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Rings with orthogonality relations

G. Davis

The rings of this paper are assumed to have relations of
orthogonality defined on them. Such relations are uniguely
determined by complete boolean algebras of ideals. Using the
Stone space of these boolean algebras, and following J. Dauns
and K.H. Hofmann, a sheaf-theoretic representation is obtained
for rings with orthogonality relations, and the rings of global
sections of these sheaves are characterized. Baer rings,
f-rings and commutative semi-prime rings have natural
orthogonality relations and among these the Baer rings are
isomorphic to their associated rings of global sections. A
special type of ideal is singled out in commutative semi-prime
rings and following G. Spirason and E. Strzelecki, in an
unpublished note, a characterization of a class of such rings is

obtained.

1. Orthogonality relations

DEFINITION 1.1. A relation % on a ring R is said to be an

orthogonality relation if
(1) x4y implies yar ;
(2) Osx for all x € R ;
(3) x4 implies z =0 ;
(4) xyay, x4y implies (z-z2)4y 3
(5) x4y implies (ax)#y , (xa)sy for all a € R ;

(6) if 1 is a multiplicative identity for R then xx1 implies
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x=0.
Examples of rings with orthogonality relations are
(1) commutative semi-prime rings with zsy if a2y = 0 ;
(2) f-rings with zay if |z| A lg[8=T0%

DEFINITION 1.2. For z ¢ R s ACSR put z*={y ¢ R ; x4y} ,

AX = N at A% = (%) TP 4 = {x} 1is a singleton set then
a€d

A* = {z}* will be written simply as z* , and similarly for z** . 4
subset of R of the form A* » AC R is said to be a polar subset of

R . The class of all polar subsets of R 1is denoted by B(R) .
The following properties of polar subsets are easily established:
(1) évery polar subset of R isg a two-sided ideal;

(2) o*=rg, RASH(0)¥:

*
(3) n .4; = (U AuJ for any class {AQ} of subsets 4 CR;
o a

(&) A* n A** = (p) for any ARCEREN

The orthogonality relation # is said to be regular if

T*t oyt = () implies zay |,

Unless & statement to the contrary is made it will be assumed that all
orthogonality relations discussed are regular.

1.3. B(R) , ordered by inclusion, is q complete boolean algebra.

Proof. Using Frink's axioms [2] for g boolean algebra it is enough to
see that B(R) is g complete lower semi-lattice such that for any
A* € B(R) there is ap (4')* € B(r) satisfying (4')#4 g+ = (0) if and
only if A* n gt = B* . In fact A' = g% suffices: {if g4 n B* = p#
then A%% 0 Bt = a4 (g0 B2) = (A%% o 44) n g* = (0) nB*=(0) . 1In

general B* 3 (4 y B)* = g4 n B* . Suppose that A** 0 B* = (0) and take

x€BY. It g f 4% then for some g ¢ 4 > T4a 1is false. Then
z** 0 a** £ (g) since 4 ig regular, but gi% < B , a*t c g%% ang
B* n A* = (0) . Thus TE€A* so that B+ = 44 n B* | B

A boolean stryctyre B for a ring R 45 4 class of (two-sided)

ideals of g such that:



Rings with orthogonality relations 165

(1) B, ordered by inclusion, is a complete boolean algebra;
(2) the zero of B is (0) and the unit of B is R .

Thus, if + is an orthogonality relation on R then the class B(R) of
polar subsets of R 1is a boolean structure. On the other hand if B is
a boolean structure for R define z°° =N{B € B : x € B} eand

2% = complement of z°° in B, for x € R . The relation # defined by

x#y if x € y° is then an orthogonality relation on R with B(R) = B .

2. Representations

In this section a representation theorem for rings with orthogonality
relation is described. This representation is in terms of rings of global
sections of sheaves and since this method of representation has been given
at length elsewhere (Dauns and Hofmann [1], Kist [4], Pierce [5]) only the

pertinent definitions and proofs of the final results will be given here.

DEFINITION 2.1. If R, R' are rings with orthogonality relations
denoted indifferently by # then amap h : R+ R' is a #-isomorphism
at

(1) h is a ring isomorphism into R' ,

(2) x4y if and only if h(x)#h(y) .

DEFINITION 2.2. A triple (4, b, €) is a sheaf of rings if

(1) 4, ¢ are topological spaces;

(2) b : A4+ C is a local homeomorphism (that is for each a € 4
there is an open set containing @ such that b restricted to

this open set is a homeomorphism onto an open subset of ©)s

(3) for each Yy € C , p™X(y) is a ring in 4 ;
(L) the maps (oy, @) + o) - az , (o), @) > aja, from the set
AV A= {(ﬂ!, 32} € A x A b(al) = b(az)} into A are
continuous.
If ' cC is an open set then a continuous map 0 : ¢' + A is said
to be & section over (' if boo : €' + C' is the identity map on ('
If (¢' = C then a section over ¢' is said to be a global section. The

set of all global sections is denoted by T(4) and is a ring for the
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pointvise operations: [o+1](a) = a(a) + 1(a) » 9-1(0) = g(a)-1(a)

If R ig a ring with an orthogonality relation =x write @ for the
Stone space of the boolean algebra B(R) of polar subsets of R . Thus,

d 1is a Hausdorff extrema.lly-disconnected topological space,

DEFINITION 2.3. For t € ¢ define Rt = {zx € R : pt4 ¢ S

LEMMA 2.4, Every Ht SO A ST (two-sided) ideqi of R,

(IR =8 (0) Every R, is a prime ideql if and only if xay is
teq

equivalent to Xy =0,
Proof, 1t ig straightforward to check that each x?t is an ideal and

n Rt = (0) . Suppose that Z#Y 1s equivalent to 2y = 0 . Thus
teq

Ty = 0 implies ¥4y which in turn implies xR = (0] o that for
€ach £ € @ either g+ €t or y*t e g . That is for each R, either
&€ Ht or y ¢ Rt S0 that each Rt is prime, Conversely, Suppose that

each Rt is prime. 1f LY =0 then =z ¢ Rt or y ¢ Rt » for each

t €Q so that p#x RS ) (0) and thus T4y . In general if
teQ

Easthen =008 for 1n this case (zy)#x St nyrt = (o) /7
DEFINITION 2.5, For & € & write R/Rt for the set of ordered

pairs [.1.'+Rt, P sen Then R/R, is a ring for the operations

(w&t, t) + [+, ¢) = (a:+y+ﬁt, £,

(z+Rt, t) [y+i?t, t) = [:l:y+Rt, Gl

n

Put R = i
w UQ R/Ht and define p , R=+¢q vy plr) = ¢ ¢ rGR/Rt .

ap 2:0+p by 2(2)

[.:cﬂ?t, t) . Put

LEMMA 2.6, For eqen RS

B P% ig the tdentity map on @ and
the set { 44 a ring for the pointwi

8¢ operationg,

A base for the OPen sets for the hull-kernel topology on g consists
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of sets of the form @, = {t €Q: A* K t} . The sets
&(QA) = {2(¢t) : t € 'JA} for © € R, ACR , then form a base for the
open sets for a topology on R .

PROPOSITION 2.7. With the hull-kermel topology on @ , and the
topology described above on R , the triple (R, p, @) <& a sheaf of

rings.
Proof. Similar to Proposition 2.13 of Dauns and Hofmann [1].

The ring T(R) of global sections of (R, p, @) has an
orthogonality relation x given by 04t if for each t € @ either
a(t) =0 or T(t) =0 in H/Rt 5

Let R be a ring with an orthogonality relation = and an identity

For @' €4 themap I(Q') : ¢ * A is defined by
1(t) if t€egq' ,
I(Q')(¢) =
0 SR E RO
I(@') 1is called the indicator function of Q' €@ , and T(@Llie LIR)E 2f
and only if @' € @ 1is closed-open.

THEOREM 2.8. The map x+» % is a s-isomorphism of R into T(R) .

For each o € T(R) there is a finite closed-open partition [QA.] ofeNQ e,
1
and z; € R, such that 0 = E:I[QAT:]:I:T:

proof. For x,y € R, t €& 5
;L‘/-\y(t) = (m—y+,ﬁ’t, t) = [x+ﬁ‘t, t] - {y*Rt, t] = 53(1‘:) = Q(t) B

and similarly & = £§ . If 1 1is an identity in R then for ¢ € T'(R)
and ¢ €Q, o-i(t) =o(e)-1(t) =a(t) so 1 is an identity in T(R) .

If #(¢) = 0 for each t €Q then z** € t = (0) so that z =0 .
ted

x** noyr* = (0) € N t so for each ¢ € @ either

If xay then
teq
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E(t) =0 or §(t) =0 » whilst if for each £ € @ either £(¢) =0 or

() =0 then z* n YSSECR TN C=R (008 Sinee. 4 is regular this means
teq

that zay .
Take 0 € T(R) . For each ¢ ¢ & there is an Z, € R such that

a(t) = .‘Bt(t) - Then there is a closed-open neighbourhood QA of t such
t

thet o(2') = & (2') for a11 ¢! €Q, . Then {@ . z¢ 9r is an open
& 4y 4y

cover for @ so there is & finite subcover {QA o DS Q‘q } . Put
t t

S, B ) =4 N ToriZ>80 S8 qhen {Q,...,Q}
g At Ai At. 1=j<i 'th. il An

is a finite closed-open partition of ¢ , Put .z:i =z s> and consider the

global section XI[Q Ji‘ NI TSNl then
H gl 0

7%i'[ézﬂi]aift) = et.(t) = .eti(t) = o(t) . Thus, o = E I[QAJ.%?: 2 //

DEFINITION 2.9, a ring R with ap orthogonality relation % is
said to be ccxnpletely—pmjeetable if for each 4 SR, A*@4y*4 = |

PROPOSITION 250"
then the ring T(R) of
complete ly-projectah le.

If R 4s q ring with an orthogonality relation
global sections of the sheaf (R, p, @) s

Proof. For G lgis T €R, define IQ'; z) . €+ R by

2(¢) for ¢ ¢ Q'

3

Q' z)(¢) =
0 for ¢ ¥ g
Then I(Q'; x) ¢ F(R) if ang only if g

is clesed-open. s before,
if 0 € I(R) then o= Z I(Q : .r.J
) .41: 1

Where {QA.} is a finite closed-open
T

partition of ¢ ., you take {o.}cT(R) ang o=17 I(QA : “’i} € T(R) .
1 i

Put 5 =0{f¢ { O (L) ; =
b Q O, t) #0F ang S'—Q\S.ThenSand S’

are
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closed-open since & is extremally-disconnected. Thus

g=] I[Q nS; x.] + I[Q nS'; x.J . Put = I( ; J
L%, 1 g A; i o5 g i

o, = E I[Qﬁ:ﬁs'; xi] - Then o, € {o }*, for if o (¢) # 0 for some

o, t then ¢t €S so that 0y(¢t) =0. If TE€ {oa}* , then g (t) #0
a

for some o, ¢t implies 7T(t) =0 . That is, T=0 on

U{tegqg: Oa(t) # 0} , and since T is continuous, T=0 on S . Then
o
0 =0 on S' so that 0;4T . That is, o, € {cu}*i which means that

{0 }*® (o} =T(R) .  //

3. Baer rings

Let R be a ring. For a subset A € R the right annihilator of A
is the set A° = {x € R : ax = 0 for all a € A} . The left annihilator
°4 1is defined similarly. If A = {x} is a singleton subset of R then

A°, °A are denoted respectively by x°, °x .

DEFINITION 3.1. Let R be a ring with identity 1 . R is seid to

be a complete Baer ring if for each A € R there is an idempotent
e2 = ¢ € R such that 4° = eR . R 1is said to be a Baer ring if for each

x € R there is an idempotent e with z° = eR .

Thus in a complete Baer ring right annihilators of subsets are
idempotently generated and similarly in a Baer ring right annihilators of
elements are idempotently generated. A result of Kaplansky [3] shows that
the assumption of an identity for the ring implies the same thing for left
annihilators.

DEFINITION 3.2. A complete Baer ring is said to be of type C if
right annihilators of subsets are generated by central idempotents. A
similar definition holds for Baer rings.

In a (complete) Baer ring R the idempotent generator of a subset
A C R will be denoted by id(4) .

The set B(R) of all central idempotents of R 1is a complete boolean

algebra for the operations
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t

ev f=ef, eRANTE=ReltRi—Tef o o' =1 - @ .
Assume for the rest of this section that Baer ring means complete
Baer ring.
PROPOSITION 3.3, If R is a Baer ring then the relation * on R
given by z#y if id(zx) v id(y) =1 ies a regular orthogonality relation,
Furthermore em ettt g g complete isomorphism fram B(R) onto B(R) .

Proof. If z4r then id(zx) =1 so that z° = R and thus z = ¢
since 1 € R . To see that T14Y, xp4y dimplies (rl—xz)*y notice firstly
that (x)-25)° > 2§ n x8 . That is, id(z))R n id(z,)R € id(x;-2;)R so
that dd(z)) A id(z,) ¢ id(x)-z;)R and thus
id(zy) A id(x,) = id(a:l-.rz)[id(xl) A 1d(x;)] which means that
id(z)-xp) 2= id(z)) A id(zp) . Then

12 id(x)~z,) v id(y) > (ia(z;) A id(x,)] v id(y) =
[id(.rl) v id(y)] A [id(:cz) v id(y)] =1t

If z4 and 2z € B tpeq (x2)° 2 2° s0 that id(xz) = id(x) , and
thus 1 = id(xz) v id(y) = id(z) v id(y) =1 so that T24Y . The

remaining orthogonality Properties of # foliow easily.

3

To see that + jg regular firstly notice that for 4 c R
A* = (l-id(A)J‘ 8RR e G idempotent then id(e) =1 - ¢ .

Teke z € 4% | 5o that id(x) v id(a) =1 for each g € A and thus

id(z) v id(l-id(l-id(A)]J = idlz) v iq(4) =

id(z) v /\ id(aq) = /\ id(x) v id(a) = 1 .

aed acl

SBMEL A (a) e, oy ¥ € (1-1a(4))* then gop a€aq,

id(a) v ia(y) » id(4) v id(y) = id(1-14(4)) v id(y) =1
sl b e (1-1a(4))+ ,
Take =z, y ¢ p | Then z#4 = (l-id(-r)] My oytrs (1-ia(y))** so
that [l-id(r)]-[l—id{y}] Loy, T .k Y* then

la(z) v idly) # 1 g that [l—id(:x:)]-[l—id(y}] #0 . That is, x is
regular. i

The map ¢ o4 from B(R) into B(gr) is surjective since
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A* = (1-ia(4))* . If d* = f* then, since 1-e¢ €e*, 1-f€f*, it
follows that f - ef =¢ - fe so that e =f . That is e > e* is

injective. For a set {eu} c B(R) ,

[\f/ eaJ‘ {x € R id(x) v id[ ea] = 1}
={ :id(x)v[l—\/ea]
={e :id(x)v/\(l-ea]=1}

R : /A\ id(z) v (l = ea]

a

€

8
=]

"
B
e

8
=yl

m
n
=

= AT
= *
e& .
Q
Also (1-e)* = e** | for if =z € (1-e)* , y € e* then

ia(z) v id(y) = [id(z) v ia(y)] A [e v (1-e)]
= [ialz) v e] A [ia(z) v (1-e)] A [ialy) v e] A [ia(y) v (1-e)]
[ia(x) v (1-e)] A [fa(y) v e] 2 (1-e)ve=1,

vhile on the other hand 1 - ¢ € @* . Thus e % e** is a complete
isomorphism onto B(R) , as asserted. //

PROPOSITION 3.4. If R is a ring with identity 1 and an
orthogonality relation s then the ring T(R) of global sections of the
sheaf (R, p, @) is a complete Baer ring of type C such that
id(o) v id(t) = 1 if and only if for each t € @ either a(t) =0 or
() = 0.

Proof. If o € I'(R) then O = Z I[QA ]xi , where {QA } is a finite
i 7 1z

closed-open partition of @ . For & subset {Oa} of TI(R) put

a(t) # 0} for all o . Then S(0) =UQ, n<, and is
i 1 z

If {Oa] < T(R) then the

S{cu)={t€Q:o

therefore closed-open so that I(S(c)) € T(R) .

closure U Siou[ of U S{Ua] is closed-open, since @ is extremally
a a

disconnected, so that I(U S]Oa ] ¢l(R) . If 1€T(R) and 0 T =0
o
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for ell a then {t 3y I[l;' Squj}(t)'T(t) # O} = U8 0 S(1) ey
a

is void so that I[{L’J Slcu]}-'l‘ =0 . The converse is easily established,

so that {Uu}" = [i—I(U S caf”-F(R) and 1 - I(U S]ca J is a central
o

Q
idempotent in L(R) . 1r [i-I[S(G)]] v ﬁ-I(S(T)J] =1 then
I(5(0)) -I[S(T)J =0 so that for each ¢ ¢ @ either o(t) =0 of
T(t)=0: This argument reverses to show that 1L git= g then
id(o) v id(1) = 1 ., //

PROPOSITION 3,5, Let R be q complete Baer ring of type C. For
the orthogonality relation + on p given by xay if idlz) v id(y) =1
the ring R ia *=i8omorphia, PRERIR(R)S the Baer ring of global

sections of the sheaf (R, p, Q) ang $(ia(a)) = 14($(4)) for each
subset 4 GER

Proof. The Sections ¢ € I(R) can be written ZI[QA*J%Z » Where
Z 1

.'ni € R and {QM} is a finite closed-open Partition of € , so that
7

REME g A ring will foliow once it is known that for each 4 CR
—~ LA -
id(4) = 1a(z) , where iq(4)
satisfying (4)° = id(ﬁ)'P(R) + For teg

1d(4)(¢) = [3-1[ U SE&J”(t) = e

aci
T0)e 12 ik s@y ,
ac4
whilst id(4)(¢)

(id(A)+Rt, ) R €q.

Take ¢ ¢ ) s(a) . =4
0 @) © ey l;m (t,) » vhere (t,)

U s(a) .
aed

Since iq(4) ¢ (1-1a(4))# = 4a

is a net in

Then for egep O there g an 9y €4 such that adfe Jieo .
a a

then Rog+ y 1d(4)% 5 4% A** = p
which means that g4+ id(4)*+ = (0)

N
Then, id(A)[ta) = 0 since
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A% & tu for each o . Thus

fA(A) (¢) = {;EE)(lim [tu]] = lim [iﬁfﬁ)[ta]] =0 .
+3

a

That is, if id(4)(¢) = 0 then id(A)(¢) =0 .

P A~ .

If id(4)(z) # 0 then id(4)(¢) = 1(t) since
id(4)** n (1-ida(4))#* € 4* n A** = (0) and thus (1-id(A4))** € ¢t since
t is prime. In this case 1d(4)(¢) = 1(t) also: A** = [l-id(A)]** €t

sothat ¢t & U S(&) and thus id(4)(¢) = 1(¢) . Thus the map
acd

¢ : R+ T(R) given by ¢(x) =% is a ring isomorphism onto T(R) .

T ~
Furthermore ¢(id(4)) = ia(4) = ia(4) = id(¢(A)) . The map ¢ is a
i-isomorphism since # 1is regular. /!

4. f-rings
An f-ring is a lattice ordered ring A for which [z]| A |y| =0
implies |ax| A Iy| =0 = |za| A ]y] for each a € R .
Thus, if 4 is the relation on R given by sy if |z| A |y =0

then 4 1is an orthogonality relation. Furthermore 4 is regular since
gt ooyt = (|=] A Jy|)*= .
The main result in §2 gives the

PROPOSITION 4.1. Let R be an f-ring with a unit. Then every

ideal R, t€ @ , is a prime lattice-ideal, (R, p, @) 1is a sheaf of

totally ordered rings, and T(R)
an f-ring and x+~ & from R into T'(R) s a lattice isomorphism into

I(R) .

Proof. If |y| = || , x €R, then y**c z** so that y € R, .

can be lattice ordered so that T(R) tis

Thus Rt is a lattice-ideal for t € @ .

It |z| A |y| =0 then x**n y** = (0) so that, for t €@,

either z** € ¢ or y#** € t . That is, x € Rt or Yy € Rt , S0 that

Ht , t €@, is a prime lattice-ideal.
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The factor spaces R/Rt = {[.rt’?t, t] e R} can now be ordered by
[.1:+Rt, t) 2 0 if there is a Yy € Rt such that * + ¥y 20 in R . Then
each factor space is a lattice-ordered ring and in fact, since each Rt

is & prime lattice ideal, the factor spaces are totally ordered. The ring
I(R) of global sections of the sheaf (R, p, ) can now be ordered
pointwise: that is ¢ = 1 if for each ¢ € @ , o(t) = ©(¢) in ir‘/Rt F

For x € R put Pos(x) = {t € @ : #(¢) > 0} . Take to € Pos(x) so that

2(¢) >0 in R/R, . By the definition of the order on R/R,  there is
) 0

8 y €R, suchthat T+y >0 . Then x/w‘\:;[to] =2(t) so that
0

I/"'\J(t) = Z(t) for all ¢t € QA where €, 1is a neighbourhood of t,
Ir i/+\y assumes the value 0 in all neighbourhoods of to then

;/-r\y(to} = 0 contrary to the choice of Y . Thus, there is a

neighbourhood @y of t, such that m(t) >0 for all ¢t ¢ Q -

Then £(t) = -T./;\y(t) >0 for all ¢t ¢ 9 n@ . That is,
@y n 9y C Pos(z) so that Pos(z) is open. On the other hand Pos(z) is

contained in the closed set {t ¢ @ : 8(¢) = 0} , yet if 2(¢t) = 0 then
there is a neighbourhood €y ©of t such that £(z') =0 for all

t! ¢ ¢, and thus Pos(x) n ¢, 1is void. Thus the closure Pos(x) of

Pos(z) is contained in {t ¢ Q:2(e) 20N\t €q: 2(¢) =0} = Pos(x)
9% het Roslz{l« BoRtaT sa closed-open. Now for z ¢ R the function
Ev0o:Q-+p given by £ v 0(2) = max{£(t), 0} in R/Rt is Jjust

I(Pos(x))2 € I(R) . Thus, if ¢ = II[QA Jai € T(R) then for ¢ ¢ Q >
i i i
o v 0(t) = max{o(z), o} = mex{2,(¢), 0} , so that with Q

9 =4 P : = 2 2 .
8; A, n 05[-7-‘1_) s OVO g [QBiJ:ci € T(R) . That is, T(R) is

tti . )
lattice ordered. I(R) is an foring for 1t o] 4 |t = 0 then for each

® €@, min{|o|(¢), |t|(t)} = o so that for y € I(R)
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min{|ou| (%), |t|(£)} = 0 eand thus |ou| A [1| =0 .

5. Commutative semi-prime rings

In this section R will denote a commutative semi-prime ring. There
is a regular orthogonality relation s+ on R given by xay if xy =0 .
The aim of this section is to prove the analogue for rings of a result of

Spirason and Strzelecki [6] on vector lattices.

As before, & will denote the Stone space of the boolean algebra of
polar subsets of R , (R, p, &) the sheaf of rings obtained from % ,
and T(R) the ring of global sections of (R, p, @) .

From 82 it is known that for ¢ € § the ideal Ht E_R is prime.
The next result gives a characterization of the ideals Rt in the class
of prime ideals of R :

PROPOSITION 5.1. A4n ideal I of R is of the form I =R, , for
some t € Q , if and only if

(1) I <s a prime ideal;

(2) = yx €I dmplies af*v ...vatcl;

1°

(3) = € I implies x* # (0) .

* % * %
Proof. If T, <y X € Rt and y € 3tV ... VI then
ytt e xi* I x;* €t fsince t is an ideal in B(R)] so that
y€R, . If x €R,_ then x** #R since x** € ¢t and ¢ is a proper

t t
jdeal in B(R) . On the other hand let I be an ideal in G having the
properties (1) - (3). Write t  for the ideal in B(K) generated by

the set {x** v y* :ax € I, y & I} . That is,

t, = {a* s arcafrv ... v zht v Yp v oeee v y; rxy €0, Y, K1}
If to = B(R) then R = (0)* = ri* V. s W x%* v y{ ) eere y; for some

x, € I, 4; § I . Then

yi* (7 R e y;‘ = (yi V' osan M y;]* - {y{ Voees ¥V y;}‘ n in* W e ¥ r;*)
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A% A4 2 $ 1 e ¥
so that yix o Son 1) y;* _c_.-r:l Villeo iV = ek Since each y{* is an
ideal and I is prime then Y; € I for some % , which is a contradiction
so that R § t, - Thus to is contained in a maximal ideal ¢ . 1If

x € I then z**étogt so that xGRt. If y § I then g‘*etost

so that y** § ¢t (since y** v y* = R § £) and thus y &R That is,

£
I= Rt s
DERINTTIONS 5220 A subset Il of R s said to be a *=subset if
Tiy ey T € I implies :::-.‘LM W ey ) a:,;* €I . An element x € R for

which z* = (0) is said to be & s+-unit of R .

Thus the ideals Ht » t €@ are just the *-prime ideals not

containing s-units.

PROPOSITION 5.3. 17 Mc R 1is a minimal prime ideal then M = R

for some teqg.

Proof. Take Tis aeey z, € M and suppose that for some

n
=

yéri"'v--- Vx;?k’ y“EM. Then (0)=y*ny“’ so that y*_

Thus zfn ... Nz*cy*cM, sothat *} S M for some <

Since z. €M , M is prime ana & is semiprime, then there is an

a & M such that *a =0 . Thus q € z* pyt a & M , which is a

contradiction. Hence x{* Nty xr;“ SN . If x ¢M then for some
al{ M, za=o0 and thus z* # (g) .,

The following result gives an internal description of those
commutative semiprime rings for which the class {Rt ' Rt # R} is

precisely the class of minimel prime ideals of R .

DEFINITION 5.4, 4 commutative semiprime ring R is said to be of
locally compaet type if for a1l x,
¥2 € 2** such that y € (91"’92)“ g

PROP 3 7
- OSITION 5.5, 4 ring R ig of locally compaot type if and only
if each R, # R 18 minimgy prime,

¥ € B there exist ¥y E&r
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SOl thet yi* Nisr ny;d Ezi* VIS .r,;* c© I . Since each y]‘f* is an
ideal and I is prime then Y; € I for some < , which is a contradiction
so that R § to - Thus t  is contained in a maximal ideal ¢ . If
xR To thenyrxc e t, St so that .:cEHltL . If y &I then y* ¢ t, St
so that y** & ¢ (since y** v y* =R § t) and thus y § R, . That is,
I= E’t 4
OERINITION. 5.2, A'subset I of R 1is said to be & #=-subset if
Tis wees T € I implies .ri" W e v.rn':"EI . An element x € R for
which z* = (0) is said to be a 4-unit of X .

Thus the ideals R, , ¢ € @ are Just the #-prime ideals not

t

containing s-units.

PROPOSITION 5.3. If o SR ie a minimal prime ideal then M = R,
for some t e q.

Proof. Take :cl, reey T € M and suppose that for some
yiE VY s Y &M . Then (0) = Y* ny** so that y*cH .

Thus z# n ... NalCy*cM, so that xi‘gM for some <

Since Z;, €M , M is prime ang R is semiprime, then there is an

a & M such that ¥a =0 . Thus g € z* byt a &M , which is a

contradiction. Hence xf* P o0 Y x;* CS¥. If x €M then for some

alM, za=o and thus z* # (g) .,

The following result gives an internal description of those

commutative semiprime rings fop which the class {Rt Pt EQ, R, # R} is
Precisely the class of minimal prime ideals of R .
DEFINITION 5.4, commutative semiprime ring R is said to be of

locally compact type if for all &, Yy € R th
¥2 € ** such that y € (yl+y2)" ;

PROP : :
- ROPOSITION 5.5, 4 Tig R is of locally compact type if and only
1f each B, # R is minimgy prime,
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Proof. Assume that A is of locally compact type and Rt CR is
not minimal prime. Then for some x € Ht . * c Et . Now take Yy € R .

Then there exist y; € x* , y, €x** with y € (y,+y,)** . Since y#y,

then y € (yl+32]‘* = y;* v yg* E'Et since Yi» Yo € B, . Thus Rt =R.

On the other hand if KR 1is not of locally compact type then there
" exist x, y € R such thet y & (x+a)** for all a € z* . Put

S = {(xz+a)** v y* : @ € x*} . Then for a € z* ,

[(z+a)** v y*] n y** = (z+a)** n y** # y** since y** & (x+a)** . Thus
(x+a) v y* # R for each a € x* so the ideal to c B(R) generated by
is a proper ideal and is therefore contained in a maximal ideal

t C B(R) . Consider R, :y € y** &t since y* €t . Thus y & R,

which means that Et # R . Now suppose that a** n x** = (0) . Then

asx since 4 is regular so that a** c x** v g** v y* = (x+a)*t v y* € ¢

and thus a € Rt . That is, x € Rt and x* E-Ht so that Rt is not

minimal prime. i
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