

(1) College students completing a preliminary year

The data for college students was very small but it had a lot of columns which made it very rich.

There were 6 character columns and 28 numerical columns. Most of the numerical columns had the

value of either 1 or 0

As always, I printed the head of the data and then the summary and immediately noticed the

missing values. Because we had character variables, there was a possibility of missing values in these

columns too so I checked all the character variables separately. In this process, I found that 4 out of

the 6 character variables had 2 rows when all of them were missing

There were several missing values in the remaining 2 columns. To solve the missing values in

character columns, we delete the two rows with missing values in 4 columns and the 2 columns with

a lot of missing values

The next step was to solve the missing values in numerical columns which is easy. As a simple step,

they have been imputed with mean of the data

Then we set a seed so that the results can be replicated. We have divided our data into 85%-15%

train test split and then fitted out logistic regression model on the train data only.

The model summary shows us that there were no anomalies in model fitting and the model looks

good at the onset. To verify this, we make predictions on the test data and check how many of them

were correct. The model accuracy on test data is as follows:

predictions 0 1
 0 5 2
 1 3 11

This shows that we were able to make 5 out of 8 correct predictions as 0 and 11 out of 13 correct

predictions as 1. The total accuracy is 5+11 = 16 correct predictions out of 21. This is equal to 16/21

or 76.19% accuracy and is a great number

We then try to find out the features which decide the model

predictions. These features in their order of importance are:

Receptivity.to.Academic.Assistance..percentile.score.before.start.of.semester. 1.18E-04

Completed.Connect...1.yes..0.no.1 6.41E-05

Number.of.Peer.Mentor.Meetings.Attended 6.37E-05

Peer.MentorFrancess 5.55E-05

Peer.MentorCorrinn 5.36E-05

Completed.Connect...1.yes..0.no.0, contract for fall 5.27E-05

Peer.MentorJoli 4.93E-05

Peer.MentorGeorge 4.89E-05

Attended.Orientation...1.yes..0.no. 3.87E-05

Dropout.Proneness..percentile.score.before.start.of.semester. 3.77E-05

Receptivity.to.Academic.Assistance..percentile.score.before.start.of.semester. 1.18E-04

CODE:

#Import libraries

library(dplyr)

library(caret)

#Read data

data = read.csv("232408682483120_File.csv")

#View data

head(data)

summary(data) #missing value alert

#Check character columns

unique(data$Gender) #So there are missing values here too

#Check how many missing in gender

length(which(data$Gender=="")) #Only 2. Delete

data = data %>% filter(!Gender=="")

#Check how many missing in Federal Ethnic Group

length(which(data$Federal.Ethnic.Group=="")) #No missing values now

#Check how many missing in Peer Mentor

length(which(data$Peer.Mentor=="")) #No missing values now

#Check how many missing in Completed.Connect...1.yes..0.no.

length(which(data$Completed.Connect...1.yes..0.no.=="")) #No missing values

now

#Check how many missing in Reason.for.not.Completing.Connect

length(which(data$Reason.for.not.Completing.Connect=="")) #Should be removed

#Check how many missing in Reason.not.Retained

length(which(data$Reason.not.Retained=="")) #Should be removed

data$Reason.for.not.Completing.Connect=NULL

data$Reason.not.Retained=NULL

#Let's fill all the remaining missing values by their mean

for(i in 1:ncol(data)){

 data[is.na(data[,i]), i] <- mean(data[,i], na.rm = TRUE)

}

#Divide data in train and test

set.seed(5)

random_rows = sample(c(TRUE, FALSE), nrow(data), replace=TRUE,

prob=c(0.85,0.15))

college_train = data[random_rows,]

college_test = data[!random_rows,]

#Train the model

model.fit = glm(Retained.F17.F18...1.yes..0.no. ~ ., data =

college_train, family = "binomial")

#Check how the model performed

model.fit #Some variables have NA values. They don't have any value

#Model accuracy check

predictions = predict(model.fit, college_test, type = "response")

predictions = round(predictions,0)

table(predictions,college_test$Retained.F17.F18...1.yes..0.no.) #16/21 =

76.19%

#Check for important features

list_of_feature_importance = as.data.frame(varImp(model.fit))

list_of_feature_importance = list_of_feature_importance %>%

arrange(desc(Overall))

head(list_of_feature_importance,10)

(2) Heart Health Data

The data for heart health can be used in various ways because the delay in number of days which

the patient makes before needing medical attention is initially a continuous variable and it has to be

converted into a binary variable using various thresholds. In this assignment, we will look at three

different models built from binary variables derived out of ‘delaydays’ variable.

As always, I printed the head of the data and then the summary. The first thing to notice was the

presence of ID column which we can delete. The next thing was the presence of 3 outliers in the

delaydays variable which had to be fixed. Along with that there were 2 missing values in livewith

variable. We have replaced all the missing values with the mean of data

Part 1 - Predict whether a person seeks medical treatment in 2 days or less

The first model divides the data based on the median and hence it equally distributes the delaydays

into 1 and 0. After creating the binary variable, we set a seed so that the results can be replicated.

We have divided our data into 85%-15% train test split and then fitted out logistic regression model

on the train data only.

The model summary shows us that there were no anomalies in model fitting and the model looks

good at the onset. To verify this, we make predictions on the test data and check how many of them

were correct. The model accuracy on test data is as follows:

predictions 0 1
 0 17 17
 1 9 18

This shows that we were able to make 17 out of 26 correct predictions as 0 and 18 out of 35 correct

predictions as 1. The total accuracy is 17+18 = 35 correct predictions out of 61. This is equal to 35/61

or 57.38% accuracy and is average

We then try to find out the features which decide the model predictions. These features in their

order of importance are:

cough 1.941344

edema 1.70179

weightgain 1.68214

DOE 1.495624

PND 1.222872

palpitations 1.182458

Gender 1.128875

nausea 0.778395

chestpain 0.773945

Education 0.757391

This shows that Cough, Edema and Weight gain are the three most important features in people who

need medical attention in 2 days or less. It is also interesting that gender and education are also two

of the top 10 features. This might mean that people of a particular gender need or seek early

medical attention or people with a particular education background need or seek early medical

attention

Part 2 - Predict whether a person seeks medical treatment on or less than cohort average

The second model divides the data based on the mean which is relatively larger and is equal to

5.725779. This shows that some values of delaydays are very large and may be affecting the output.

Because of the large threshold, we have more than 2/3 of data as 1 and rest as 0. After creating the

binary variable, we set a seed so that the results can be replicated. We have divided our data into

85%-15% train test split and then fitted out logistic regression model on the train data only.

However, when we try to make predictions from the second model then we realize that the model is

dumb because it is predicting everything as 1. This is primarily due to class imbalance stemming from

very high values in delaydays column. The model accuracy on test data is as follows:

predictions 0 1
 0 0 1
 1 16 44

This shows that we were able to make 0 out of 16 correct predictions as 0 and 44 out of 45 correct

predictions as 1. This is equal to 44/61 or 72.13% accuracy

We then try to find out the features which decide the model predictions. These features in their

order of importance are:

edema 2.427582

nausea 1.946682

PND 1.167519

DOE 1.15639

fatigue 1.144802

weightgain 1.101344

Gender 1.045032

Education 0.88796

orthopnea 0.853992

tightshoes 0.816436

This shows that Edema, Nausea and PND are the three most important features in people who need

medical attention in 5.7 days or less. It is also interesting that gender and education are still two of

the top 10 features. Another interesting thing is the presence of tightshoes in the top 10 features.

Compared to the previous model, cough, Palpitations and chest pain are missing. The first model had

cough as the most important feature whereas it is not in the top 10 in the second model

Part 3 - Predict whether a person seeks medical treatment in less than or equal to 1 days

The last model divides the data based on the 1 day or less which is less than the mean and this time

we have more than 2/3 of data as 0. After creating the binary variable, we set a seed so that the

results can be replicated. We have divided our data into 85%-15% train test split and then fitted out

logistic regression model on the train data only.

Unlike Part 2, the model does have some prediction accuracy. The model accuracy on test data is as

follows:

predictions 0 1
 0 35 17
 1 3 6

This shows that we were able to make 35 out of 38 correct predictions as 0 and 6 out of 20 correct

predictions as 1. This is equal to 35+6= 41/61 or 67.21% accuracy

We then try to find out the features which decide the model predictions. These features in their

order of importance are:

edema 2.972368

cough 2.301375

orthopnea 2.113963

DOE 1.597461

Education 1.320676

Livewith 1.256441

weightgain 1.143784

fatigue 1.110786

PND 1.079065

tightshoes 0.891531

This time, we have some features from both of the previous models. Cough comes back as important

feature in model 1 and 3 and tightshoes which was important in model 2 and model 3. Edema,

Cough and Orthopnea are the three most important features and orthopnea is unique to this

situation. This means that if a person’s status of orthopnea is known, then it is very easy to

determine whether the person will need medical attention in 1 day or less. In this model, gender

does not matter

CODE:

#Import libraries

library(dplyr)

library(caret)

library(readxl)

data = read_excel("789968165805283_File.xls")

#View data

head(data) #Why is ID here?

summary(data) #Missing values

#Remove ID

data$ID=NULL

#Let's fill all the remaining missing values by their mean

for(i in 1:ncol(data)){

 data[is.na(data[,i]), i] = mean(as.matrix(data[,i]), na.rm = TRUE)

}

#Part 1 - Predict whether a person seeks medical treatment in 2 days or less

median(data$delaydays) #2.02

data$target_feat = ifelse(data$delaydays<=2, 1,0)

table(data$target_feat) #203 1's and 203 0's

#Divide data in train and test

set.seed(5)

random_rows = sample(c(TRUE, FALSE), nrow(data), replace=TRUE,

prob=c(0.85,0.15))

health_train = data[random_rows,]

health_test = data[!random_rows,]

health_train$delaydays=NULL

#Train the model

model.fit = glm(target_feat ~ ., data = health_train, family = "binomial")

#Check how the model performed

model.fit #Some variables have NA values. They don't have any value

#Model accuracy check

predictions = predict(model.fit, health_test, type = "response")

predictions = round(predictions,0)

table(predictions,health_test$target_feat) #35/61 = 57.38%

#Check for important features

list_of_feature_importance = as.data.frame(varImp(model.fit))

list_of_feature_importance = list_of_feature_importance %>%

arrange(desc(Overall))

head(list_of_feature_importance,10)

#Part 2 - Predict whether a person seeks medical treatment on or less than

cohort average

avg = mean(data$delaydays,na.rm = TRUE)

avg #5.725779

data$target_feat = ifelse(data$delaydays<=avg, 1,0)

table(data$target_feat) #285 1's and 121 0's

#Divide data in train and test

set.seed(5)

random_rows = sample(c(TRUE, FALSE), nrow(data), replace=TRUE,

prob=c(0.85,0.15))

health_train = data[random_rows,]

health_test = data[!random_rows,]

health_train$delaydays=NULL

#Train the model

model.fit = glm(target_feat ~ ., data = health_train, family = "binomial")

#Check how the model performed

model.fit #Some variables have NA values. They don't have any value

#Model accuracy check

predictions = predict(model.fit, health_test, type = "response")

predictions = round(predictions,0)

table(predictions,health_test$target_feat) #44/61 = 72.13%

#This model is predicting everything as 1. This is a dumb model

#Check for important features

list_of_feature_importance = as.data.frame(varImp(model.fit))

list_of_feature_importance = list_of_feature_importance %>%

arrange(desc(Overall))

head(list_of_feature_importance,10)

#Part 3 - Predict whether a person seeks medical treatment in less than or

equal to 1 days

data$target_feat = ifelse(data$delaydays<=1, 1,0)

table(data$target_feat) #137 1's and 269 0's

#Divide data in train and test

set.seed(5)

random_rows = sample(c(TRUE, FALSE), nrow(data), replace=TRUE,

prob=c(0.85,0.15))

health_train = data[random_rows,]

health_test = data[!random_rows,]

health_train$delaydays=NULL

#Train the model

model.fit = glm(target_feat ~ ., data = health_train, family = "binomial")

#Check how the model performed

model.fit #Some variables have NA values. They don't have any value

#Model accuracy check

predictions = predict(model.fit, health_test, type = "response")

predictions = round(predictions,0)

table(predictions,health_test$target_feat) #41/61 = 67.21%

#Check for important features

list_of_feature_importance = as.data.frame(varImp(model.fit))

list_of_feature_importance = list_of_feature_importance %>%

arrange(desc(Overall))

head(list_of_feature_importance,10)

