
Behind the Bullet: Data Insights into 
Shoo3ngs  

 

The issues: 
 
The Washington Post shared data about police shootings in the United States. This 

data includes information like when and where the shootings happened, details 

about the people involved (like their age, gender, and race), whether they had 

mental health issues, and other important information. The dataset also has 

information about the police departments involved and whether they had body 

cameras. This data helps researchers and policymakers understand patterns and 

trends in police shootings. We come across the following issues. 

1. Who gets involved in shootings by age?  

2. Why do different racial groups have varying involvement in shootings? 

3. Are there patterns in shootings over different years and months? 

4. Why are most shootings involving males, and how can this be addressed? 

5. How do the levels of threat impact incidents? 

6. What do we learn from analyzing how people flee during incidents? 

7. Why is the presence of body cameras important, and how should they be 

used? 

8. How can clustering help pinpoint areas for specific interventions? What 

clustering techniques are used? 

9. What can decision trees teach us about predicting behavior during incidents? 



Findings: 
 

1. Age Distribution: The age distribution of individuals involved in shootings 

shows a median age of 35, with a wide range from 2 to 92.  

2. Race Disparities: There are significant disparities in the racial distribution of 

individuals involved in shootings. Whites (W) have the highest frequency 

(3300), followed by Blacks (B) (1766) and Hispanics (H) (1166). Other racial 

groups, including Asians (A), Native Americans (N), and Others (O), have 

fewer occurrences. 

3. Temporal Patterns: Shootings exhibit variations over the years and months. 

The year 2015 had the highest frequency (918), while 2021 had the lowest 

(350). Monthly distributions also differ, with March having the highest 

frequency (512).  

4. Gender Disparity: Most individuals involved in shootings are male (7613), 

indicating a gender imbalance. Female (F) involvement is relatively low (358), 

with some cases of unknown gender (Unknown, 31). 

5. Threat Levels: Shootings are categorized into different threat levels, with 

"attack" being the most common (5010), followed by "other" (2663), and 

"undetermined" (329).  

6. Fleeing Behavior: The analysis of fleeing behavior reveals that "Not fleeing" 

is the most common response (4430), followed by "Car" (1289), "Foot" 

(1022), and "Other" (295).  

7. Body Camera Presence: In a majority of cases, body cameras were not 

present (6865), while in others, they were used (1137).  



8. Clustering Analysis: Different clustering techniques, including K-Means, 

DBSCAN, and K-Medoids, were applied to identify patterns within the data. 

K-Means grouped incidents into 10 clusters, focusing on locations but not 

well-suited for odd-shaped areas. DBSCAN found 99 clusters, better for 

irregular patterns. K-Medoids, also with 10 clusters, balanced detail and 

reliability, handling outliers better. 

9. Decision Tree Analysis: A decision tree model was constructed to predict 

fleeing behavior using factors like signs of mental illness, gender, race, threat 

level, body camera presence, and armed status. The model achieved an 

accuracy of 67%, offering insights into the factors influencing an individual's 

behavior during these incidents. 

Confusion Matrix Findings: 

• True Positives (TP): The number of cases correctly predicted as "fleeing" is 

37 for "Not fleeing," 1 for "Car," and 676 for "Other." This indicates the 

model's ability to accurately identify instances where individuals were 

indeed fleeing. 

• True Negatives (TN): The model correctly predicted 5010 cases as "Not 

fleeing," indicating its effectiveness in identifying situations where 

individuals were not fleeing. 

• False Positives (FP): There were 3 cases where the model incorrectly 

predicted "fleeing" when the actual behavior was "Not fleeing." Additionally, 

there were 136 cases incorrectly predicted as "fleeing" when the actual 

behavior was "Car," and 33 cases incorrectly predicted as "fleeing" when the 

actual behavior was "Other." 



• False Negatives (FN): There were 7 cases where the model incorrectly 

predicted "Not fleeing" when the actual behavior was "fleeing." Similarly, 

there were 14 cases incorrectly predicted as "Not fleeing" when the actual 

behavior was "Car." 

 

These findings provide valuable information for understanding the demographics, 

temporal trends, and factors associated with shootings, which can inform policy 

decisions and law enforcement strategies to address potential disparities and 

improve incident outcomes. 

 

 

Discussions: 

 

Age Distribution: 

Shootings happen to people of all ages, from very young (2 years old) to 

elderly (92 years old), with most of them being around 35 years old on average. 

This shows that shootings don't discriminate by age, and we should have policies 

and services that can help people of all ages affected by these incidents. 

Race Disparities:  

There are big differences in the number of shootings among different racial 

groups. White people have the most shootings, followed by Black and Hispanic 

people. This shows that there's a problem with racial inequality, and we need 

fair policies to reduce these differences and make things more equal for 

everyone. 



 

Temporal Patterns: 

 Looking at how shootings happen over the years and months, we don't see 

a clear pattern of shootings always going up or down. Instead, it goes up and 

down at different times. This means that police should be ready to act in specific 

areas where shootings might happen more often, and they should try to prevent 

them. 

Gender Disparity:  

Most of the people involved in shootings are men, and this shows there's a 

big difference between men and women in these incidents. We need to look 

more into why this is happening and think about how we can make things fairer 

between men and women in these situations. Policymakers should make sure 

their plans take into account these gender differences and work towards making 

things more equal for everyone. 

Threat Levels: 

 Shootings are divided into different levels of danger, and "attack" is the most 

common one. Knowing these threat levels can help the police get ready for 

different kinds of situations and know how to respond when things get tough. 

It's important that the rules and training they have match up with these threat 

levels so they can handle each situation the right way. 

 

Fleeing Behavior:  

Looking at how people act when a shooting happens tells us important 

things. Most people don't try to run away, but some do, either by using a car, 



running on foot, or other ways. This helps the police know how to train and 

make plans for dealing with people who try to run away during these incidents. 

Body Camera Presence:  

Whether or not police officers have body cameras when incidents occur is 

important for being clear and accountable. Most of the time, they don't have 

these cameras. This suggests that there should be clear rules about when 

and how to use them, so we can be sure about what happens during police 

encounters. 

Cluster Analysis: 

The application of advanced techniques like clustering helps uncover hidden 

patterns within the data. These patterns can inform more targeted 

approaches to addressing different types of incidents, contributing to more 

effective interventions. 

K-Means Clustering: K-Means sorted shootings into 10 groups based on 

where they happened. However, it assumes that these groups are all round 

and have about the same number of shootings. In real life, shootings might 

cluster in irregular shapes or be more concentrated in some areas. K-Means 

is still useful because it gives a general idea of where shootings occur more 

frequently, helping law enforcement decide where to allocate resources. 

DBSCAN Clustering: DBSCAN is like a detective. It found  99 different 

patterns in the data. It doesn't assume all shootings are the same; it looks for 

clusters of different shapes and sizes. These clusters could represent specific 

neighborhoods or places where shootings are more common. DBSCAN is like 

finding hidden hotspots or areas where extra attention is needed to reduce 

shootings. 



K-Medoids Clustering: K-Medoids is similar to K-Means, but it's better at 

handling unusual situations. It grouped shootings into 10 clusters, but it's less 

sensitive to weird data points. This helps in cases where there might be 

unusual patterns in the data. K-Medoids helps law enforcement identify 

areas with consistent shooting patterns and make smarter decisions about 

where to focus their efforts. 

 

Decision Tree Analysis: 

The decision tree analysis helps us understand the complex relationships 

between factors like mental illness, gender, race, threat level, body camera 

presence, and armed status in predicting fleeing behavior. This knowledge 

can lead to better training and response strategies for law enforcement. 

• Accuracy is a metric used to measure the overall performance of a 

classification model. In our case, the accuracy of the decision tree 

model was 0.67, which means that the model correctly predicted 

whether an individual would flee or not in 67% of cases. 

• The confusion matrix provides a more detailed breakdown of the 

model's predictions. It shows the number of true positive (correctly 

predicted fleeing), true negative (correctly predicted not fleeing), false 

positive (predicted fleeing but not fleeing), and false negative 

(predicted not fleeing but fleeing) cases. 

 

In simple terms, these findings help law enforcement and policymakers understand 

who's affected, where incidents happen, and why. It also helps them create fair 

rules, plan better, and improve training for law enforcement officers. 



 

 

Appendix A -Methodology: 

 

Data Collection:  

The data used in this analysis was collected from Washington Post data 

repository on fatal police shootings in the United States from 2015-2022. The 

dataset contains information related to shootings, including various attributes such 

as ID, name, date, manner of death, armed status, age, gender, race, city, state, 

signs of mental illness, threat level, fleeing status, body camera presence, 

longitude, latitude, and is_geocoding_exact. 

 

Data Description: 

The dataset comprises 8002 entries. While most entries provide information 

on the date, manner of death, armed status, city, state, signs of mental illness, 

threat level, fleeing status, body camera presence, and geolocation accuracy, some 

data fields exhibit missing values. Specifically, names are available for 7548 

individuals involved in the incidents, and age information is provided for 7499 of 

them. Gender is known for 7971 individuals, and race is specified for 6485 

individuals. Geospatial information in the form of longitude and latitude 

coordinates is available for 7162 entries. 

 

 

 

 



Data Preparation: 

 As there are missing values present in the datasheet, we removed the 

missing values using the dropna function in Python. It removed the rows which are 

having empty cells. 

 

Variable Creation: 

1. ID: This is a unique identifier for each incident in the dataset. 

2. Name: The name of the individual involved in the incident. 

3. Date: The date on which the incident occurred. 

4. Manner of Death: Describes the manner in which the individual died (e.g., 

homicide,  suicide). 

5. Armed: Indicates whether the individual was armed during the incident. 

6. Age: The age of the individual at the time of the incident. 

7. Gender: The gender of the individual. 

8. Race: The racial background of the individual. 

9. City: The city where the incident took place. 

10. State: The state where the incident occurred. 

11. Signs of Mental Illness: Indicates whether there were signs of mental illness 

in the individual. 

12. Threat Level: Describes the perceived threat level of the individual during the 

incident. 

13. Flee: Indicates whether the individual was fleeing at the time of the incident. 

14. Body Camera: Indicates whether a body camera was present during the 

incident. 

15. Longitude: The longitude coordinates of the incident location. 



16. Latitude: The latitude coordinates of the incident location. 

17. Is Geocoding Exact: Indicates the accuracy of geocoding for the incident 

location. 

 

 

Analytic Methods: 

1. Age Distribution: 

o To analyze the age distribution of individuals involved in shootings, we 

used descriptive statistics such as mean, median, and standard 

deviation. We also created visualizations, including histograms and 

kernel density plots, to visualize the distribution and assess if it follows 

a normal distribution. 

2. Race-Based Age Analysis: 

o To understand how ages vary among different racial groups, we 

created smoothed histograms for each race and performed statistical 

tests to identify significant differences in age distributions among 

races. 

3. Yearly and Monthly Statistics: 

o To examine trends over time, we computed yearly and monthly 

statistics of shootings, including counts and trends. We utilized bar 

charts to visualize these trends. 

4. Gender Distribution: 

o We analyzed the gender distribution of individuals involved in 

shootings, calculating percentages and creating bar graphs to illustrate 

the gender distribution. 



5. State-wise and City-wise Distribution: 

o For geographical analysis, we presented state-wise and city-wise 

distribution of shootings. We used bar charts to visualize these 

distributions. 

 

6. Clustering Analysis: 

o We applied clustering techniques, including DBSCAN, K-Means, and K-

Medoids, to identify potential patterns or clusters in the data based 

on selected features. 

o DBSCAN is a clustering algorithm that groups data points based on 

their density. It identifies clusters as areas with a high density of data 

points separated by areas with lower densities. 

o K-Means is a popular clustering algorithm that partitions data points 

into a pre-defined number of clusters (K) based on their similarity. 

o K-Medoids is similar to K-Means but uses medoids (the most central 

data point in a cluster) instead of centroids to define clusters. This 

makes K-Medoids more robust to outliers. 

7. Decision Tree Analysis: 

o We constructed a decision tree model using features such as 

signs_of_mental_illness, gender, race, threat_level, body_camera, 

and armed to predict the target variable 'flee'. Described how useful 

the Decision tree is for understanding how different factors relate to 

whether someone tries to run away during an incident. 



Appendix B - Results: 
Age Distribution: 

The analysis of age-related statistics among individuals involved in shootings 

reveals a diverse age range, spanning from as young as 2 years old to as old as 92 

years. The average age of approximately 37.21 years indicates a broad distribution. 

While the median age of 35 years suggests a central tendency, the moderate right 

skew (skewness of approximately 0.73) hints at a slightly higher frequency of 

younger individuals affected by these incidents. The relatively flat kurtosis 

(approximately 0.23) implies that the age distribution has lighter tails compared to 

a normal distribution. 



 

Race Distribution: 

 

 

 

 

The analysis of racial demographics among individuals involved in these 

incidents reveals a distribution where the majority of cases are of White (W) 

individuals, accounting for 3,300 incidents. Black (B) individuals follow with 1,766 

incidents, while Hispanic (H) individuals are the next largest group with 1,166 

incidents. Asian (A) individuals were involved in 129 incidents, Native American (N) 

individuals in 105 incidents, and Other (O) races in 19 incidents. 



 

Age by Race distribution: 

 

 

 

The analysis of age statistics among different racial groups provides valuable 

insights into the demographics of individuals involved in these incidents. Among 

the racial groups, Asians (A) have a median age of 35.0 years and an average age of 

35.96 years, with a standard deviation of 11.59. Whites (W) exhibit a median age 

of 38.0 years and an average age of 40.13 years, with a standard deviation of 13.16. 

Hispanics (H) have a median age of 32.0 years and an average age of 33.59 years, 

with a standard deviation of 10.74. Blacks (B) show a median age of 31.0 years and 



an average age of 32.93 years, with a standard deviation of 11.39. Other races (O) 

have a median age of 31.0 years and an average age of 33.47 years, with a standard 

deviation of 11.80. Native Americans (N) exhibit a median age of 32.0 years and an 

average age of 32.65 years, with a standard deviation of 8.99.

 

 

 

Yearly-Monthly Statistics: 

 



 

Looking at the yearly data, we can 

see that the number of incidents has 

changed over time. In 2015, there were 

918 incidents, and it gradually decreased 

over the years. In 2022, there were 206 

incidents. 

 

When we look at the data by 

month, we notice that some months 

have more incidents than others. March 

had the most incidents with 512, 

followed by January and February. On the other hand, November and December 

had fewer incidents. 

 

Gender Distribution: 

 



 

The gender distribution of individuals involved in these incidents shows that 

the majority are males (about 7613 cases), while females are less frequently 

involved (around 358 cases). There are also a few cases where the gender 

information is unknown (31 cases) 

 

State-wise and City-wise Distribution: 
 

 

The highest number of deaths 

are in Los Angeles and the least number 

of deaths are in Atlanta when we 

consider city-wise distribution. When 

we look into state-wise distributions, 

the highest number of deaths is in 

California leading more with 1143 and 

the least number of deaths is in Rhode 

Island. 



Threat level, Fleeing and Body Camera Presence: 
 

 

In the analysis of threat levels, we found that the most common threat level 

associated with these incidents is "attack," which occurred in approximately 5010 

cases. "Other" threat levels were reported in 2663 cases, while the threat level was 

"undetermined" in 329 cases.  

   When examining fleeing behavior, we 

observed that a majority of individuals 

involved in these incidents were "Not fleeing" 

(about 4430 cases). Some individuals were 

fleeing in a "Car" (1289 cases), while others 

were on "Foot" (1022 cases), and there were a 

few cases where the fleeing method was 

categorized as "Other" (295 cases).  

 Regarding body camera presence, the analysis revealed that in most cases, 

there was no body camera present (6865 cases). However, body cameras were 

present in a significant number of incidents as well (1137 cases). 

 



Clustering Analysis: 

KMeans Clustering: 

 

 
DBSCAN Clustering: 

 



 

 

 

K-Medoids Clustering: 

 

 

In our clustering analysis, we used three different methods to group similar 

incidents based on their geographical coordinates. The K-Means clustering method 

identified 10 clusters, which means it divided the incidents into 10 distinct groups 

based on their locations. Similarly, the K-Medoids method also resulted in 10 

clusters. However, the DBSCAN clustering method produced a higher number of 

clusters, specifically 99. This indicates that DBSCAN identified more fine-grained 

groupings of incidents, possibly capturing more localized patterns. 

 

 



Decision Tree Analysis: 

 
In our decision tree analysis, we aimed to predict whether individuals would 

flee during various incident scenarios, including cases where they did not flee, fled 

in a car, fled on foot, or in other situations. Our model achieved an accuracy of 

approximately 67%, indicating its ability to make correct predictions in most cases. 

However, when examining the confusion matrix, we found that there were some 

misclassifications. For instance, we correctly predicted 37 incidents where 

individuals did not flee and 676 incidents where they fled. However, there were 

cases of misclassification, such as 125 instances where individuals were predicted 

to flee when they did not, 136 instances involving car-related fleeing, and 33 

instances involving fleeing on foot, where our model made incorrect predictions. 

 
Appendix C - Coding: 
 
import numpy as np 
import pandas as pd 
from sklearn.cluster import DBSCAN 
import matplotlib.pyplot as plt 
import seaborn as sns 
from mpl_toolkits.axes_grid1 import make_axes_locatable 
from sklearn.cluster import KMeans 
import folium 
import warnings 
import calendar 
import matplotlib.pyplot as plt 
warnings.filterwarnings("ignore", category=FutureWarning) 



 
dataset = pd.read_excel("/Users/tysonmukesh/Desktop/MTH-522/Project-2/Shootings.xls") 
from scipy.stats import norm, skew, kurtosis 
 
# Extracting age data and removing missing values 
age_data = dataset['age'].dropna() 
race_data = dataset['race'].dropna() 
 
# Basic Descriptive Statistics 
min_age = age_data.min() 
max_age = age_data.max() 
mean_age = age_data.mean() 
median_age = age_data.median() 
std_dev_age = age_data.std() 
skewness_age = skew(age_data) 
kurtosis_age = kurtosis(age_data) 
 
# Creating the histogram for the age distribution 
 
sns.histplot(age_data, kde=False, color='red', bins=30) 
plt.title('Age Distribution of People Killed by Police') 
plt.xlabel('Age') 
plt.ylabel('Frequency') 
plt.show() 
 
print(f"Minimum Age (min_age): {min_age}") 
print(f"Maximum Age (max_age): {max_age}") 
print(f"Mean Age (mean_age): {mean_age}") 
print(f"Median Age (median_age): {median_age}") 
print(f"Standard Deviation of Age (std_dev_age): {std_dev_age}") 
print(f"Skewness of Age (skewness_age): {skewness_age}") 
print(f"Kurtosis of Age (kurtosis_age): {kurtosis_age}") 
 

sns.histplot(race_data, kde=False, color='red', bins=30) 
plt.title('Race Distribution of People Killed by Police') 
plt.xlabel('Race') 
plt.ylabel('Frequency') 
plt.show() 
 
race_counts = race_data.value_counts() 
 
# Print the frequency of each race 
for race, count in race_counts.items(): 
    print(f"Race: {race}, Frequency: {count}") 
 
# Age by Race Distribution 
for race, ages in ages_by_race.items(): 



    sns.kdeplot(ages, shade=True, label=f'{race} Age Distribution') 
 
# Set plot title and labels 
plt.title('Smooth Histogram of Age by Race') 
plt.xlabel('Age') 
plt.ylabel('Density') 
plt.legend() 
plt.show()# Filtering data to include entries with both age and race information 
filtered_data = dataset.dropna(subset=['age', 'race']) 
 
# Getting unique race categories from the dataset 
race_categories = filtered_data['race'].unique() 
 
# Initializing a dictionary to hold age data for each race 
ages_by_race = {race: filtered_data[filtered_data['race'] == race]['age'] for race in 
race_categories} 
 
# Calculating descriptive statistics for each race 
stats_by_race = {} 
for race, ages in ages_by_race.items(): 
    stats_by_race[race] = { 
        'Median': ages.median(), 
        'Mean': ages.mean(), 
        'Standard Deviation': ages.std(), 
         
    } 
 
# Displaying the calculated statistics for each race 
stats_by_race 
 
# Monthly and Yearly Distribution 
 
# Assuming you have a DataFrame called 'data' with a 'date' column 
data['date'] = pd.to_datetime(data['date']) 
 
# Extract year and month from the 'date' column 
data['year'] = data['date'].dt.year 
data['month'] = data['date'].dt.month 
 
# Create subplots for yearly and monthly distributions side by side 
fig, axes = plt.subplots(1, 2, figsize=(16, 6)) 
 
# Yearly Distribution 
yearly_counts = data['year'].value_counts().sort_index() 
yearly_colors = sns.color_palette("Blues", len(yearly_counts)) 
sns.barplot(x=yearly_counts.index, y=yearly_counts.values, palette=yearly_colors, 
ax=axes[0]) 
axes[0].set_title('Yearly Distribution of Shootings') 



axes[0].set_xlabel('Year') 
axes[0].set_ylabel('Frequency') 
 
# Print yearly counts 
print("Yearly Distribution:") 
for year, count in yearly_counts.items(): 
    print(f"Year: {year}, Frequency: {count}") 
 
# Monthly Distribution 
monthly_counts = data['month'].value_counts().sort_index() 
monthly_colors = sns.color_palette("Oranges", len(monthly_counts)) 
sns.barplot(x=monthly_counts.index - 1, y=monthly_counts.values, 
palette=monthly_colors, ax=axes[1]) 
axes[1].set_title('Monthly Distribution of Shootings') 
axes[1].set_xlabel('Month') 
axes[1].set_ylabel('Frequency') 
 
# Set the x-axis labels to month names 
axes[1].set_xticks(range(12))  # Set the ticks from 0 to 11 (for each month) 
axes[1].set_xticklabels([calendar.month_abbr[i] for i in range(1, 13)])  # Set month 
names as labels 
 
# Print monthly counts 
print("\nMonthly Distribution:") 
for month, count in monthly_counts.items(): 
    print(f"Month: {calendar.month_abbr[month]}, Frequency: {count}") 
 
plt.tight_layout() 
plt.show() 
 
# Gender Distribution 
fig, ax = plt.subplots(figsize=(8, 6)) 
data = dataset.dropna(subset=['latitude', 'longitude','signs_of_mental_illness', 
'gender', 'race', 'flee', 'body_camera','armed','threat_level']) 
gender_counts = data['gender'].value_counts() 
gender_colors = sns.color_palette("Set2", len(gender_counts)) 
sns.barplot(x=gender_counts.index, y=gender_counts.values, palette=gender_colors, 
ax=ax) 
ax.set_title('Gender Distribution of People Killed by Police') 
ax.set_xlabel('Gender') 
ax.set_ylabel('Frequency') 
 
plt.tight_layout() 
plt.show() 
 
# Print gender counts 
print("Gender Distribution:") 
for gender, count in gender_counts.items(): 



    print(f"Gender: {gender}, Frequency: {count}") 
 
# State-wise and City -wise distribution 
state_counts = data['state'].value_counts() 
city_counts = data['city'].value_counts().head(20) 
 
# Create subplots for state-wise and city-wise distributions side by side 
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6)) 
state_colors = sns.color_palette("Set2", len(state_counts)) 
city_colors = sns.color_palette("Set2", len(city_counts)) 
 
# State-wise Distribution Plot 
 

# Create a subplot for state-wise distribution 
fig, ax = plt.subplots(figsize=(14, 8)) 
state_colors = sns.color_palette("Set2", len(state_counts)) 
sns.barplot(x=state_counts.values, y=state_counts.index, palette=state_colors, ax=ax) 
ax.set_title('State-wise Distribution of Shootings (All States)') 
ax.set_xlabel('Frequency') 
ax.set_ylabel('State') 
 
# Print state-wise counts (All States) within the bars 
print("State-wise Distribution (All States):") 
for i, (state, count) in enumerate(state_counts.items()): 
    ax.text(count, i, f" {count} ", va='center', fontsize=12, color='black') 
 
# Print state-wise counts (Top 20) within the bars 
 

# City-wise Distribution Plot 
sns.barplot(x=city_counts.values, y=city_counts.index, palette=city_colors, ax=ax2) 
ax2.set_title('City-wise Distribution of Shootings (Top 20)') 
ax2.set_xlabel('Frequency') 
ax2.set_ylabel('City') 
 
# Print city-wise counts (Top 20) within the bars 
print("\nCity-wise Distribution (Top 20):") 
for i, (city, count) in enumerate(city_counts.items()): 
    ax2.text(count, i, f" {count} ", va='center', fontsize=12, color='black') 
 
plt.tight_layout() 
plt.show() 
 
# Threat level, fleeing and body camera Distribution 
 
# Create a figure with subplots 
fig, axs = plt.subplots(1, 3, figsize=(15, 5)) 



threat_level_counts = df['threat_level'].value_counts() 
flee_counts = df['flee'].value_counts() 
body_camera_counts = df['body_camera'].value_counts() 
 
# Plot threat level bar graph 
axs[0].bar(df['threat_level'].value_counts().index, df['threat_level'].value_counts(), 
color='skyblue') 
axs[0].set_title('Threat Level Distribution') 
axs[0].set_xlabel('Threat Level') 
axs[0].set_ylabel('Count') 
axs[0].tick_params(axis='x', rotation=45) 
 
# Plot fleeing bar graph 
axs[1].bar(df['flee'].value_counts().index, df['flee'].value_counts(), 
color='lightcoral') 
axs[1].set_title('Fleeing Distribution') 
axs[1].set_xlabel('Fleeing Status') 
axs[1].set_ylabel('Count') 
axs[1].tick_params(axis='x', rotation=45) 
 
# Plot body camera presence bar graph 
axs[2].bar(df['body_camera'].value_counts().index, df['body_camera'].value_counts(), 
color='lightgreen') 
axs[2].set_title('Body Camera Presence Distribution') 
axs[2].set_xlabel('Body Camera') 
axs[2].set_ylabel('Count') 
plt.xticks(range(2), ['True', 'False'], rotation=0) 
 
# Adjust spacing between subplots 
plt.tight_layout() 
 
# Show the combined plot 
plt.show() 
 
print("Threat Level Distribution:") 
print(threat_level_counts) 
print() 
 
# Print counts for fleeing 
print("Fleeing Distribution:") 
print(flee_counts) 
print() 
 
# Print counts for body camera presence 
print("Body Camera Presence Distribution:") 
print(body_camera_counts) 
 
 



# K-Means Clustering 
 
# Load your dataset 
df = pd.read_excel("/Users/tysonmukesh/Desktop/MTH-522/Project-2/Shootings.xls") 
# Remove rows with NaN values in 'latitude' or 'longitude' columns 
df = df.dropna(subset=['latitude', 'longitude']) 
 
# Extract latitude and longitude columns 
Lat = df['latitude'].values 
Lon = df['longitude'].values 
 
# Create a NumPy array of coordinates 
geo = np.array([[Lat[i], Lon[i]] for i in range(len(Lat))]) 
 
# Specify the number of clusters (you can change this as needed) 
num_clusters = 10 
 
# Use K-Means clustering 
kmeans = KMeans(n_clusters=num_clusters, random_state=0) 
labels = kmeans.fit_predict(geo) 
 
# Print the number of clusters 
print(f"Number of clusters in  K-Means Clustering: {num_clusters}") 
 
# Print the total data points taken 
total_data_points = len(geo) 
print(f"Total data points taken: {total_data_points}") 
 
# Create an empty list to store clusters 
clusters = [] 
 
# Assign points to the appropriate cluster in the list 
for cluster_num in range(num_clusters): 
    cluster_points = geo[labels == cluster_num] 
    clusters.append(cluster_points.tolist()) 
     
    # Print the total number of elements in each cluster 
    num_elements_in_cluster = len(cluster_points) 
    print(f"Total elements in Cluster {cluster_num}: {num_elements_in_cluster}") 
 
    # Print the elements present in each cluster side by side 
    
 
# Create a folium map 
m = folium.Map(location=[np.mean(Lat), np.mean(Lon)], zoom_start=6) 
 
# Define colors for clusters 
colors = ['red', 'blue', 'darkgreen', 'purple', 'orange', 'darkred', 



          'violet', 'pink', 'yellow','black'] 
 
# Plot the clustered points on the map 
for idx, cluster in enumerate(clusters): 
    color = colors[idx % len(colors)] 
    for point in cluster: 
        folium.CircleMarker( 
            location=point, 
            radius=1,  # Reduce the radius to 2 (or any desired value) 
            color=color, 
            fill=True, 
            fill_color=color 
        ).add_to(m) 
 
# Display the map 
m 
 
# DBSCAN Clustering 
 
# Load your dataset 
df = pd.read_excel("/Users/tysonmukesh/Desktop/MTH-522/Project-2/Shootings.xls") 
# Remove rows with NaN values in 'latitude' or 'longitude' columns 
df = df.dropna(subset=['latitude', 'longitude']) 
 
# Extract latitude and longitude columns 
Lat = df['latitude'].values 
Lon = df['longitude'].values 
 
# Create a NumPy array of coordinates 
geo = np.array([[Lat[i], Lon[i]] for i in range(len(Lat))]) 
 
# Initialize DBSCAN with parameters (you can adjust these as needed) 
epsilon = 0.5  # Radius for neighborhood 
min_samples = 5  # Minimum number of samples in a neighborhood 
 
dbscan = DBSCAN(eps=epsilon, min_samples=min_samples) 
labels = dbscan.fit_predict(geo) 
 
# Find the number of clusters (-1 represents noise points) 
num_clusters = len(set(labels)) - (1 if -1 in labels else 0) 
print(f"Number of clusters in DBSCAN Clustering: {num_clusters}") 
 
# Create an empty list to store clusters 
clusters = [] 
 
# Assign points to the appropriate cluster in the list 
for cluster_num in range(num_clusters): 
    cluster_points = geo[labels == cluster_num] 



    clusters.append(cluster_points.tolist()) 
 
# Create a folium map 
m = folium.Map(location=[np.mean(Lat), np.mean(Lon)], zoom_start=6) 
 
# Define colors for clusters 
colors = ['red', 'blue', 'darkgreen', 'purple', 'orange', 'darkred', 
          'violet', 'pink', 'yellow', 'black'] 
 
# Plot the clustered points on the map 
for idx, cluster in enumerate(clusters): 
    color = colors[idx % len(colors)] 
    for point in cluster: 
        folium.CircleMarker( 
            location=point, 
            radius=1,  # Reduce the radius to 2 (or any desired value) 
            color=color, 
            fill=True, 
            fill_color=color 
        ).add_to(m) 
 
# Display the map 
m 
 
# K-Medoids Clustering 
 
# Load your dataset 
df = pd.read_excel("/Users/tysonmukesh/Desktop/MTH-522/Project-2/Shootings.xls") 
# Remove rows with NaN values in 'latitude' or 'longitude' columns 
df = df.dropna(subset=['latitude', 'longitude']) 
 
# Extract latitude and longitude columns 
Lat = df['latitude'].values 
Lon = df['longitude'].values 
 
# Create a NumPy array of coordinates 
geo = np.array([[Lat[i], Lon[i]] for i in range(len(Lat))]) 
 
# Specify the number of clusters (you can change this as needed) 
num_clusters = 10 
 
# Randomly initialize medoids 
initial_medoids = np.random.choice(len(geo), num_clusters, replace=False) 
medoids = geo[initial_medoids] 
 
# Maximum number of iterations 
max_iterations = 100 
 



# Perform K-Medoids clustering 
for _ in range(max_iterations): 
    # Assign each point to the nearest medoid 
    labels = np.argmin(np.linalg.norm(geo[:, np.newaxis] - medoids, axis=2), axis=1) 
 
    # Update medoids by selecting the point with the minimum total distance to others 
in its cluster 
    new_medoids = np.array([geo[labels == i].mean(axis=0) for i in 
range(num_clusters)]) 
 
    # Check for convergence 
    if np.all(medoids == new_medoids): 
        break 
 
    medoids = new_medoids 
 
# Print the number of clusters 
print(f"Number of clusters K-Medoids: {num_clusters}") 
 
# Create an empty list to store clusters 
clusters = [] 
 
# Assign points to the appropriate cluster in the list 
for cluster_num in range(num_clusters): 
    cluster_points = geo[labels == cluster_num] 
    clusters.append(cluster_points.tolist()) 
 
# Create a folium map 
m = folium.Map(location=[np.mean(Lat), np.mean(Lon)], zoom_start=6) 
 
# Define colors for clusters 
colors = ['red', 'blue', 'darkgreen', 'purple', 'orange', 'darkred', 
          'violet', 'pink', 'yellow', 'black'] 
 
# Plot the clustered points on the map 
for idx, cluster in enumerate(clusters): 
    color = colors[idx % len(colors)] 
    for point in cluster: 
        folium.CircleMarker( 
            location=point, 
            radius=1,  # Reduce the radius to 2 (or any desired value) 
            color=color, 
            fill=True, 
            fill_color=color 
        ).add_to(m) 
 
# Display the map 
m 
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