columns '% DIABETIC', '% OBESE', '% 

INACTIVE' 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

# Scatter plot 

ax.scatter(df_merged['% OBESE'], df_merged['% INACTIVE'], df_merged['% DIABETIC']) 

# Set labels 

ax.set_xlabel('% OBESE') 

ax.set_ylabel('% INACTIVE') 

ax.set_zlabel('% DIABETIC') 

# Set title 

ax.set_title('3D Scatter Plot of % DIABETIC, % OBESE, and % INACTIVE') 

plt.show() 

 

8 Reference: 

 
1. Reference: “An Introduction to Statistical Learning with Applications in Python”, Chapter 4. 

2. Applied Logistic Regression, Hosmer & Lemeshow. 

 


