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ABSTRACT 

The purpose of this study was to delineate differences in mathematical knowledge construction 

between students who made substantive gains and those who made only limited gains over the course 

of a semester. We found that students with high gain —initial-test to final test—construct, organize, 

and restructure knowledge in ways that are qualitatively different from the processes utilized by 

those with low gain. Concept maps and their corresponding schematic diagrams, combined with 

spectral analysis of those schematic diagrams, triangulated and interpreted with other data, revealed 

radically different processes of knowledge construction and organization between the students with 

high and low gain. Concept maps and other data of two students, S3 and S25, representative of the 

high and low gain cohorts of a class, document the divergent performance that occurred over a 

semester. The significant finding is that the student with low gain seems unable to productively 

integrate new knowledge into existing structures. 
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1. INTRODUCTION 

It is not uncommon for instructors of beginning undergraduate mathematics to see two, or more, 

students who begin the semester as instrumental and procedural learners, yet over time one seems to 

be able to develop conceptually and in terms of relational thinking and understanding, while the 
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other remains stuck in an instrumental procedural mode. We approach the question of what modes 

of thinking and mental organization might be behind this phenomenon of divergent performance 

through an examination of two students’ concept maps and the spectral analysis of those maps, 

triangulated with data collected throughout the semester.  A significant difference of this study from 

other concept map studies is the use of spectral graph clustering of schematic diagrams of concept 

maps to document dynamic changes in students’ organization of their internal knowledge 

representations.  

 The question of whether divergence occurs was determined by first ranking a class of 26 

students based on the z-score of fractional gain. An individual gain was calculated for each student 

(based on the results of a pre-test at the beginning of semester to a closely related “final” score at 

the end of semester, namely, the average of each student’s post-test score, departmental final exam 

score and open-response course final exam score. We calculated the gain in test scores from the 

initial to the final test: gain = (final-test% - initial-test%) / (100% - initial-test%) and ranked students 

by the z-score of their gain in test scores. We deemed students with gain z-score > 1 to have “high 

gain” and students with z-score < –1 to have “low gain” (z-score = (individual gain – class mean 

gain) / standard deviation). 

 We document and analyze the work of two students, who at the beginning of semester appear 

to be very similar in ability and attitudes to learning mathematics, both identifying as procedural and 

instrumental learners, yet who take widely divergent paths as the semester progresses. One student 

retained a belief that mathematics is procedural and instrumental in nature and is best learned that 

way, while the other student demonstrated a willingness to expand their thinking and buy into the 

broader goals of the course.   
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This study addresses the question: Do concept maps and schematic diagrams of those maps 

provide visual evidence of changes in knowledge structures that occur and, when triangulated with 

multiple sources of data collected over the semester, delineate differences between a student who 

makes substantive gains and one who makes only limited gains? 

2. LITERATURE REVIEW 

2.1 Divergence of performance 

Divergence of performance and fragmentation of strategies have been studied extensively in 

elementary and secondary mathematics classrooms. Krutetskii and other Russian researchers 

characterized the divergence of performance of students, selected by their teachers as “gifted”, 

“capable”, “average”, and “incapable”, as a consequence of the qualitatively different strategies and 

mathematical abilities they identified (Krutetskii, 1976; Dubrovina, 1992; Shapiro, 1992). Gray & 

Tall (1994) concluded that the divergence of strategies was a consequence of students’ ability to 

think flexibly, and that interpretations of mathematical symbolism as process or procepts results in 

a proceptual divide (i.e., a divergence between procedure and procept) — a bifurcation of strategy 

between flexible thinking and procedural thinking which distinguishes more successful students 

from those less successful (Gray & Tall, 1994, pp. 116, 132). Our experience is that students who 

exhibit more flexible mathematical thinking do not simply develop alternate ways of thinking, but 

actively modify pre-existing ways of thinking. A student who has a rich connected network of 

concepts and solution strategies available in memory is more likely to be able to recall a potentially 

useful prior strategy in a novel problem setting. 

2.2 Concept maps 

A concept map is a diagram representing the knowledge structure of a subject discipline as a labelled 

graph in which concepts are represented as labelled nodes and connections among concepts indicated 
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by undirected lines (which may or may not be labeled). Ausubel’s theory of hierarchical memory 

structure and work on learning was the basis for the use of concept maps in science education 

(Ausubel, Novak & Hanesian, 1978). Novak is credited with the development of this tool in the early 

1980’s as a way of “determining how changes in conceptual understanding were occurring in 

students” (1990, p. 937). Novak & Gowin believed that concept maps should consist of an expanding 

hierarchy of concepts, organized under more general, inclusive concepts (1984, p. 97).  

 Concept maps as an instructional tool for assessment, and as a research tool, were initially 

used in quantitative research in science education (Blunt & Karpicke, 2014; Carnot, Feltovich, 

Hoffman, Feltovich & Novak, 2003; Jackson & Trochim, 2002; Novak, 1990, 2010; Novak & 

Gowin, 1994; Ruiz-Primo & Shavelson, 1996; Safayeni, Derbentseva & Cañas, 2005).  

 In mathematics education, Skemp (1987) used the term concept map in the sense of a 

concept-dependency network to refer to the process of schema construction in which order is 

important, with the necessary direction being from lower to higher order concepts. He considered 

concept maps as a particular kind of schema and envisioned them as advanced organizers and as a 

means of analysis when planning a teaching sequence or for diagnosis (1987, p. 122).   Park & 

Travers (1996) used them as a comparative research tool, contrasting the maps of students 

(“novices”) with those of an “expert,” a use of concept maps commonly described in the research 

literature of the sciences. They were used as a research tool to investigate community college 

students’ mathematical knowledge within a narrow range of competence (Laturno, 1994) and as an 

instructional tool to document changes in the nature of middle school teachers’ thinking about their 

assessment practices as a result of using decision-making case studies (Wilcox and Lanier, 2000). 

Concept maps have also been used as a means of documenting a change in knowledge as a result of 

instruction (Williams,1998; Hough, O’Rode, Terman & Weissglass, 2007). Wheeldon & Faubert 
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(2009) explored the use of qualitative research as part of a multistage data collection. Studies by 

McGowen (1998) and McGowen & Tall (1999) used concept maps created over time to document 

qualitative differences between students of different levels of achievement. 

In the process of creating a concept map, a student is engaged in a metacognitive activity 

that shapes and modifies their understanding of what they know when the map is constructed. In 

this study, three concept maps on the topic of Function, together with schematic diagrams of those 

maps, were visible representations of the student’s internal cognitive structure at a given moment 

in time. Concept maps created over time document the processes by which that structure changes as 

students organize and integrate new concepts and procedures into their existing conceptual 

frameworks.  

3. METHODS  

3.1 Participants 

The subjects of the broader study were 26 undergraduates (78%) of the thirty-three initially enrolled 

at a large suburban community college and completed an Intermediate Algebra course. All students 

satisfied the prerequisite for this course (a grade of C or better in Introductory Algebra or entry based 

on a placement test score). Twenty-four of the 26 students were enrolled full-time (12 or more 

semester hours). Students were twenty years of age or younger, either recent high school graduates, 

or had attended the community college the previous year. Six students were taking the course for the 

second time. One student was taking the course for the third time. Based on class rank following 

course completion, two of the eight students in the extremes of the class are profiled. 

3.2 Procedure and data collection 

The need to collect data at different stages in the study was addressed by collecting data from all 

students throughout the semester since identifying which students would still be in class at the end 
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of the 16-week semester was not possible. A pre-course self-evaluation survey used to establish prior 

variables of students’ beliefs about their mathematical abilities confirmed the findings of an earlier 

field study of 237 students which found that students lacked self-confidence, had a negative attitude 

towards mathematics at the beginning of the semester, and feelings of high math and test anxiety.  

Data collected included: pre- and post-course test results and self-evaluation attitude surveys, journal 

problems, unit exams, a course open-response final exam (week 15), a departmental multiple-choice 

final exam, (week 16), written mid-term and end of semester self-evaluations and interviews.  

3.3 Fractional gain and student ranking 

Students were ranked after the semester ended by the z-score of fractional gain that a student 

obtained from initial test to “final” test (the average of the student’s post-test score, departmental 

final exam score and open-response final exam score). This is an approximate numerical indicator 

of mathematical growth over time: gain = (final-test%–pre-test %) / (100%–pre-test %). The 

question of whether divergence occurred was determined by this ranking, which identified those 

with high gain, i.e., gain z-score > 1 (n = 3) and those with low gain, i.e., gain z-score < –1 (n = 5). 

Class rankings for all 26 students based on Gain are included in Appendix A: Table 1. 

 A statistical advantage of focusing on individual gains rather than on mean class gains (as in 

Hake, 1998) is that we can obtain a distribution of gains, of which the mean is just one summary.  

Further, knowing the distribution allows us to estimate confidence intervals for the mean of the 

individual gains, and to calculate gain z-scores. We interpret individual gain as a numerical indicator 

of the “size” of change from one test to a succeeding test. In the application of the individual gain 

statistic, we are interested in student attitudes and dispositions to learning mathematics, rather than 

comparing mean test scores before and after an instructional treatment. McGowen & Davis (2005) 

documented that the gain correlates only poorly with initial test scores (r2 » 0.2). The gain statistic 
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is one of a family of relative change functions (Tornqvist, Vartia & Vartia, 1985; Bonate, 2000) and 

is characterized by its preservation of the binary operation x*y = x+y – xy. In our context, the gain 

function provides significant extra statistical information beyond initial-test scores.  

 Finally, high initial test scores do not, in general, equate to low gains. In a study by McGowen 

& Davis (2005), approximately 18% of the cohort had below average initial-test scores and below 

average gains, and approximately 19% had above average initial-test scores and above average 

gains. While it is more likely is that a student with a below (resp. above) average initial-test score 

will have an above (resp. below) average gain, it is by no means a foregone conclusion. 

3.4 Concept maps 

Three concept maps, submitted at weeks 4, 9, and 15, provided documentation of how high and low 

gain students’ knowledge structure changed over time. Any or all of the following factors can affect 

the visual representation of an individual student’s developing cognitive structure and knowledge 

construction processes: (a) the amount of time a student is able to spend on constructing a map; (b) 

the amount of information and the number of connections between and among elements a student is 

able to record on a two-dimensional, standard-size sheet of paper; and, importantly, (c) the student’s 

ability to categorize, organize, and reflect upon their perceptions, actions, and schemas employed.  

 Concept maps on the concept of Function recorded changes in each student’s knowledge 

structure over the sixteen weeks of the course. Each concept map was collected a week after its 

assignment. The maps were not returned to the student but retained by the researcher as part of the 

data collection. The nature and extent of changes in knowledge construction, organization, and 

stability over the semester were analysed by their corresponding schematic diagrams.  

3.5 Schematic diagrams 
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A simple pictorial technique (schematic diagram) was developed to expose the underlying 

structure and the changes in the maps that occurred over time of eight students (3 high gain, 5 low 

gain).  A schematic diagram (an outline diagram) was created for each of the concept maps created 

by the high and low gain students, stripping the concept maps of semantic details to compare 

different students’ processes of knowledge construction and how the organization of that 

knowledge changed over time. Schematic diagrams for the second and third maps for each student 

distinguished: 

• elements from the previous concept map remaining in the same position. 

• elements moved somewhere else, or recalled from an earlier map. 

• new elements.  

A comparison of a student’s three concept maps and corresponding schematic diagrams, 

triangulated with other qualitative and quantitative data, provided evidence of the nature of students’ 

knowledge construction and organization processes, and of the divergence that occurred. The 

mathematical quality of each schematic diagram was analyzed through spectral graph clustering, 

(discussed below) and confirmed the more subjective analyses of the concept maps and schematic 

diagrams.  

3.6 Spectral graph clustering 

Schematic diagrams still retain some semantic information in terms of the shape and labelling of the 

vertices. By stripping away all semantic labeling and just keeping the vertices and connections 

between them, we obtain simple connected graphs. We analyze the structure of these graphs through 

spectral graph clustering (Von Luxburg, 2007). This is a graph-theoretic technique for decomposing 

a graph into chunks, or clusters, that are in some sense more similar within themselves than they are 

to other chunks. It is a technique that relies only on the abstract structure of a graph—the connections  
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between vertices—and does not rely on any semantic labeling or interpretation of the graph vertices 

or edges.  

 Our application of spectral clustering to the schematic diagrams of student-generated concept 

maps provided us with a more principled and less subjective way to ascertain whether the graph-

theoretic structure of these diagrams provides evidence of the stability of identifiable clusters in the 

student concept maps. In other words, spectral clustering is used in place of an instructor’s or 

researcher’s semantic interpretation of the student labelling of the vertices of the concept maps. It 

should be noted that one student’s third concept map contained ambiguous connections between a 

few nodes, which meant that not all elements of semantic interpretation were eliminated when 

obtaining the simple connected graphs of this student.  

 We arbitrarily number the vertices of the graph arising from a student’s concept map as 1, 

…, n. Then the (un-normalized) Laplacian matrix L of the graph is constructed as D-A, where D is 

a diagonal matrix with diagonal entry di,j = degree of vertex i, and A is the incidence matrix of the 

graph: the i, j entry of A is 1 if vertices i, j are connected by an edge, and 0 otherwise (Brouwer & 

Haemers, 2011). The Laplacian matrix L is positive semi-definite so its eigenvalues are real and 

non-negative. The second smallest (that is, first non-zero) eigenvalue is referred to as the Fiedler 

eigenvalue, and also as the algebraic connectivity of the graph. An eigenvector for this eigenvalue 

is referred to as a Fiedler eigenvector (Fiedler, 1973, 1989). The eigenvectors of L can be viewed as 

real-valued functions on the vertices of the graph, and the graph is connected exactly when the 

Fiedler eigenvector does not obtain the value 0. Consequently, we can then decompose the vertices 

of the graph into those vertices where the Fiedler eigenvector tales a positive value, and those where 

it is negative, yielding a decomposition of the original graph into two sub-graphs. Provided these 

sub-graphs are connected, this decomposition process can be iterated on the sub-graphs. The 
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iteration process constitutes a spectral clustering of the original graph. Figure 1 shows a numbered 

schematic diagram and the spectral clusters resulting from the decomposition process.  

 Figure 1: A Numbered Schematic Diagram & Its Decomposed Cluster Graph 

 

4. RESULTS 

Pre-and Post-Course Data 

Results of the pre-course self-evaluation survey revealed that high gain students initially under-

estimated their mathematical abilities and held more negative beliefs compared with low gain 

students, who tended to rate their abilities and confidence in their responses higher than their 

performance on the pre-test warranted, consistent with the Kruger-Dunning effect (Kruger & 

Dunning, 1999). Over the semester, high gain students experienced greater improvement.  

 High and low gain students’ responses on the post-test, compared with their pre-test 

responses document the divergence of performance that occurred. The number of correct post-test 

responses compared with those on the pre-test of high-gain students revealed a significant difference 

(χ2
 

= 86.176), with two degrees of freedom (p < 0.0001). The difference in the number of correct 

post-test responses compared with the number of correct pre-test responses for the low-gain group, 

was not significant. Table 1 includes mean responses of the class, high and low gain cohorts. 

Table 1: Mean Pre- & Post-test response of the class, high and low gain students, S3, S25 

 PRE-TEST POST-TEST DIFFERENCE 

     Class 0.18 0.47 + 0.29 
     High Gain 0.17 0.86 + 0.69 
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     S3 0.14 0.79 + 0.65 
     Low Gain 0.16 0.19 + 0.03 
     S25 0.14 0.21 + 0.07 

4.1. Interpreting the Minus Symbol  

McGowen (2017) and McGowen and Tall (2010, 2013) identified multiple meanings of the minus 

symbol in new contexts and the need to interpret symbolism flexibly as major sources of difficulties 

for undergraduates. The pre-test revealed that interpreting function notation and recognizing the role 

of context when interpreting the minus symbol were sources of difficulty for all students in the 

class—and continued to be sources of difficulty throughout the semester for many of them. We 

consider two examples of divergent performance data of high and low gain students: (a) their ability 

to interpret the minus symbol and (b) use of function notation in different contexts and the stability 

of re-constructed schemas.   

 On the pre-test, all students were initially unsuccessful when asked to interpret the minus 

symbol in different contexts, i.e., evaluate (–3)2 and –32; meaning of the notation f(–x) and –f(x); (x 

– c); evaluate (a) f(–3) = –x2 and (b) f(h–1) = –x2.  On the pre-test, 23 of the 26 students correctly 

evaluated (–3)2. Only six students correctly evaluated –32 and (–3)2. On the post-test, 24 students 

evaluated (–3)2 correctly, only 16 correctly evaluated both –32 and (–3)2.   

4.2. Changing an inappropriate schema: Interpreting function notation 

Students were asked to evaluate a quadratic function, f(x) = –x2 – 2x + 7 =?  given a negative 

numerical value input, f (–3), and a binomial input, (h–1), on various assessments during the 

semester. By week 3, high gain students were able to correctly and consistently evaluate a quadratic 

function for similar inputs, having constructed a more appropriate schema which remained stable 

throughout the semester. Students within 1 standard deviation of the gain mean, with additional 

experience, reflection, and practice, generally developed consistent performance by the time of the 

Unit I exam week 6. Low gain students were unable to reconstruct a more appropriate schema, much 
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less stability, by week 16. Appendix B contains supplemental information expanding on these 

examples. 

5. A TALE OF TWO STUDENTS’ DIVERGENT PATHS 

5.1 S3 and S25: Representatives of the high and low gain cohorts:  

We profile two students of the extremes of a class in order to clearly delineate qualitative differences 

that occurred over the semester. S3 and S25 shared many attitudes and prior mathematical 

experiences. Both had 3 years of high school mathematics, Algebra I & II, and Geometry. S3 took 

Algebra II in the junior year (with no mathematics in the senior year), S25 in the senior year. Both 

began their college career enrolled in an individual, self-paced Beginning Algebra course. Both 

described their overall goal of learning was to connect new knowledge to prior knowledge and 

remained unchanged throughout the semester for S3 and S25. Both students attended class regularly 

and worked hard to keep up with assignments. Despite these initially similar experiences and 

attitudes to learning mathematics, as the semester progressed S3 and S25 exhibited increasing 

divergence in their mathematical problem solving strategies and skills and in their views about what 

it means to learn mathematics and use technology. 

5.1.1 Views on what it means to learn mathematics. S3 and S25 expressed different attitudes to 

learning mathematics. S3 recognized a need to take responsibility for learning with understanding. 

Disappointed with results of an individual exam compared with a group exam done shortly before, 

S3 wrote in his mid-term self-evaluation: 

“I’ve never been very good at taking math exams, I find that a lot of what I know slips 

away when it’s time to show and prove. To be honest, I wasn’t as prepared as I could 

have been. After receiving a score of nearly proficient on the test I took it upon myself 

to go back to Section 1.4 in the book and review everything from that point on in order 

to fully understand the material. I did that because I realize that math is a very 

progressive subject, and if I were to continue forward with minimal understanding of 
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the previous sections, I would surely have minimal understanding of the rest of the 

sections.” 

Though S25 describes similar prior experiences, the responsibility for learning and understanding 

mathematics was viewed differently, as described in the mid-term self-evaluation: 

“I thought math was about doing a lot of the same problems in order to have an 

understanding of what you were learning. I have always thought that doing mathematics 

meant doing operations, with formulas. I believe learning math with concrete functions, 

definitions, and examples is the best way for me to learn math.” 

5.2 Procedural Flexibility 

Procedural flexibility is the ability to modify an existing way of thinking to conform to changing 

conditions and includes ability to switch from one interpretation of symbolic notation to another, 

depending upon the context. A comparison of the strategies employed by S3 and S25 when 

interpreting function notation is an example of the divergence in strategies and knowledge 

construction that occurred over the semester shown by their responses to the pre- and post-test 

question: In the expression (x – c), is the value of c positive, negative, or unknown? Initially, both 

S3 and S25 used two different schemas simultaneously on their responses—they used the minus 

symbol twice—first to indicate that c is negative, then as the subtraction operator. S3 perceived (x–

c) as “the value for c is negative because of the – sign in front of c, then wrote, “c will subtract from 

any number that comes before the – symbol. S25 changed the subtraction sign to addition, placed a 

minus sign to the upper left of c, and wrote: “when you see a minus symbol in front of a letter, 

change signs and add.”  Both responses suggest the retrieval of two default schemas: (a) interpreting 

the minus symbol twice—once as subtraction and (b) to indicate a negative value, c.  

 S3’s post-test response is consistent with a more flexible interpretation of the minus symbol 

by the end of the semester: “the value of c is neither because it may be positive or negative. If c were 

positive, it would become negative and if it were negative, it would become positive”—evidence of 
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growth of procedural ability to interpret ambiguous notation. S25 continued to use the minus symbol 

twice; once to subtract and as the sign of c, indicating a negative-valued number and to repeat the 

rule: subtract, change signs and add.  

5.3. Responses to high level cognitive tasks 

High level cognitive tasks (Stein, et. al., 1996, p. 467) require the integration and application 

of knowledge: selecting an appropriate alternative strategy, connecting symbolic and non-symbolic 

procedures to underlying concepts and meaning, translating between various representations, 

making and describing connections which required knowledge of several mathematical concepts 

(e.g. x-intercepts, zeros of the function, and factors). and justifying the responses.   

 The extent to which S3 and S25 engaged with high level cognitive tasks is shown by their 

responses to two questions on the course open-ended final exam which required knowledge of 

several mathematical concepts (e.g. x-intercepts, zeros of the function, and factors). Responses of 

S3 and S25 to post-test Question 14 are given in Table 2. 

15. The graph of a quadratic function appears below. 

 Figure 3: Post-test question 14 

 
a. What are the zeros of this function? 

b. What are the factors of this function? 

c. Write the algebraic representation of this function.  

 

 Table 2: Responses to Post-test Question 14 

Question S3 Responses S25 Responses 

a. What are the zeros?  x-intercepts –2 and 6 two real solutions; (6,0) (2,0) 
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b. What are the factors? use opposite of x-intercepts, (x – 0);  
2 and –6, (x + 2)(x – 6) What are the values /numbers 

c. Algebraic representation? multiply factors; f(x) = x2 – 4x – 12  Made no attempt to answer 

5.4. Different strategies based on different initial perceptions  

Another question on the open-response final exam involved solving a 3 ´ 3 linear system in 

contextual form:  

A toy rocket is projected into the air at an angle. After 6 seconds, the rocket is 87 feet high. 
After 10 seconds, the rocket is 123 feet high. After one-half minute, the rocket is 63 feet 
high. 

a. The model for the rocket’s motion is h=at2 + bt + c where h is the height in feet of 
the rocket after t seconds. Using the given information, find the values for a, b, and c so the 
function models the situation. Briefly explain what you did. 

b. Approximate how long it will take for the rocket to hit the ground. Explain how you 
arrived at your 
answer. 

 

c. What representation did you choose to investigate this problem? Why? 
 

d. Describe the process you used to find the answers to part (a) and to part (b). 

Students had the option of (a) setting up a system of three linear equations in three unknowns 

and solving the system algebraically or (b) solving the system using the list, matrix and regression 

features on the graphing calculator to calculate parameter values for an appropriate algebraic model 

of the problem. Once the parameters and algebraic representation of the problem were determined, 

students also had options for determining when the projectile would hit the ground. They could (a) 

enter and graph the algebraic representation and use the ROOT or ZERO option to find the solution; 

(b) display table values of the function and locate the input value when the output value was zero;  

(c) use the TRACE command on the graph and approximate the answer; or (d) solve the equation 

algebraically, using the quadratic form with determined parameter values. 

S3 initially focused on and circled the equation, writing: “quadratic regression,” then entered 

the ordered pairs (time, height) in two lists on the graphing calculator, and selected the quadratic 



	 16	

regression option to determine parameter values, a, b and c—an example of filtering out “the 

superficial to concentrate on the more abstract qualities…able to relate to a hierarchy of ideas” 

(Gray, Pitta & Tall, 1997, p. 124). S3 graphed the discrete points, entered the algebraic model based 

on the regression values, and tested it graphically against a plot of the discrete points. S3 wrote: “The 

line falls directly on the ordered pair,” recording parameter values of A = –.5, B =17, and C = 3 and 

wrote an equation using the displayed calculator values.  

S3 recalled and used prior strategies in novel problem settings, using both symbolic and 

non-symbolic procedures effectively to translate between various representations. S3 chose to find 

parameter values using the graphing calculator features of a list and quadratic regression rather than 

set up and solve the system algebraically, explaining: “I used the table values to find the output at 

zero and the graphical [representation].  I felt more comfortable with it. I didn’t feel confident trying 

to investigate algebraically.” Despite a lack of confidence in algebraic skills to solve the linear 

system algebraically, S3 demonstrated high-level cognitive thinking.  

S25 initially focused on and circled the time values stated in the problem, writing: “I choose 

these numbers because h equals the height in feet at t seconds. The numbers in front of t equal the 

seconds.” The process used to find parameter values is described as: “quadratic formula because I 

had to find a, b, c and used the quad. equation.” For choice of representation, S25 wrote: “Evaluate 

because I need to find the output.” The initial choice and use of only the time values resulted in 

S25’s retrieval of a prior, instrumentally-learned schema of memorized procedures associated with 

quadratic equations (find the discriminant; use the discriminant value in the quadratic formula to 

“solve” the equation)—ignoring problem data which did not fit this retrieved schema—an example 

of prior knowledge interfering with assimilating new knowledge into an existing schema. Describing 

the work, S25 wrote:  
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“In part a, I choose the amount of seconds it would take for the rocket to reach its height 

and in part b, I plugged those #’s into the quadratic formula. [It will take] almost a 

minute long: 123 – 63 = 60 – 63; I subtracted largest height and 63 feet–for ½ minute 

and then another 63 feet for rest of time.” 

Based on this work, one might assume that S25 does not know how to solve linear systems 

using the matrix and/or regression features of the graphing calculator. In fact, of the five linear 

system problems on the final departmental multiple choice exam, S25 correctly answered four of 

them, able to solve a 2 × 2 inconsistent linear system and a 3 × 3 system, using the matrix features 

of the graphing calculator. It should be noted that none of the departmental final exam linear system 

problems required more than procedural knowledge. None were contextual problems and all but the 

2 × 2 inconsistent linear system were multiple choice format questions, written in traditional 

symbolic form of textbook exercises. 

S25 noting that the model was quadratic and recognizing the need to have consistent units, 

(changing one-half minute into 30 seconds), demonstrated proficiency in attention to some details. 

Confused about which variable was to be found, S25 solved the quadratic for y instead of for x. Once 

a default quadratic equation schema was retrieved and actions based on that schema initiated, S25 

focuses on “getting the answer.” Davis (1984, p. 65) describes the situation in which a student fails 

to match initial perceptions that cues retrieval of an appropriate schema: 

“If no appropriate input can be obtained from the present ‘primitive’ input source, a 

frame (schema) will typically make a default evaluation…. Once an instantiated frame 

(schema) is judged acceptable, nearly all subsequent information processes used this 

instantiated frame as a data base. The original primitive data is thereafter ignored.”  

Noticeably lacking is any strategy of checking one’s work, interpreting results against the constraints 

of the problem, or testing answers to determine if they make any sense. Gray, Pitta & Tall (1997) 

contend that: “different perceptions…, whether mental or physical, are at the heart of different 



	 18	

cognitive styles that lead to success and failure” (p. 117). S25’s work on the final open response 

rocket problem is indicative of the compartmentalization of knowledge in which procedures are 

linked to a particular concept—in this instance the use of matrices to solve linear systems only when 

S25’s perception cues recall of the linear systems schema. Additional data on S3’s and S25’s 

engagement with high level cognitive tasks are in Appendix C. 

   6. CONCEPT MAP EVIDENCE OF DIVERGENCE  

A comparison of their three concept maps revealed qualitative differences and the divergence that 

occurred between S3 and S25. S3’s initial week 4 core organizational structure was retained and 

visible in the 2nd and 3rd concept maps. Each subsequent map of S25 had a different structure, 

retaining few, if any concepts from the week 4 or week 9 map in week 15. What elements were 

retained were relocated in a different arrangement. Spectral graph analysis of S25’s corresponding 

schematic diagrams mathematically confirmed the differences and divergence in the underlying 

organizational structures of S3’s and S25’s concept maps. Triangulated with other data, the detailed 

analyses comparing the concept maps, corresponding schematic diagrams, and spectral graphs of S3 

and S25 revealed radically different processes of knowledge construction over time. 

6.1. Concept maps of S3. S3 visualized an initial anchoring concept of Function that reflected a 

unique way of thinking and organizing knowledge which was retained in week 9 and week 15 maps. 

Each map increased in complexity and interiority over the semester—visual evidence of the 

development of an organized, stable cognitive structure. Topics that were not a subject of study after 

week 4 (measures of central tendency and measures of variability), remain virtually unchanged on 

S3’s week 9 map ( F i g u r e  4 ) .  

   Figure 4. Week 4 and week 9 Concept Maps, S3  
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Week 4      Week 9

 
 
The growing complexity of mathematical knowledge and new connections is described in 

S3’s written mid-term self-evaluation: 

“I think it’s interesting how we learned to find finite differences and finite ratios 

early on and then expanded on that knowledge to understand how to find appropriate 

algebraic models. As we move on in class I’ve been noticing more and more the 

connection between what I have on my paper and what I have on my view window.”  

An examination of an enlarged portion of the left-side of weeks 4 and 9 maps documents 

this growing complexity. Week 9 map shows concepts Representation (upper left) and Equations 

(lower left) acquired greater complexity and new connections: Equations to (a) 1st finite 

difference, 2nd finite difference, and finite ratio, and (b) to General Forms: liner, quadratic, and 

exponential (Figure 5). 

 Figure 5: Comparison of the left portion of week 4 and week 9 Concept Maps, S3. 

  Week 4        Week 9 



	 20	

 

 The anchoring concept of Function, with Input (above) and Output (below) remains the 

core structure of S3’s week 15 map. New mental connections had been formed in the week 15 

map, including concepts and procedures associated with graphical:	x-axis	(horizontal);	y-axis	

(vertical);	use	regression	models	to:	find	parameters	(finite	differences-1st-linear;	2nd-quadratic,	

finite	ratios	(exponential);	finding	zeros	(	x-intercepts,	factoring	(algebraic);	y-intercept;	slope,	

also	line	of	best	fit).	Some restructuring has occurred. Equations, though still connected to the concepts 

algebraic, numerical and graphical, has been shifted from the lower left of week 4 and week 9 maps to 

the upper left above Representations. New	concepts: systems and matrices have been linked to 

Equations.  The phrase, use appropriate method has been added and is lined to all three representations:  

algebraic, numerical (tables); and graphical. An enlargement of the left-side portion of S3’s week 15 

map shows these new connections and complexity more clearly.	

Figure 6. Week 15 Concept Map (partial), S3. 
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On the semester final self-evaluation, S3 wrote: 

“While creating my (final) concept map on function, I was making strong connections 

in the area of representations. Specifically, between algebraic models and the graphs 

they produce. I noticed how both can be used to determine the parameters, such as slope 

and the y-intercept. At the beginning of the semester, I had a grasp of basic algebra—ex: 

finding slope, combining like terms, solving, evaluating, substituting and factoring…I feel 

that I now have a better understanding of these processes.  Looking at lists of data and 

using finite differences to find slope Dy / Dx has clarified my understanding of slope (rate 

of change). I was impressed by the link between finding the zeros (x-intercepts) on a 

graph and/or finding them algebraically by factoring (upper left-side). It’s very efficient 

to graph an equation to find whether or not it has a real solution(s). I think the most 

memorable information from this class would be the use and understanding of function 
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notation. A lot of emphasis was put on input and output which really helped me 

comprehend some algebraic processes such as solving for x.” 

 This is an articulate description of meaningful learning as characterized by Clarke,	D.,	Helme,	S.	

and	Kessel,	C. (1996),  i.e., by evidence that indicates the student is not simply accumulating isolated 

facts and procedures but: (a) claims to have learned something new; (b) can articulate what it is they 

think they have learned with some degree of clarity and accuracy; (c) can demonstrate formation of 

links with an existing framework that the student already possesses and (d) has experienced a change 

from insecurity to confidence. 

6.2. Concept Maps of S25 

The concept maps of S25, typical  of  the maps of  the low gain s tudents ,  provide a sharp 

contrast to those of S3 (Figure 7).  

   Figure 7. Week 4 and Week 9 Concept Maps, S25.  

  Week 4      Week 9 

 

The week 4 map includes definitions (clouds) of a few concepts (range, output,  domain, 

input). S25’s week 9 map shows a new, differently organized structure consisting only of the names 

of concepts (domain, equations, parameters, inequality, linear, exponential, and quadratic function) 

and processes (solving, evaluating equations. The element, parameters, is linearly linked to 
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each of the following: inequality, equation, solving and evaluating equations. No definitions are 

included. Except for Function, domain and range, no elements from week 4 appear on the week 9 

map. The sparseness of the week 9 concept map suggests that S25 is not building on prior 

knowledge, given the absence of many of the Week 4 map elements. S25’s final concept map reveals 

no links of procedures to concepts such as: factors, zeros of the function, or roots of the equation or 

connections to alternative representations such as graphical or numerical tables—all of which were 

the subject of investigation throughout the semester. 

 Week 15 map contains fewer elements (5) branching from Function than the Week 9 map (8) and 

is even more linearly organized. Linear and exponential functions on this map contain only 

computational procedural steps used to determine parameters of those functions (Figure 8).   

   Figure 8. Week 15 Concept Map, S25. 

 

Basic functions studied in the course: linear, quadratic, and exponential, each linked directly 

to Function on the week 9 map, are now incorporated under the element Parameter. Notably 

missing are the concepts of quadratic formula and discriminant—frequently recalled prior 
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knowledge of terms and procedures used by S25 throughout the semester. Also missing are the steps 

of a computational procedure for finding the parameters of a quadratic function. S25 recalled prior 

knowledge of computational procedures associated with solving quadratic equations (quadratic 

formula, finite ratios, discriminant) but usually used these procedures incorrectly and did not 

associate them with quadratic functions on either map of week 9 and 15. 

S25’s concept maps and written comments provide little evidence of meaningful learning. 

Limited growth and a lack of understanding of linear, quadratic, and exponential functions re 

confirmed in S25’s final self-evaluation comments:  

“My greatest weakness on my concept map is understanding linear, quadratic, and 

exponential functions. After using my notes and the book I was able to put together some 

of the pieces of my confusion. I can get the formulas but when I have a specific problem 

I don’t know which formula to choose to complete the problem.” 

S25 attributes the lack of success to having no prior knowledge of linear, quadratic, and 

exponential functions to build on. Despite claims of having no prior knowledge to build on, 

S25’s demonstrated problematic prior knowledge of quadratic procedures offers a more likely 

explanation:  

“… when looking at a graph I can’t tell if it is linear, quadratic, or exponential. This 

was the first time I have worked with these functions and I think that may have been 

part of the problem because I had no prior knowledge to build on. There are other 

areas that I feel that I have a strong understanding about as well. I choose mathematical 

statements because I was able to use my past knowledge and the new knowledge I have 

obtained this semester to have a better understanding.” 

 The claim of better understanding of mathematical statements is also contradicted by S25’s 

week 15 concept map and final portfolio evaluation. Without realizing it, at different times under 

different circumstances, S25 retrieved and used one  of  two different interpretations of solve. On 

week 15 concept map, solve links to: when you are looking for output. A week later, in the final 

portfolio self-evaluation, S25 wrote: solve: know output, find input. Unaware of using two different 
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meanings for solve, S25 expressed surprise when the inconsistency was pointed out in week 16 

interview. 

S25’s attitude became increasingly negative and confidence in the correctness of answers 

decreased over the semester. 

“I know, throughout the semester, I have learned many new math strategies, but making 

sense of them, I’m not so sure about. Perhaps I can make sense out of some like solving 

an equation but my confidence in what I can and cannot do is very low.”  

 7. SCHEMATIC DIAGRAMS: UNDERLYING CONCEPT MAP STRUCTURES 

The idiosyncratic nature of individual students’ concept maps makes it challenging to compare one 

student’s maps created over time or to compare the maps of one student with those of another 

student. Schematic diagrams provided a visual means of comparing different students’ processes of 

knowledge construction and structural organizational changes over time.  

 Schematic diagrams of the three concept maps of each student are shown ordered top to 

bottom (the week 4, week 9, week 15), indicating underlying organizational structure and how it 

changed over time (Figure 9). Main categories (larger rectangles) and associated sub-categories 

(small rectangles and squares) in the week 4 schematic diagrams are un-shaded. New concepts, 

processes, and representations not included on an earlier map are indicated by gray-colored 

rectangles in Week 9 and Week 15. A boldly-outlined rectangle represents an element that was 

present on an earlier map and is now in a different category or relative position. The schematic 

diagrams of S3’s three  concept maps clearly s h o w  t h e  u n d e r l y i n g  core structure of the 

week 4 map, retained and enriched in week 9, and grown even more in complexity and connections 

by week 15. The schematic diagrams of the three concept maps of S25 show a different 

organizational structure in each map. No core structure from week 4 is retained in either week 9 or 

week 15.   Appendix D has the schematic diagrams of the three maps of two additional students, S1  
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 (high gain) and S26 (low gain). 

  Figure 9. Schematic Diagrams of Concept Maps of S3 and S25. 

          S3             S25  

 

7.1. S3’S Schematic Diagrams 

As one’s eye moves over the schematic diagrams of S3 one is struck with a sense of familiarity. An 

enlarged image of S3’s week 9 schematic diagram clearly shows the retained week 4 anchoring 

structure, with new bits and pieces of knowledge integrated into and added onto the initial 

framework. In the week 9 structure, the elements, representations and equations (left side) have 

become more complex and grown in interiority, with new, shaded elements and connections (Figure 

10). 
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Figure 10. S3’s Schematic Diagram of Week 9 Concept Map 

 

The schematic diagrams of S25’s concept maps reveal three distinct structures. No core structure 

is retained from week 4 to week 9 to week 15—an indication that a new cognitive framework was 

constructed by week 9 and yet another, distinct framework by week 15.  

7.  SPECTRAL GRAPH ANALYSIS 

The growing complexity and stable structure of the spectral graph clusters of S3’s schematic 

diagrams compared with the sparseness and lack of a stable organizational structure in the spectral 

graph clusters of S25’s schematic diagrams confirm the findings based on analysis of S3’s and S25’s 

concept maps and schematic diagrams, triangulated with other data. When examined together with 

the original concept maps, the simple, graph clusters, absent any semantic labeling, are seen to 

closely resemble the schematic diagrams obtained from the labeled original concept maps contain 

vertices that are meaningfully connected. (Figure 11). 

 Spectral clustering of S3’s week 4 schematic diagram reveals six connected vertices (i.e., all 

vertices within a cluster are connected). Week 9 diagram retains the basic Week 4 overall structure 

is retained, and contains seven clusters.  The upper and lower left clusters of Week 9 build on the 

Week 4 organizational structure, having grown in complexity. Right center and the two lower right 

clusters remain unchanged. Week 15 includes nine clusters, including restructured left side clusters 

and new vertices. Some vertices shifted from one cluster to another. 
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 The abstract graph of S25’s Week 4 schematic diagram contains four connected clusters; 

Week 9, 4 clusters, and Week 15, 5 clusters. The Week 9 spectral graph has a new organizational 

structure. The center and upper right clusters of Week 4 are replaced with two center clusters of 

new vertices. Week 15 has yet another new organizational structure. Some vertices from weeks 4 

and 9 are now included. The center right cluster structure contains completely different vertices 

from week 4. Basically, the spectral cluster analysis indicates that S25 does not retain the structure 

of identifiable clusters from one concept map to the next and has not developed an organized, 

coherent cognitive structure that builds on prior knowledge. Spectral clusters of the words, listed 

according to the corresponding numbered schematic diagram used to create the spectral clusters of 

S3’s and S25’s Week 4 concept map, are given in Table E1 of Appendix E.  

Figure 11. Spectral Clustering of Schematic Diagrams 

          S3      S25 
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8. CONCLUSIONS & DISCUSSION 

Two students identified in terms of achievement and ranked by the z-score of their fractional gain 

in test scores are profiled—one deemed to have “high gain” (Gain = 0.8006) and 

 z-score = 1.5471, the other with “low gain” (Gain = 0.3067) and z-score –1.2897. Detailed analyses 

of three concept maps and corresponding schematic diagrams of S3 and S25, triangulated with 

quantitative and qualitative data delineates differences in their attitudes, beliefs, processes of 

knowledge construction, prior knowledge and strategies— documenting the divergence that 

occurred between them over a semester. 

8.1 Findings of qualitatively different processes of knowledge construction 

S3 was able to modify an existing way of thinking, demonstrated procedural flexibility of 

mathematical thinking, completed high level cognitive tasks, recalled and used prior strategies in 

novel problem settings, using both symbolic and non-symbolic procedures to translate between 

various representations. S3 demonstrated a consistency of performance on tasks involving linear 

and quadratic functions presented in different contexts and formats (open response, multiple choice), 

able to make and describe connections which required knowledge of several mathematical 

concepts (e.g. x-intercepts, zeros of the function, and factors), and justified responses. 

 S25 remained bound by a prior arithmetic interpretation of the minus symbol—unable to 

modify an existing inappropriate schema when interpreting the minus symbol in different contexts. 

Usually only one representational form was selected and used by S25 to investigate and solve a 

problem—invariably the more familiar symbolic procedure. S25’s weakest, inflexible performances 

included interpreting the minus symbol in various contexts and function notation, interpreting 

graphs. and tasks involving algebraic representations of quadratic functions. 

 S25 focused on only bits and pieces of a problem (the rocket problem, for example). When 
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faced with tasks involving the graphing calculator, responded: “I can’t deal with all of this, I’ll 

only deal with this piece”— suggesting that this student might be classified at the uni-structural 

or, possibly, the (unconnected) multi-structural level, according to the SOLO taxonomy of Biggs 

and Collis (1982, p. 25), who proposed a hierarchy of “pre-structural, uni-structural, multi-

structural, relational, extended abstract” levels to evaluate the quality of learning in many subject 

areas.  

S25’s failure to flexibly interpret and use ambiguous symbolism, resulted in “the uses of 

procedures that need to be remembered as separate devices in their own context” (Gray & Tall, 

1994, pp. 20-21). Often, both previously and newly learned procedures were recalled imperfectly, 

resulting in computational errors. S25 demonstrated a lack of consistency of performance across 

different formats or on procedural activities in which a function rule was not stated, such as 

evaluating compositions of functions.  

S25 demonstrated little growth and what growth occurred was unstable. Most surprising was 

the finding, documented in the concept maps, spectral graph analyses of the corresponding 

schematic diagrams, work, written comments and interviews, that S25 did not build successfully on 

prior knowledge. Robert Davis once described students like S25: “These students formed cognitive 

collages in which their limited understanding of mathematics terms; the fabric of words and 

expressions by which we communicate, shape, and modify our understandings to construct new 

collages, is too delicate, like lace or open cutwork, too fragile to hold the various bits and pieces 

together.” (Davis, 1984; p. 154).  

8.2. Concept maps documentation of divergent knowledge construction  

Analyses of the concept maps and corresponding schematic diagrams, triangulated with written 

comments of S3 and S25, document the divergence that occurred over the semester. Spectral graph 
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analysis of the schematic diagrams of their concept maps—a technique independent of semantic 

labeling and interpretation—mathematically confirmed the core structure and growing complexity 

of S3’s knowledge structures and the absence thereof of those of S25.  

 S3’s concept maps show that, initially, new knowledge was organized into a core cognitive 

structure that remained relatively stable over a semester. The set of schematic diagrams of S3’s 

concept maps revealed a common characteristic: the week 9 and week 15 maps retained the basic 

structure of the week 4 map—a strong indication of retention in memory of a basic cognitive 

structure, in that students had no access to physical records of any of their previously constructed 

concept maps. once submitted.  

 The cognitive structure of S25’s week 4 concept map was subsequently replaced by a new, 

differently organized, structure at week9 and at week 15. Concept map lacked essential linkages to 

related concepts and procedures. S25’s schematic diagrams also exhibited a common characteristic: 

a new structure replaced the previous structure in each subsequent map, with few, if any elements 

of the previous map retained in the new structure. The few elements that were retained were 

generally reassembled into new local hierarchies or networks of concept images and schemas. Most 

concepts that appeared on an earlier map were not included in the subsequent map. Those prior 

concepts that were retained appear in different locations, associated with different elements on a 

later map. Spectral graph analysis of the schematic diagrams provides confirmation of the 

differences and divergence documented in the concept maps of S3 and S25 by ascertaining the 

stability of identifiable clusters on the students’ concept maps.  

 S3 started as a self-described instrumental learner yet learned meaningfully through building 

rich connections between various mathematical topics. S25 began as a very instrumental and 

procedural learner and stayed that way. S3 and S25 were, mathematically speaking, marching to the 
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beat of different drums. Both were determined to succeed in the course, so what prompted S3 to 

focus on learning more coherently and flexibly while S25, apparently, did not?  

 S3’s attitudes and beliefs underwent a change during the semester. Those of S25 were 

impacted to a far lesser extent. S3 focused on understanding why, S25 focused on understanding how 

to—clear-cut examples of the difference between relational understanding and instrumental learning 

described by Skemp (1987, pp. 166–172). S3 was willing and able to change beliefs; S25 held fast 

to earlier beliefs—despite growing frustration and lack of progress. Early and later responses 

characterize this student and reflect the value attached to repetition and procedural rules which 

shaped the construction and organization of S25’s concept images and schemas. Offered the same 

opportunities as S3, S25 stayed on the path of divergence towards the proceptual divide.   

 The divergence in knowledge construction and organization is far greater than the divergence 

measured by an ability to get a correct answer, or the grades of students at the end of term. What is 

remarkable and concerning for a teacher assessing students at the start of a course, is that the students 

who enter a class with very similar mathematical backgrounds, attitudes, and apparent abilities have 

such widely divergent learning trajectories over the course of a semester. The possibility that 

students like S3, construct, organize, and restructure their conceptual structures in ways that are 

qualitatively different from students such as S25, has profound implications for those of us who are 

attempting to deal with the practical problems of attending to the cognitive, social and human needs 

of our students.  

8.3. Questions Unanswered and Possible Avenues for Future Research 

Findings of the qualitative differences in S3’s and S25’s processes of knowledge construction, 

documented in their concept maps, raise questions for which we currently have few to no answers. 

It is not enough to just document the existence of the phenomenon: possible causes of it need to be 
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examined. Could there be something else going on that drove this divergence? Could clues from 

neuroscience help us better understand the divergent learning trajectories of students like S3 and 

S25? Recent work in applications of neuroscience to mathematics education (De Smedt et al., 2010; 

De Smedt & Verschaffel, 2010) suggest that, at the very least, we should be asking the question of 

what neuroscience, especially the neuroscience of memory, might bring to a deeper understanding 

of the dynamics that drive such wide divergences in learning mathematics. It is now widely 

understood that the hippocampus is implicated in the formation, but not the storage or retrieval, of 

relational memories (Konkel & Cohen, 2009). Might it be that, given an appropriate context, one 

student was more capable than the other in the formation, and subsequent retrieval and expression, 

of relational memories? These are speculative questions, the answers to which may yet be far off.  

 Another intriguing possibility comes from recent empirical and theoretical research in 

working memory (Vandierendonck, 2014; Zokaei, Ning, Manohar, Feredoes & Husain, 2014). 

Working memory (WM), (Baddeley, 2003), is a short-term memory buffer that enables the use of 

stored information in real-time settings. There are at least two forms of attention that are highly 

relevant to working memory. One is executive attention which is concerned with overall carrying 

out, including planning, of a real-time task. Another is selective attention which is invoked when 

attention during a task is oriented to specific aspects, objects or representations involved in the task 

to the exclusion of others. Vandierendonck (2014) argues that in many circumstances selective 

attention can produce an overload on working memory that inhibits executive attention. In other 

words, focus on a specific aspect of a task can interfere, in real time, with executive control of the 

execution of the task. To our minds this is an excellent description of what took place in S25’s 

solution of the toy rocket problem. Zokaei, et. al. (2014) argue that: “The context in which people 

are required to hold more than one item in WM makes a difference to how flexibly they can switch 
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attention to non-focused items and improve their precision of recall” (p. 10). Again, we see 

reflections of this finding in relation to S25’s problem solving abilities: S25 does not seem to be able 

to readily switch attention to non-focused items in a task to recall them with any overall relevance 

or precision.  

 Another possibility, also related to student memory, is the issue of practicing retrieval. 

Karpicke (2012) and Karpicke & Grimaldi (2012) demonstrate empirically that practicing retrieval 

of material produces meaningful, long-term learning. This finding is of more immediate use to 

teachers who can, through the use of frequent and periodic quizzes, promote the active retrieval of 

previously encountered material. If, as Karpicke & Grimaldi say, this promotes meaningful, long-

term learning, that should become evident in student concept maps over time, something that is 

eminently testable. Blunt & Karpicke (2014) have utilized student concept maps as the medium for 

practicing retrieval and find that: “… results show that concept mapping can indeed serve as an 

effective task when it is implemented as a retrieval-based learning activity. The key element for 

promoting meaningful learning was not the format of the activity; it was the requirement to engage 

in active retrieval practice during learning” (p. 857). 

 The significant finding of this study is that low gain student, S25, unlike high gain student 

S3, did not build on prior knowledge and integrate new knowledge into a core cognitive structure 

that remained relatively stable over time. Currently, the conundrum of students like S25, who claim 

to want to connect new mathematical knowledge to old, yet appear unable to integrate new 

knowledge into existing structures, except in a very limited way, is still an unsolved problem.  
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APPENDIX A: Student Rankings:  

Table A1. Pre-to-Total Final Gain* & Z-Score 
RANK  RANK   COURS

E 
DEPT    

GAIN* POST PRE-
TEST 

POST 
TEST 

FINAL FINA
L 

FINAL GAIN Z-
SCORE 

1 1 0.1429 0.9286 0.95 0.9286 0.9357 0.9250 2.2619 
2 2 0.2143 0.8571 0.89 0.8235 0.8569 0.8179 1.6465 
3 3 0.1429 0.7857 0.88 0.8214 0.8290 0.8006 1.5471 
4 13 0.0714 0.5714 0.91 0.6786 0.7200 0.6985 0.9607 
5 4 0.2857 0.7857 0.72 0.7857 0.7638 0.6693 0.7934 
6 5 0.1429 0.6429 0.72 0.7857 0.7162 0.6689 0.7909 
7 10 0.0714 0.5714 0.78 0.7143 0.6886 0.6646 0.7663 
8 6 0.2857 0.5714 0.87 0.7857 0.7424 0.6393 0.6211 
9 7 0.1429 0.5714 0.75 0.7500 0.6905 0.6389 0.6185 
10 16 0.0714 0.4286 0.75 0.6786 0.6190 0.5897 0.3363 
11 9 0.2143 0.5000 0.85 0.6786 0.6762 0.5879 0.3256 

12 15 0.1429 0.3571 0.85 0.5357 0.5810 0.5111 -0.1154 
13 14 0.2857 0.5000 0.75 0.6786 0.6429 0.5000 -0.1792 
14 12 0.3571 0.5000 0.85 0.6429 0.6643 0.4778 -0.3068 
15 11 0.1429 0.3571 0.72 0.5714 0.5495 0.4744 -0.3260 
16 19 0.0714 0.3571 0.65 0.5000 0.5024 0.4641 -0.3854 
17 20 0.1429 0.3571 0.72 0.5357 0.5376 0.4606 -0.4058 
18 21 0.0714 0.2857 0.72 0.4643 0.4900 0.4508 -0.4620 
19 17 0.1429 0.3571 0.62 0.5357 0.5043 0.4217 -0.6291 
20 8 0.4286 0.5714 0.72 0.7143 0.6686 0.4200 -0.6387 
21 18 0.2143 0.3571 0.72 0.5357 0.5376 0.4115 -0.6874 
23 22 0.2857 0.2143 0.75 0.6186 0.5276 0.3387 -1.1059 
22 23 0.1429 0.2143 0.65 0.4286 0.4310 0.3361 -1.1206 
24 25 0.0714 0.1429 0.6 0.3929 0.3786 0.3308 -1.1512 
25 24 0.1429 0.2143 0.61 0.3929 0.4057 0.3067 -1.2897 
26 26 0.1429 0.1429 0.6 0.2143 0.3190 0.2056 -1.8704 

         
 MEAN 0.1758 0.4670 0.7538 0.6228 0.6146 0.5312  
 STDEV 0.0953 0.2159 0.1010 0.1652 0.1516 0.1741  
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APPENDIX B: High and low gain students’ strategies and divergence 
 
A given ranked student’s responses (column) indicates: correct response (black); incorrect 

response (stripe); no attempt (white) to question. 

I. Pre- to post-test divergence in ability to interpret the minus sign in context.  

High and low gain students’ pre- and post-test responses interpreting the minus symbol in different 

contexts are shown in Figure B1.  

Figure B1. High & low gain responses interpreting the minus symbol. 

 

II. Ability to interpret function notation in different contexts 

Pre- and post-test responses of high and low gain students to questions interpreting function 

notation in different contexts are shown in Figure 6. 

Figure B2. High & low gain pre- and post-test responses interpreting function notation. 

 

III. Resistance to changing belief about a minus symbol in front of a variable. 

Post-test responses of both high gain and low gain students are shown in Table B1 indicting how 
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resistant to change is the belief that a minus sign in front of a variable means “negative.”  

Table B1: Post-test responses to questions requiring interpretation of the minus sign 

QUESTION STUDENT POST-TEST RESPONSE 

 Q1: –52 S2 square –5; Answer: –25 

 Q1: –52 S22 take –5 X –5 to get answer –25 

Q5:( x – c) S4 The value of c is positive because x is in front of the –sign; if 
just –c, then c would be negative. 

Q5:( x – c) S25 Subtract, change to x +-c; c is negative 

Q13: –f(x) S2 negative whole output 

Q13: –f(x) S3 -f(x) makes the whole function negative 

Q13: –f(x) S25 f of the function is negative 

IV. Stability of reconstructed schemas of high and low gain students 

At various times during the semester, students were asked to evaluate a quadratic function, f(x) = x2 

– 2x + 7, given a negative numerical value input, f (–3), and a binomial input, (h–1). The stability of 

re-constructed schemas of the entire class member are shown in Figure B3. Those of high and low 

gain students are shown in Figure B4.  

Figure B4. Stability of Class Responses to Questions involving minus symbol 
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Figure B3. Stability of reconstructed schemas of high and low gain students 

 

IV. Flexible thinking: Reversibility of Thought 

Ability of students in each group of extremes to think flexibly and switch one’s train of thought from 

a direct process to its reverse process was examined. Pre- and post-test questions related to reversing 

a process included (a) the direct arithmetic process involving the minus sign, together with its reverse 

process, (i.e., square a negative value and determine the additive inverse of a value squared (Q1 and 

Q3)); (b) a symbolic functional representation involving the minus symbol in squaring a negative-

valued input and squaring an algebraic input (binomial) (Q6 and Q7); (c) evaluate a function and 

solve an equation given graphical representation (Q8 & Q9); and  (d) determine the value of f(g(x)) 

and g(f(x)), given two tables of values. High and low gain responses are shown in Figure 7. 

Figure B5. Reversibility of Thought 
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APPENDIX C. S3’s and S25’s engagement with high level cognitive tasks  

S3’s and S25’s responses to a journal problem and to pre- and post-test questions provide yet 

other examples of the extent to which they engaged or did not engage in high level tasks. The Week 

5 journal problem involved both symbolic and non-symbolic representations (algebraic, numerical 

tables) and required use procedures connected to concepts: input/output values with ordered 

pairs, finite differences with parameters, and justification of the specific algebraic model 

selected.  

Week 3 Journal Problem: Given the table of data, determine whether this data is modeled by a 

linear, exponential or quadratic function.  Why? Find the specific algebraic model for the data. 

Show all work. 

     Table C1: Journal 5 
  

INPUT OUTPUT 

0 3 

1 4 

2 9 

3 18 

4 31 

 

 S25 wrote: “This data is modeled by a quadratic function because the common ratio 

beginning with the second output is constant.” S25 work consisted of: (Quadratic formula); y(x) = 

ax2 + bx + c.” S25 circled a, b, and c. S25 was one of two low gain students who calculated second 

finite differences. No student in this cohort provided a specific equation or work to determine the 

parameters of the equation. 

 S3 included work, a specific algebraic equation for the given data, an explanation for 

determining the value of parameter, a, and justification for choice of algebraic model. After 
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completing the table, S3 wrote: “Quadratic, because the second finite difference is constant.” 

Table C2: S3 Journal 5  

INPUT OUTPUT D DD  
0 3 1 4  y(x) = ax2 + bx + c; c = 3, output when input = 

0;   1 4 5 4  A = 2, because ½ of 4 =2 (½ 2nd finite diff) 
2 9 9 4  y(x) = 2x2 + bx + 3; 4(1) = 2(1)2 + bx + 3 
3 18 13   4 = 2 + b + 3; 4 = 5 + b; –1 = b 
4 31     y(x) = 2x2 – x + 3  

 S3’s and S25’s responses to Q10 and Q11, asks for evaluation of the direct process f(g(1)) 

and its reverse process, g(f(5)), given tables of values for functions f and g.  

 Table C3: Composition of functions 

 Given the following tables for functions f and g: 

x f(x)  x g(x) 
1 3  –2 3 
2 –1  –1 1 
3 1  0 5 
4 0  1 2 
5 –2  2 4 

 10. What is the value of f (g(1))? 
      Pre-test: S3:  I’m really not sure how these two tables relate to one another. 

        S25: No attempt at response. 
   
    Post-test: S3:  g(1) = 2; f (g(1)) is equal to f(2); f(2) = –1, so f(g(10)) = –1. 

        S25: I think of g(1) meaning when x is at 1, what is g. f(2). 

 11. What is the value of g(f (5)) 

      Pre-test: S3:  –1 comes to mind because its opposite of 2of the table of functions. 

        S25: No attempt at response. 

    Post-test:   S3:  x = 3. f(5) = –2; g(–2) = 3. Finding the output of f(5) is –2. Then  
                 inputing –2 in function g(x), and using table values to find the output. 

        S25: What is x when f is at 5. f(–2). 
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APPENDIX D: SCHEMATIC DIAGRAMS CONCEPT MAPS OF S1 AND S26 

 

FIGURE D1: Schematic Diagrams ofConceptMapsofS1 andS26. 

 
Main categories (larger rectangles) and associated sub-categories (small rectangles and squares) in 

the week 4 schematic diagrams are un-shaded. New concepts, processes, and representations not 

included on an earlier map are indicated by gray-colored rectangles in Week 9 and Week 15. A 

boldly-outlined rectangle/square represents an element that was present on an earlier map and is 

now in a different category and/or relative position. 
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APPENDIX E: S3’S & S25’S SPECTRAL CLUSTERINGS & WEEK 4 MAP TERMS 

Table E1. S3: Week 4 Concept map terms by spectral cluster 

Cluster 1 
(Upper left) 

Cluster 2 
(Lower left) 

Cluster 3 
(Upper 
center)   

Cluster 4 
(Lower center) 

Cluster 5  
(Upper right) 

Cluster 6 
(Lower right) 

Representations 
Function 
(process, 
relationship) 

Function Output M.C.T. Meas. of var. 
(spread) 

Numerical (Tables) Function 
notation Input Range Mean Stat Range 

Algebraic,  Equations Independent 
Variable 

Dependent   
Variable Median Mean 

Deviation 

y = 5x – 100 Fname(Input) 
= output Domain 2nd, Ord. pair Mode Std. Deviation 

Graphical  x-axis 
(horizontal) y-axis (vert) average Largest-

smallest 

  1st, Ord. pair  Middle Abs value 

  Finite lists  most 
frequent Population 

  M.C.T.   Sample 

     Variance, sq. 
root 

  

Table E2. S25: Week 4 Concept map terms by spectral cluster 

Cluster 1 
(Upper left) 

Cluster 2 
(Lower left) 

Cluster 3 
(Upper center)   

Cluster 4 
(Lower center) 

Data Function Function Machine Measures of Central Tendency 

Ordered Pairs Domain/Range Real Numbers Mean, Median and Mode 

Graph Function Notation Measures of Variability Range/Output 

Slope  Statistical Range  

 

 
 


