
Behind the Bullet: Data Insights into
Shoo3ngs

The issues:

The Washington Post shared data about police shootings in the United States. This

data includes information like when and where the shootings happened, details

about the people involved (like their age, gender, and race), whether they had

mental health issues, and other important information. The dataset also has

information about the police departments involved and whether they had body

cameras. This data helps researchers and policymakers understand patterns and

trends in police shootings. We come across the following issues.

1. Who gets involved in shootings by age?

2. Why do different racial groups have varying involvement in shootings?

3. Are there patterns in shootings over different years and months?

4. Why are most shootings involving males, and how can this be addressed?

5. How do the levels of threat impact incidents?

6. What do we learn from analyzing how people flee during incidents?

7. Why is the presence of body cameras important, and how should they be

used?

8. How can clustering help pinpoint areas for specific interventions? What

clustering techniques are used?

9. What can decision trees teach us about predicting behavior during incidents?

Findings:

1. Age Distribution: The age distribution of individuals involved in shootings

shows a median age of 35, with a wide range from 2 to 92.

2. Race Disparities: There are significant disparities in the racial distribution of

individuals involved in shootings. Whites (W) have the highest frequency

(3300), followed by Blacks (B) (1766) and Hispanics (H) (1166). Other racial

groups, including Asians (A), Native Americans (N), and Others (O), have

fewer occurrences.

3. Temporal Patterns: Shootings exhibit variations over the years and months.

The year 2015 had the highest frequency (918), while 2021 had the lowest

(350). Monthly distributions also differ, with March having the highest

frequency (512).

4. Gender Disparity: Most individuals involved in shootings are male (7613),

indicating a gender imbalance. Female (F) involvement is relatively low (358),

with some cases of unknown gender (Unknown, 31).

5. Threat Levels: Shootings are categorized into different threat levels, with

"attack" being the most common (5010), followed by "other" (2663), and

"undetermined" (329).

6. Fleeing Behavior: The analysis of fleeing behavior reveals that "Not fleeing"

is the most common response (4430), followed by "Car" (1289), "Foot"

(1022), and "Other" (295).

7. Body Camera Presence: In a majority of cases, body cameras were not

present (6865), while in others, they were used (1137).

8. Clustering Analysis: Different clustering techniques, including K-Means,

DBSCAN, and K-Medoids, were applied to identify patterns within the data.

K-Means grouped incidents into 10 clusters, focusing on locations but not

well-suited for odd-shaped areas. DBSCAN found 99 clusters, better for

irregular patterns. K-Medoids, also with 10 clusters, balanced detail and

reliability, handling outliers better.

9. Decision Tree Analysis: A decision tree model was constructed to predict

fleeing behavior using factors like signs of mental illness, gender, race, threat

level, body camera presence, and armed status. The model achieved an

accuracy of 67%, offering insights into the factors influencing an individual's

behavior during these incidents.

Confusion Matrix Findings:

• True Positives (TP): The number of cases correctly predicted as "fleeing" is

37 for "Not fleeing," 1 for "Car," and 676 for "Other." This indicates the

model's ability to accurately identify instances where individuals were

indeed fleeing.

• True Negatives (TN): The model correctly predicted 5010 cases as "Not

fleeing," indicating its effectiveness in identifying situations where

individuals were not fleeing.

• False Positives (FP): There were 3 cases where the model incorrectly

predicted "fleeing" when the actual behavior was "Not fleeing." Additionally,

there were 136 cases incorrectly predicted as "fleeing" when the actual

behavior was "Car," and 33 cases incorrectly predicted as "fleeing" when the

actual behavior was "Other."

• False Negatives (FN): There were 7 cases where the model incorrectly

predicted "Not fleeing" when the actual behavior was "fleeing." Similarly,

there were 14 cases incorrectly predicted as "Not fleeing" when the actual

behavior was "Car."

These findings provide valuable information for understanding the demographics,

temporal trends, and factors associated with shootings, which can inform policy

decisions and law enforcement strategies to address potential disparities and

improve incident outcomes.

Discussions:

Age Distribution:

Shootings happen to people of all ages, from very young (2 years old) to

elderly (92 years old), with most of them being around 35 years old on average.

This shows that shootings don't discriminate by age, and we should have policies

and services that can help people of all ages affected by these incidents.

Race Disparities:

There are big differences in the number of shootings among different racial

groups. White people have the most shootings, followed by Black and Hispanic

people. This shows that there's a problem with racial inequality, and we need

fair policies to reduce these differences and make things more equal for

everyone.

Temporal Patterns:

 Looking at how shootings happen over the years and months, we don't see

a clear pattern of shootings always going up or down. Instead, it goes up and

down at different times. This means that police should be ready to act in specific

areas where shootings might happen more often, and they should try to prevent

them.

Gender Disparity:

Most of the people involved in shootings are men, and this shows there's a

big difference between men and women in these incidents. We need to look

more into why this is happening and think about how we can make things fairer

between men and women in these situations. Policymakers should make sure

their plans take into account these gender differences and work towards making

things more equal for everyone.

Threat Levels:

 Shootings are divided into different levels of danger, and "attack" is the most

common one. Knowing these threat levels can help the police get ready for

different kinds of situations and know how to respond when things get tough.

It's important that the rules and training they have match up with these threat

levels so they can handle each situation the right way.

Fleeing Behavior:

Looking at how people act when a shooting happens tells us important

things. Most people don't try to run away, but some do, either by using a car,

running on foot, or other ways. This helps the police know how to train and

make plans for dealing with people who try to run away during these incidents.

Body Camera Presence:

Whether or not police officers have body cameras when incidents occur is

important for being clear and accountable. Most of the time, they don't have

these cameras. This suggests that there should be clear rules about when

and how to use them, so we can be sure about what happens during police

encounters.

Cluster Analysis:

The application of advanced techniques like clustering helps uncover hidden

patterns within the data. These patterns can inform more targeted

approaches to addressing different types of incidents, contributing to more

effective interventions.

K-Means Clustering: K-Means sorted shootings into 10 groups based on

where they happened. However, it assumes that these groups are all round

and have about the same number of shootings. In real life, shootings might

cluster in irregular shapes or be more concentrated in some areas. K-Means

is still useful because it gives a general idea of where shootings occur more

frequently, helping law enforcement decide where to allocate resources.

DBSCAN Clustering: DBSCAN is like a detective. It found 99 different

patterns in the data. It doesn't assume all shootings are the same; it looks for

clusters of different shapes and sizes. These clusters could represent specific

neighborhoods or places where shootings are more common. DBSCAN is like

finding hidden hotspots or areas where extra attention is needed to reduce

shootings.

K-Medoids Clustering: K-Medoids is similar to K-Means, but it's better at

handling unusual situations. It grouped shootings into 10 clusters, but it's less

sensitive to weird data points. This helps in cases where there might be

unusual patterns in the data. K-Medoids helps law enforcement identify

areas with consistent shooting patterns and make smarter decisions about

where to focus their efforts.

Decision Tree Analysis:

The decision tree analysis helps us understand the complex relationships

between factors like mental illness, gender, race, threat level, body camera

presence, and armed status in predicting fleeing behavior. This knowledge

can lead to better training and response strategies for law enforcement.

• Accuracy is a metric used to measure the overall performance of a

classification model. In our case, the accuracy of the decision tree

model was 0.67, which means that the model correctly predicted

whether an individual would flee or not in 67% of cases.

• The confusion matrix provides a more detailed breakdown of the

model's predictions. It shows the number of true positive (correctly

predicted fleeing), true negative (correctly predicted not fleeing), false

positive (predicted fleeing but not fleeing), and false negative

(predicted not fleeing but fleeing) cases.

In simple terms, these findings help law enforcement and policymakers understand

who's affected, where incidents happen, and why. It also helps them create fair

rules, plan better, and improve training for law enforcement officers.

Appendix A -Methodology:

Data Collection:

The data used in this analysis was collected from Washington Post data

repository on fatal police shootings in the United States from 2015-2022. The

dataset contains information related to shootings, including various attributes such

as ID, name, date, manner of death, armed status, age, gender, race, city, state,

signs of mental illness, threat level, fleeing status, body camera presence,

longitude, latitude, and is_geocoding_exact.

Data Description:

The dataset comprises 8002 entries. While most entries provide information

on the date, manner of death, armed status, city, state, signs of mental illness,

threat level, fleeing status, body camera presence, and geolocation accuracy, some

data fields exhibit missing values. Specifically, names are available for 7548

individuals involved in the incidents, and age information is provided for 7499 of

them. Gender is known for 7971 individuals, and race is specified for 6485

individuals. Geospatial information in the form of longitude and latitude

coordinates is available for 7162 entries.

Data Preparation:

 As there are missing values present in the datasheet, we removed the

missing values using the dropna function in Python. It removed the rows which are

having empty cells.

Variable Creation:

1. ID: This is a unique identifier for each incident in the dataset.

2. Name: The name of the individual involved in the incident.

3. Date: The date on which the incident occurred.

4. Manner of Death: Describes the manner in which the individual died (e.g.,

homicide, suicide).

5. Armed: Indicates whether the individual was armed during the incident.

6. Age: The age of the individual at the time of the incident.

7. Gender: The gender of the individual.

8. Race: The racial background of the individual.

9. City: The city where the incident took place.

10. State: The state where the incident occurred.

11. Signs of Mental Illness: Indicates whether there were signs of mental illness

in the individual.

12. Threat Level: Describes the perceived threat level of the individual during the

incident.

13. Flee: Indicates whether the individual was fleeing at the time of the incident.

14. Body Camera: Indicates whether a body camera was present during the

incident.

15. Longitude: The longitude coordinates of the incident location.

16. Latitude: The latitude coordinates of the incident location.

17. Is Geocoding Exact: Indicates the accuracy of geocoding for the incident

location.

Analytic Methods:

1. Age Distribution:

o To analyze the age distribution of individuals involved in shootings, we

used descriptive statistics such as mean, median, and standard

deviation. We also created visualizations, including histograms and

kernel density plots, to visualize the distribution and assess if it follows

a normal distribution.

2. Race-Based Age Analysis:

o To understand how ages vary among different racial groups, we

created smoothed histograms for each race and performed statistical

tests to identify significant differences in age distributions among

races.

3. Yearly and Monthly Statistics:

o To examine trends over time, we computed yearly and monthly

statistics of shootings, including counts and trends. We utilized bar

charts to visualize these trends.

4. Gender Distribution:

o We analyzed the gender distribution of individuals involved in

shootings, calculating percentages and creating bar graphs to illustrate

the gender distribution.

5. State-wise and City-wise Distribution:

o For geographical analysis, we presented state-wise and city-wise

distribution of shootings. We used bar charts to visualize these

distributions.

6. Clustering Analysis:

o We applied clustering techniques, including DBSCAN, K-Means, and K-

Medoids, to identify potential patterns or clusters in the data based

on selected features.

o DBSCAN is a clustering algorithm that groups data points based on

their density. It identifies clusters as areas with a high density of data

points separated by areas with lower densities.

o K-Means is a popular clustering algorithm that partitions data points

into a pre-defined number of clusters (K) based on their similarity.

o K-Medoids is similar to K-Means but uses medoids (the most central

data point in a cluster) instead of centroids to define clusters. This

makes K-Medoids more robust to outliers.

7. Decision Tree Analysis:

o We constructed a decision tree model using features such as

signs_of_mental_illness, gender, race, threat_level, body_camera,

and armed to predict the target variable 'flee'. Described how useful

the Decision tree is for understanding how different factors relate to

whether someone tries to run away during an incident.

Appendix B - Results:
Age Distribution:

The analysis of age-related statistics among individuals involved in shootings

reveals a diverse age range, spanning from as young as 2 years old to as old as 92

years. The average age of approximately 37.21 years indicates a broad distribution.

While the median age of 35 years suggests a central tendency, the moderate right

skew (skewness of approximately 0.73) hints at a slightly higher frequency of

younger individuals affected by these incidents. The relatively flat kurtosis

(approximately 0.23) implies that the age distribution has lighter tails compared to

a normal distribution.

Race Distribution:

The analysis of racial demographics among individuals involved in these

incidents reveals a distribution where the majority of cases are of White (W)

individuals, accounting for 3,300 incidents. Black (B) individuals follow with 1,766

incidents, while Hispanic (H) individuals are the next largest group with 1,166

incidents. Asian (A) individuals were involved in 129 incidents, Native American (N)

individuals in 105 incidents, and Other (O) races in 19 incidents.

Age by Race distribution:

The analysis of age statistics among different racial groups provides valuable

insights into the demographics of individuals involved in these incidents. Among

the racial groups, Asians (A) have a median age of 35.0 years and an average age of

35.96 years, with a standard deviation of 11.59. Whites (W) exhibit a median age

of 38.0 years and an average age of 40.13 years, with a standard deviation of 13.16.

Hispanics (H) have a median age of 32.0 years and an average age of 33.59 years,

with a standard deviation of 10.74. Blacks (B) show a median age of 31.0 years and

an average age of 32.93 years, with a standard deviation of 11.39. Other races (O)

have a median age of 31.0 years and an average age of 33.47 years, with a standard

deviation of 11.80. Native Americans (N) exhibit a median age of 32.0 years and an

average age of 32.65 years, with a standard deviation of 8.99.

Yearly-Monthly Statistics:

Looking at the yearly data, we can

see that the number of incidents has

changed over time. In 2015, there were

918 incidents, and it gradually decreased

over the years. In 2022, there were 206

incidents.

When we look at the data by

month, we notice that some months

have more incidents than others. March

had the most incidents with 512,

followed by January and February. On the other hand, November and December

had fewer incidents.

Gender Distribution:

The gender distribution of individuals involved in these incidents shows that

the majority are males (about 7613 cases), while females are less frequently

involved (around 358 cases). There are also a few cases where the gender

information is unknown (31 cases)

State-wise and City-wise Distribution:

The highest number of deaths

are in Los Angeles and the least number

of deaths are in Atlanta when we

consider city-wise distribution. When

we look into state-wise distributions,

the highest number of deaths is in

California leading more with 1143 and

the least number of deaths is in Rhode

Island.

Threat level, Fleeing and Body Camera Presence:

In the analysis of threat levels, we found that the most common threat level

associated with these incidents is "attack," which occurred in approximately 5010

cases. "Other" threat levels were reported in 2663 cases, while the threat level was

"undetermined" in 329 cases.

 When examining fleeing behavior, we

observed that a majority of individuals

involved in these incidents were "Not fleeing"

(about 4430 cases). Some individuals were

fleeing in a "Car" (1289 cases), while others

were on "Foot" (1022 cases), and there were a

few cases where the fleeing method was

categorized as "Other" (295 cases).

 Regarding body camera presence, the analysis revealed that in most cases,

there was no body camera present (6865 cases). However, body cameras were

present in a significant number of incidents as well (1137 cases).

Clustering Analysis:

KMeans Clustering:

DBSCAN Clustering:

K-Medoids Clustering:

In our clustering analysis, we used three different methods to group similar

incidents based on their geographical coordinates. The K-Means clustering method

identified 10 clusters, which means it divided the incidents into 10 distinct groups

based on their locations. Similarly, the K-Medoids method also resulted in 10

clusters. However, the DBSCAN clustering method produced a higher number of

clusters, specifically 99. This indicates that DBSCAN identified more fine-grained

groupings of incidents, possibly capturing more localized patterns.

Decision Tree Analysis:

In our decision tree analysis, we aimed to predict whether individuals would

flee during various incident scenarios, including cases where they did not flee, fled

in a car, fled on foot, or in other situations. Our model achieved an accuracy of

approximately 67%, indicating its ability to make correct predictions in most cases.

However, when examining the confusion matrix, we found that there were some

misclassifications. For instance, we correctly predicted 37 incidents where

individuals did not flee and 676 incidents where they fled. However, there were

cases of misclassification, such as 125 instances where individuals were predicted

to flee when they did not, 136 instances involving car-related fleeing, and 33

instances involving fleeing on foot, where our model made incorrect predictions.

Appendix C - Coding:

import numpy as np
import pandas as pd
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
import seaborn as sns
from mpl_toolkits.axes_grid1 import make_axes_locatable
from sklearn.cluster import KMeans
import folium
import warnings
import calendar
import matplotlib.pyplot as plt
warnings.filterwarnings("ignore", category=FutureWarning)

dataset = pd.read_excel("/Users/tysonmukesh/Desktop/MTH-522/Project-2/Shootings.xls")
from scipy.stats import norm, skew, kurtosis

Extracting age data and removing missing values
age_data = dataset['age'].dropna()
race_data = dataset['race'].dropna()

Basic Descriptive Statistics
min_age = age_data.min()
max_age = age_data.max()
mean_age = age_data.mean()
median_age = age_data.median()
std_dev_age = age_data.std()
skewness_age = skew(age_data)
kurtosis_age = kurtosis(age_data)

Creating the histogram for the age distribution

sns.histplot(age_data, kde=False, color='red', bins=30)
plt.title('Age Distribution of People Killed by Police')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()

print(f"Minimum Age (min_age): {min_age}")
print(f"Maximum Age (max_age): {max_age}")
print(f"Mean Age (mean_age): {mean_age}")
print(f"Median Age (median_age): {median_age}")
print(f"Standard Deviation of Age (std_dev_age): {std_dev_age}")
print(f"Skewness of Age (skewness_age): {skewness_age}")
print(f"Kurtosis of Age (kurtosis_age): {kurtosis_age}")

sns.histplot(race_data, kde=False, color='red', bins=30)
plt.title('Race Distribution of People Killed by Police')
plt.xlabel('Race')
plt.ylabel('Frequency')
plt.show()

race_counts = race_data.value_counts()

Print the frequency of each race
for race, count in race_counts.items():
 print(f"Race: {race}, Frequency: {count}")

Age by Race Distribution
for race, ages in ages_by_race.items():

 sns.kdeplot(ages, shade=True, label=f'{race} Age Distribution')

Set plot title and labels
plt.title('Smooth Histogram of Age by Race')
plt.xlabel('Age')
plt.ylabel('Density')
plt.legend()
plt.show()# Filtering data to include entries with both age and race information
filtered_data = dataset.dropna(subset=['age', 'race'])

Getting unique race categories from the dataset
race_categories = filtered_data['race'].unique()

Initializing a dictionary to hold age data for each race
ages_by_race = {race: filtered_data[filtered_data['race'] == race]['age'] for race in
race_categories}

Calculating descriptive statistics for each race
stats_by_race = {}
for race, ages in ages_by_race.items():
 stats_by_race[race] = {
 'Median': ages.median(),
 'Mean': ages.mean(),
 'Standard Deviation': ages.std(),

 }

Displaying the calculated statistics for each race
stats_by_race

Monthly and Yearly Distribution

Assuming you have a DataFrame called 'data' with a 'date' column
data['date'] = pd.to_datetime(data['date'])

Extract year and month from the 'date' column
data['year'] = data['date'].dt.year
data['month'] = data['date'].dt.month

Create subplots for yearly and monthly distributions side by side
fig, axes = plt.subplots(1, 2, figsize=(16, 6))

Yearly Distribution
yearly_counts = data['year'].value_counts().sort_index()
yearly_colors = sns.color_palette("Blues", len(yearly_counts))
sns.barplot(x=yearly_counts.index, y=yearly_counts.values, palette=yearly_colors,
ax=axes[0])
axes[0].set_title('Yearly Distribution of Shootings')

axes[0].set_xlabel('Year')
axes[0].set_ylabel('Frequency')

Print yearly counts
print("Yearly Distribution:")
for year, count in yearly_counts.items():
 print(f"Year: {year}, Frequency: {count}")

Monthly Distribution
monthly_counts = data['month'].value_counts().sort_index()
monthly_colors = sns.color_palette("Oranges", len(monthly_counts))
sns.barplot(x=monthly_counts.index - 1, y=monthly_counts.values,
palette=monthly_colors, ax=axes[1])
axes[1].set_title('Monthly Distribution of Shootings')
axes[1].set_xlabel('Month')
axes[1].set_ylabel('Frequency')

Set the x-axis labels to month names
axes[1].set_xticks(range(12)) # Set the ticks from 0 to 11 (for each month)
axes[1].set_xticklabels([calendar.month_abbr[i] for i in range(1, 13)]) # Set month
names as labels

Print monthly counts
print("\nMonthly Distribution:")
for month, count in monthly_counts.items():
 print(f"Month: {calendar.month_abbr[month]}, Frequency: {count}")

plt.tight_layout()
plt.show()

Gender Distribution
fig, ax = plt.subplots(figsize=(8, 6))
data = dataset.dropna(subset=['latitude', 'longitude','signs_of_mental_illness',
'gender', 'race', 'flee', 'body_camera','armed','threat_level'])
gender_counts = data['gender'].value_counts()
gender_colors = sns.color_palette("Set2", len(gender_counts))
sns.barplot(x=gender_counts.index, y=gender_counts.values, palette=gender_colors,
ax=ax)
ax.set_title('Gender Distribution of People Killed by Police')
ax.set_xlabel('Gender')
ax.set_ylabel('Frequency')

plt.tight_layout()
plt.show()

Print gender counts
print("Gender Distribution:")
for gender, count in gender_counts.items():

 print(f"Gender: {gender}, Frequency: {count}")

State-wise and City -wise distribution
state_counts = data['state'].value_counts()
city_counts = data['city'].value_counts().head(20)

Create subplots for state-wise and city-wise distributions side by side
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
state_colors = sns.color_palette("Set2", len(state_counts))
city_colors = sns.color_palette("Set2", len(city_counts))

State-wise Distribution Plot

Create a subplot for state-wise distribution
fig, ax = plt.subplots(figsize=(14, 8))
state_colors = sns.color_palette("Set2", len(state_counts))
sns.barplot(x=state_counts.values, y=state_counts.index, palette=state_colors, ax=ax)
ax.set_title('State-wise Distribution of Shootings (All States)')
ax.set_xlabel('Frequency')
ax.set_ylabel('State')

Print state-wise counts (All States) within the bars
print("State-wise Distribution (All States):")
for i, (state, count) in enumerate(state_counts.items()):
 ax.text(count, i, f" {count} ", va='center', fontsize=12, color='black')

Print state-wise counts (Top 20) within the bars

City-wise Distribution Plot
sns.barplot(x=city_counts.values, y=city_counts.index, palette=city_colors, ax=ax2)
ax2.set_title('City-wise Distribution of Shootings (Top 20)')
ax2.set_xlabel('Frequency')
ax2.set_ylabel('City')

Print city-wise counts (Top 20) within the bars
print("\nCity-wise Distribution (Top 20):")
for i, (city, count) in enumerate(city_counts.items()):
 ax2.text(count, i, f" {count} ", va='center', fontsize=12, color='black')

plt.tight_layout()
plt.show()

Threat level, fleeing and body camera Distribution

Create a figure with subplots
fig, axs = plt.subplots(1, 3, figsize=(15, 5))

threat_level_counts = df['threat_level'].value_counts()
flee_counts = df['flee'].value_counts()
body_camera_counts = df['body_camera'].value_counts()

Plot threat level bar graph
axs[0].bar(df['threat_level'].value_counts().index, df['threat_level'].value_counts(),
color='skyblue')
axs[0].set_title('Threat Level Distribution')
axs[0].set_xlabel('Threat Level')
axs[0].set_ylabel('Count')
axs[0].tick_params(axis='x', rotation=45)

Plot fleeing bar graph
axs[1].bar(df['flee'].value_counts().index, df['flee'].value_counts(),
color='lightcoral')
axs[1].set_title('Fleeing Distribution')
axs[1].set_xlabel('Fleeing Status')
axs[1].set_ylabel('Count')
axs[1].tick_params(axis='x', rotation=45)

Plot body camera presence bar graph
axs[2].bar(df['body_camera'].value_counts().index, df['body_camera'].value_counts(),
color='lightgreen')
axs[2].set_title('Body Camera Presence Distribution')
axs[2].set_xlabel('Body Camera')
axs[2].set_ylabel('Count')
plt.xticks(range(2), ['True', 'False'], rotation=0)

Adjust spacing between subplots
plt.tight_layout()

Show the combined plot
plt.show()

print("Threat Level Distribution:")
print(threat_level_counts)
print()

Print counts for fleeing
print("Fleeing Distribution:")
print(flee_counts)
print()

Print counts for body camera presence
print("Body Camera Presence Distribution:")
print(body_camera_counts)

K-Means Clustering

Load your dataset
df = pd.read_excel("/Users/tysonmukesh/Desktop/MTH-522/Project-2/Shootings.xls")
Remove rows with NaN values in 'latitude' or 'longitude' columns
df = df.dropna(subset=['latitude', 'longitude'])

Extract latitude and longitude columns
Lat = df['latitude'].values
Lon = df['longitude'].values

Create a NumPy array of coordinates
geo = np.array([[Lat[i], Lon[i]] for i in range(len(Lat))])

Specify the number of clusters (you can change this as needed)
num_clusters = 10

Use K-Means clustering
kmeans = KMeans(n_clusters=num_clusters, random_state=0)
labels = kmeans.fit_predict(geo)

Print the number of clusters
print(f"Number of clusters in K-Means Clustering: {num_clusters}")

Print the total data points taken
total_data_points = len(geo)
print(f"Total data points taken: {total_data_points}")

Create an empty list to store clusters
clusters = []

Assign points to the appropriate cluster in the list
for cluster_num in range(num_clusters):
 cluster_points = geo[labels == cluster_num]
 clusters.append(cluster_points.tolist())

 # Print the total number of elements in each cluster
 num_elements_in_cluster = len(cluster_points)
 print(f"Total elements in Cluster {cluster_num}: {num_elements_in_cluster}")

 # Print the elements present in each cluster side by side

Create a folium map
m = folium.Map(location=[np.mean(Lat), np.mean(Lon)], zoom_start=6)

Define colors for clusters
colors = ['red', 'blue', 'darkgreen', 'purple', 'orange', 'darkred',

 'violet', 'pink', 'yellow','black']

Plot the clustered points on the map
for idx, cluster in enumerate(clusters):
 color = colors[idx % len(colors)]
 for point in cluster:
 folium.CircleMarker(
 location=point,
 radius=1, # Reduce the radius to 2 (or any desired value)
 color=color,
 fill=True,
 fill_color=color
).add_to(m)

Display the map
m

DBSCAN Clustering

Load your dataset
df = pd.read_excel("/Users/tysonmukesh/Desktop/MTH-522/Project-2/Shootings.xls")
Remove rows with NaN values in 'latitude' or 'longitude' columns
df = df.dropna(subset=['latitude', 'longitude'])

Extract latitude and longitude columns
Lat = df['latitude'].values
Lon = df['longitude'].values

Create a NumPy array of coordinates
geo = np.array([[Lat[i], Lon[i]] for i in range(len(Lat))])

Initialize DBSCAN with parameters (you can adjust these as needed)
epsilon = 0.5 # Radius for neighborhood
min_samples = 5 # Minimum number of samples in a neighborhood

dbscan = DBSCAN(eps=epsilon, min_samples=min_samples)
labels = dbscan.fit_predict(geo)

Find the number of clusters (-1 represents noise points)
num_clusters = len(set(labels)) - (1 if -1 in labels else 0)
print(f"Number of clusters in DBSCAN Clustering: {num_clusters}")

Create an empty list to store clusters
clusters = []

Assign points to the appropriate cluster in the list
for cluster_num in range(num_clusters):
 cluster_points = geo[labels == cluster_num]

 clusters.append(cluster_points.tolist())

Create a folium map
m = folium.Map(location=[np.mean(Lat), np.mean(Lon)], zoom_start=6)

Define colors for clusters
colors = ['red', 'blue', 'darkgreen', 'purple', 'orange', 'darkred',
 'violet', 'pink', 'yellow', 'black']

Plot the clustered points on the map
for idx, cluster in enumerate(clusters):
 color = colors[idx % len(colors)]
 for point in cluster:
 folium.CircleMarker(
 location=point,
 radius=1, # Reduce the radius to 2 (or any desired value)
 color=color,
 fill=True,
 fill_color=color
).add_to(m)

Display the map
m

K-Medoids Clustering

Load your dataset
df = pd.read_excel("/Users/tysonmukesh/Desktop/MTH-522/Project-2/Shootings.xls")
Remove rows with NaN values in 'latitude' or 'longitude' columns
df = df.dropna(subset=['latitude', 'longitude'])

Extract latitude and longitude columns
Lat = df['latitude'].values
Lon = df['longitude'].values

Create a NumPy array of coordinates
geo = np.array([[Lat[i], Lon[i]] for i in range(len(Lat))])

Specify the number of clusters (you can change this as needed)
num_clusters = 10

Randomly initialize medoids
initial_medoids = np.random.choice(len(geo), num_clusters, replace=False)
medoids = geo[initial_medoids]

Maximum number of iterations
max_iterations = 100

Perform K-Medoids clustering
for _ in range(max_iterations):
 # Assign each point to the nearest medoid
 labels = np.argmin(np.linalg.norm(geo[:, np.newaxis] - medoids, axis=2), axis=1)

 # Update medoids by selecting the point with the minimum total distance to others
in its cluster
 new_medoids = np.array([geo[labels == i].mean(axis=0) for i in
range(num_clusters)])

 # Check for convergence
 if np.all(medoids == new_medoids):
 break

 medoids = new_medoids

Print the number of clusters
print(f"Number of clusters K-Medoids: {num_clusters}")

Create an empty list to store clusters
clusters = []

Assign points to the appropriate cluster in the list
for cluster_num in range(num_clusters):
 cluster_points = geo[labels == cluster_num]
 clusters.append(cluster_points.tolist())

Create a folium map
m = folium.Map(location=[np.mean(Lat), np.mean(Lon)], zoom_start=6)

Define colors for clusters
colors = ['red', 'blue', 'darkgreen', 'purple', 'orange', 'darkred',
 'violet', 'pink', 'yellow', 'black']

Plot the clustered points on the map
for idx, cluster in enumerate(clusters):
 color = colors[idx % len(colors)]
 for point in cluster:
 folium.CircleMarker(
 location=point,
 radius=1, # Reduce the radius to 2 (or any desired value)
 color=color,
 fill=True,
 fill_color=color
).add_to(m)

Display the map
m

Contributions:

• Mukesh Kumar Karanam Rameshbabu – Worked on Findings, coding,

Discussions, Methods and Results.

• Sai Sudhamsh Kamisetty – Worked on issues, coding, graphs and results.

• Rohith Rasi Reddy – Worked on initial cleaning of data using excel and

coding.

• Anish Krishna Kalisetti – Worked on results and report preparation.

