
 

(1) College students completing a preliminary year 

 

The data for college students was very small but it had a lot of columns which made it very rich. 

There were 6 character columns and 28 numerical columns. Most of the numerical columns had the 

value of either 1 or 0 

 

As always, I printed the head of the data and then the summary and immediately noticed the 

missing values. Because we had character variables, there was a possibility of missing values in these 

columns too so I checked all the character variables separately. In this process, I found that 4 out of 

the 6 character variables had 2 rows when all of them were missing 

There were several missing values in the remaining 2 columns. To solve the missing values in 

character columns, we delete the two rows with missing values in 4 columns and the 2 columns with 

a lot of missing values 

The next step was to solve the missing values in numerical columns which is easy. As a simple step, 

they have been imputed with mean of the data 

Then we set a seed so that the results can be replicated. We have divided our data into 85%-15% 

train test split and then fitted out logistic regression model on the train data only.  

The model summary shows us that there were no anomalies in model fitting and the model looks 

good at the onset. To verify this, we make predictions on the test data and check how many of them 

were correct. The model accuracy on test data is as follows: 

predictions  0  1 
          0  5  2 
          1  3 11 

 

This shows that we were able to make 5 out of 8 correct predictions as 0 and 11 out of 13 correct 

predictions as 1. The total accuracy is 5+11 = 16 correct predictions out of 21. This is equal to 16/21 

or 76.19% accuracy and is a great number 

 

We then try to find out the features which decide the model 

predictions. These features in their order of importance are: 

Receptivity.to.Academic.Assistance..percentile.score.before.start.of.semester. 1.18E-04 



Completed.Connect...1.yes..0.no.1 6.41E-05 

Number.of.Peer.Mentor.Meetings.Attended 6.37E-05 

Peer.MentorFrancess 5.55E-05 

Peer.MentorCorrinn 5.36E-05 

Completed.Connect...1.yes..0.no.0, contract for fall 5.27E-05 

Peer.MentorJoli 4.93E-05 

Peer.MentorGeorge 4.89E-05 

Attended.Orientation...1.yes..0.no. 3.87E-05 

Dropout.Proneness..percentile.score.before.start.of.semester. 3.77E-05 

Receptivity.to.Academic.Assistance..percentile.score.before.start.of.semester. 1.18E-04 

CODE: 

#Import libraries 

library(dplyr) 

library(caret) 

 

#Read data 

data = read.csv("232408682483120_File.csv") 

 

#View data 

head(data) 

summary(data) #missing value alert 

 

#Check character columns 

unique(data$Gender) #So there are missing values here too 

 

#Check how many missing in gender 

length(which(data$Gender=="")) #Only 2. Delete 

data = data %>% filter(!Gender=="") 

 

#Check how many missing in Federal Ethnic Group 

length(which(data$Federal.Ethnic.Group=="")) #No missing values now 

#Check how many missing in Peer Mentor 

length(which(data$Peer.Mentor=="")) #No missing values now 

#Check how many missing in Completed.Connect...1.yes..0.no. 

length(which(data$Completed.Connect...1.yes..0.no.=="")) #No missing values 

now 

#Check how many missing in Reason.for.not.Completing.Connect 

length(which(data$Reason.for.not.Completing.Connect=="")) #Should be removed 

#Check how many missing in Reason.not.Retained 



length(which(data$Reason.not.Retained=="")) #Should be removed 

 

data$Reason.for.not.Completing.Connect=NULL 

data$Reason.not.Retained=NULL 

 

#Let's fill all the remaining missing values by their mean 

for(i in 1:ncol(data)){ 

  data[is.na(data[,i]), i] <- mean(data[,i], na.rm = TRUE) 

} 

 

#Divide data in train and test 

set.seed(5) 

 

random_rows = sample(c(TRUE, FALSE), nrow(data), replace=TRUE, 

prob=c(0.85,0.15)) 

college_train = data[random_rows, ] 

college_test = data[!random_rows, ] 

 

#Train the model 

model.fit = glm(Retained.F17.F18...1.yes..0.no. ~ .,  data = 

college_train,  family = "binomial") 

#Check how the model performed 

model.fit #Some variables have NA values. They don't have any value 

 

#Model accuracy check 

predictions = predict(model.fit, college_test, type = "response") 

predictions = round(predictions,0) 

table(predictions,college_test$Retained.F17.F18...1.yes..0.no.) #16/21 = 

76.19% 

 

#Check for important features 

list_of_feature_importance = as.data.frame(varImp(model.fit)) 

list_of_feature_importance = list_of_feature_importance %>% 

arrange(desc(Overall) ) 

head(list_of_feature_importance,10)  
 

(2) Heart Health Data 

 

The data for heart health can be used in various ways because the delay in number of days which 

the patient makes before needing medical attention is initially a continuous variable and it has to be 

converted into a binary variable using various thresholds. In this assignment, we will look at three 

different models built from binary variables derived out of ‘delaydays’ variable. 

As always, I printed the head of the data and then the summary. The first thing to notice was the 

presence of ID column which we can delete. The next thing was the presence of 3 outliers in the 



delaydays variable which had to be fixed. Along with that there were 2 missing values in livewith 

variable. We have replaced all the missing values with the mean of data  

Part 1 - Predict whether a person seeks medical treatment in 2 days or less 

The first model divides the data based on the median and hence it equally distributes the delaydays 

into 1 and 0. After creating the binary variable, we set a seed so that the results can be replicated. 

We have divided our data into 85%-15% train test split and then fitted out logistic regression model 

on the train data only.  

The model summary shows us that there were no anomalies in model fitting and the model looks 

good at the onset. To verify this, we make predictions on the test data and check how many of them 

were correct. The model accuracy on test data is as follows: 

predictions  0    1 
          0  17  17 
          1  9   18 

 

This shows that we were able to make 17 out of 26 correct predictions as 0 and 18 out of 35 correct 

predictions as 1. The total accuracy is 17+18 = 35 correct predictions out of 61. This is equal to 35/61 

or 57.38% accuracy and is average 

We then try to find out the features which decide the model predictions. These features in their 

order of importance are: 

cough 1.941344 

edema 1.70179 

weightgain 1.68214 

DOE 1.495624 

PND 1.222872 

palpitations 1.182458 

Gender 1.128875 

nausea 0.778395 

chestpain 0.773945 

Education 0.757391 

 

This shows that Cough, Edema and Weight gain are the three most important features in people who 

need medical attention in 2 days or less. It is also interesting that gender and education are also two 

of the top 10 features. This might mean that people of a particular gender need or seek early 

medical attention or people with a particular education background need or seek early medical 

attention 

 

Part 2 - Predict whether a person seeks medical treatment on or less than cohort average 

The second model divides the data based on the mean which is relatively larger and is equal to 

5.725779. This shows that some values of delaydays are very large and may be affecting the output. 

Because of the large threshold, we have more than 2/3 of data as 1 and rest as 0. After creating the 



binary variable, we set a seed so that the results can be replicated. We have divided our data into 

85%-15% train test split and then fitted out logistic regression model on the train data only.  

However, when we try to make predictions from the second model then we realize that the model is 

dumb because it is predicting everything as 1. This is primarily due to class imbalance stemming from 

very high values in delaydays column. The model accuracy on test data is as follows: 

predictions  0    1 
          0  0    1 
          1  16   44 

 

This shows that we were able to make 0 out of 16 correct predictions as 0 and 44 out of 45 correct 

predictions as 1. This is equal to 44/61 or 72.13% accuracy  

We then try to find out the features which decide the model predictions. These features in their 

order of importance are: 

edema 2.427582 

nausea 1.946682 

PND 1.167519 

DOE 1.15639 

fatigue 1.144802 

weightgain 1.101344 

Gender 1.045032 

Education 0.88796 

orthopnea 0.853992 

tightshoes 0.816436 

 

This shows that Edema, Nausea and PND are the three most important features in people who need 

medical attention in 5.7 days or less. It is also interesting that gender and education are still two of 

the top 10 features. Another interesting thing is the presence of tightshoes in the top 10 features. 

Compared to the previous model, cough, Palpitations and chest pain are missing. The first model had 

cough as the most important feature whereas it is not in the top 10 in the second model 

 

Part 3 - Predict whether a person seeks medical treatment in less than or equal to 1 days 

The last model divides the data based on the 1 day or less which is less than the mean and this time 

we have more than 2/3 of data as 0. After creating the binary variable, we set a seed so that the 

results can be replicated. We have divided our data into 85%-15% train test split and then fitted out 

logistic regression model on the train data only.  

Unlike Part 2, the model does have some prediction accuracy. The model accuracy on test data is as 

follows: 

predictions  0    1 
          0  35  17 
          1  3   6 

 



This shows that we were able to make 35 out of 38 correct predictions as 0 and 6 out of 20 correct 

predictions as 1. This is equal to 35+6= 41/61 or 67.21% accuracy  

We then try to find out the features which decide the model predictions. These features in their 

order of importance are: 

edema 2.972368 

cough 2.301375 

orthopnea 2.113963 

DOE 1.597461 

Education 1.320676 

Livewith 1.256441 

weightgain 1.143784 

fatigue 1.110786 

PND 1.079065 

tightshoes 0.891531 

 

This time, we have some features from both of the previous models. Cough comes back as important 

feature in model 1 and 3 and tightshoes which was important in model 2 and model 3. Edema, 

Cough and Orthopnea are the three most important features and orthopnea is unique to this 

situation. This means that if a person’s status of orthopnea is known, then it is very easy to 

determine whether the person will need medical attention in 1 day or less. In this model, gender 

does not matter 

CODE: 

#Import libraries 

library(dplyr) 

library(caret) 

library(readxl) 

 

data = read_excel("789968165805283_File.xls") 

 

#View data 

head(data) #Why is ID here? 

summary(data) #Missing values 

 

#Remove ID 

data$ID=NULL 

 

#Let's fill all the remaining missing values by their mean 

for(i in 1:ncol(data)){ 

  data[is.na(data[,i]), i] = mean(as.matrix(data[,i]), na.rm = TRUE) 

} 

 

#Part 1 - Predict whether a person seeks medical treatment in 2 days or less 

median(data$delaydays) #2.02 

data$target_feat = ifelse(data$delaydays<=2, 1,0) 



table(data$target_feat) #203 1's and 203 0's 

 

#Divide data in train and test 

set.seed(5) 

 

random_rows = sample(c(TRUE, FALSE), nrow(data), replace=TRUE, 

prob=c(0.85,0.15)) 

health_train = data[random_rows, ] 

health_test = data[!random_rows, ] 

health_train$delaydays=NULL 

 

#Train the model 

model.fit = glm(target_feat ~ .,  data = health_train,  family = "binomial") 

#Check how the model performed 

model.fit #Some variables have NA values. They don't have any value 

 

#Model accuracy check 

predictions = predict(model.fit, health_test, type = "response") 

predictions = round(predictions,0) 

table(predictions,health_test$target_feat) #35/61 = 57.38% 

 

#Check for important features 

list_of_feature_importance = as.data.frame(varImp(model.fit)) 

list_of_feature_importance = list_of_feature_importance %>% 

arrange(desc(Overall) ) 

head(list_of_feature_importance,10)  

 

#Part 2 - Predict whether a person seeks medical treatment on or less than 

cohort average 

avg = mean(data$delaydays,na.rm = TRUE) 

avg #5.725779 

data$target_feat = ifelse(data$delaydays<=avg, 1,0) 

table(data$target_feat) #285 1's and 121 0's 

 

#Divide data in train and test 

set.seed(5) 

 

random_rows = sample(c(TRUE, FALSE), nrow(data), replace=TRUE, 

prob=c(0.85,0.15)) 

health_train = data[random_rows, ] 

health_test = data[!random_rows, ] 

health_train$delaydays=NULL 

 

#Train the model 

model.fit = glm(target_feat ~ .,  data = health_train,  family = "binomial") 

#Check how the model performed 

model.fit #Some variables have NA values. They don't have any value 

 



#Model accuracy check 

predictions = predict(model.fit, health_test, type = "response") 

predictions = round(predictions,0) 

table(predictions,health_test$target_feat) #44/61 = 72.13% 

#This model is predicting everything as 1. This is a dumb model 

 

#Check for important features 

list_of_feature_importance = as.data.frame(varImp(model.fit)) 

list_of_feature_importance = list_of_feature_importance %>% 

arrange(desc(Overall) ) 

head(list_of_feature_importance,10)  

 

#Part 3 - Predict whether a person seeks medical treatment in less than or 

equal to 1 days 

data$target_feat = ifelse(data$delaydays<=1, 1,0) 

table(data$target_feat) #137 1's and 269 0's 

 

#Divide data in train and test 

set.seed(5) 

 

random_rows = sample(c(TRUE, FALSE), nrow(data), replace=TRUE, 

prob=c(0.85,0.15)) 

health_train = data[random_rows, ] 

health_test = data[!random_rows, ] 

health_train$delaydays=NULL 

 

#Train the model 

model.fit = glm(target_feat ~ .,  data = health_train,  family = "binomial") 

#Check how the model performed 

model.fit #Some variables have NA values. They don't have any value 

 

#Model accuracy check 

predictions = predict(model.fit, health_test, type = "response") 

predictions = round(predictions,0) 

table(predictions,health_test$target_feat) #41/61 = 67.21% 

 

#Check for important features 

list_of_feature_importance = as.data.frame(varImp(model.fit)) 

list_of_feature_importance = list_of_feature_importance %>% 

arrange(desc(Overall) ) 

head(list_of_feature_importance,10)  

 

 

 


