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ABSTRACT

Spatio-Temporal Analysis of Point Patterns

by

Abdul-Nasah Soale

In this thesis, the basic tools of spatial statistics and time series analysis are applied

to the case study of the earthquakes in a certain geographical region and time frame.

Then some of the existing methods for joint analysis of time and space are described

and applied. Finally, additional research questions about the spatial-temporal distri-

bution of the earthquakes are posed and explored using statistical plots and models.

The focus in the last section is in the relationship between number of events per

year and maximum magnitude and its effect on how clustered the spatial distribution

is and the relationship between distances in time and space in between consecutive

events as well as the distribution of the distances.
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1 INTRODUCTION

Earthquakes remain a constant nightmare for most South American countries

especially areas along the coast. Earthquakes occur when there is a sudden slip of

faults within the earth’s crust resulting in ground shaking and release of energy called

seismic energy. Earthquakes occur randomly in time and with regard to space, they

tend to occur more in certain regions near the boundaries of tectonic plates. Thus, a

plot of earthquakes in a region looks like a spatial point pattern.

According to Adrian [2], a spatial point pattern gives the location of events oc-

curring in a region under study. The study region can be 2-dimensional, 3-dimensional

or multidimensional. Numata [13] shows 65 Japanese black pine saplings in a square

with side 5.7 meters. This is an example of a two dimensional study region. In some

cases, the location and an additional factor is considered. In such cases, we refer to

the additional factor as mark and the point pattern is referred to as a marked point

pattern. Marks could be categorical, multivariate or take other complicated forms.

Diggle and Rowlingson [6] studied the location of the residence of asthmatic and non-

asthmatic cases in North Derbyshire in 1992. Asthmatic and non-asthmatic cases

were assigned different labels. This is an example of a marked process.

Spatial point patterns may also include not only the location of the events but

also the times at which these events occur. In such a case, the point pattern is called

Spatio-temporal point pattern. Thus, Spatio-temporal Point Pattern is a set of

events that happen in a given study region during a certain interval of time. An

example of spatio-temporal point pattern is the location and time of 10,572 cases of

non-specific gastro-intestinal disease in the county of Hampshire, UK reported to the
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National Health Service between January 2001 and December 2003 [5].

This thesis focuses on spatio-temporal analysis of earthquakes in South America

between latitude −18◦ and 0◦ and longitude −83◦ and −68◦. Our main objective

is to study the second-order properties of the earthquakes using the nonparametric

inhomogeneous K − function proposed by Gabriel and Diggle [7].

In Section 2, we reviewed basic concepts and tools of spatial statistics that are

used later such as edge effects, completely spatial randomness, first and second order

properties. We apply separate analysis of space and time in Section 3. Next, in

Section 4, we apply space-time analysis using the STIKHAT and PCF functions in

stpp [8] package in R developed by Gabriel and Diggle [7]. Finally, in Section 5 we

propose some additional analysis of space and time together. There we address the

following questions:

• Is the spatial distribution of events per year related to the number of events in

the year?

• Is the earthquake temporal space process a homogeneous or inhomogeneous

point process?

• How is time and space related for consecutive events?

• Is the distribution of the number of events in a year related to the intensity of

the strongest earthquake?

12



2 BACKGROUND THEORY IN SPATIAL STATISTICS

2.1 Edge-Effects

In analyzing spatial point patterns, there are instances where events occurring

outside the study region interact with some of the events being observed. However,

because these events are not observed, it is difficult to keep track of them. This

phenomenon is known as edge-effects. Edge-effects may or may not be ignored in the

exploratory analysis depending on the type of study.

More generally, we can distinguish between three broad approaches to handling

edge-effects: the use of buffer zones, explicit adjustments to take account of unob-

served events, and when the region is rectangular, wrapping the region onto a torus

by identifying opposite edges [5].

First, with the buffer zone method, we choose a region, say B, within a specified

distance, say d0, from the edge of the study region S, as the buffer zone. Then we

perform the statistical analysis after conditioning on all events that fall in the buffer

zone. For any event x in the remaining region, say R, within the region S outside

the buffer zone, if d ≤ d0, then the observed number of events within a distance d

from x must equal the actual number of events within a distance d from x within

the underlying process. However, if d > d0 the observed number of events within a

distance d from x may be less than the actual number of events within a distance d

from x within the underlying process. Therefore, estimates based on these observed

values may be biased. There is no specific choice of d0. Hence, depending on the

statistical analysis, d0 may be varied to avoid residual edge-effects or leaving out

13



of data unnecessarily. Figure 1 below, illustrates the buffer zone method of edge

correction.

Figure 1: Buffer zone method of edge correction

Secondly, with the adjustment method, we adjust for the unobserved events out-

side region S. Usually, this adjustment is based on an average estimate of the number

of observed events within a distance d of any point x. We do this by letting a de-

note the area of the circle with a radius d centered at x, then we estimate the actual

number of events, n, within a distance d from x as nπd2

a
. This method is very good,

because it makes use of all the observed data but has the tendency to increase the

sample variance.

Lastly, we can reduce edge-effects by wrapping a rectangular study region on a

torus. This method is mostly used for simulating various point process realizations.

14



2.2 First-Order Properties

First-order properties measure the distribution of events in the study region: in-

tensity and spatial intensity [14]. Intensity is the expected number of points per unit

area. In other words, the average density of points. A point process with constant in-

tensity is called a homogeneous or uniform process, while that with varying intensity

is termed inhomogeneous process. The intensity function is defined by;

λ(x) = lim
|dx|→0

{
E[N(dx)]

|dx|

}
(1)

where N(dx) is the number of events in a small region dx and |dx| is the area of the

region dx. [5]. For a homogeneous process, the intensity estimate λ̂(x) = N
|S| where

N is the total number of events and |S| is the area of the study region.

For an inhomogeneous process as in our case (earthquake epicenters are usually

concentrated along fault lines), quadrat counting or kernel smoothing maybe used

for determining the intensity. The unbiased estimator of the intensity is the kernel

density estimator,

λ̂(x) =
1

h2

n∑
i=1

κ(‖x−xi‖
h

)

q(‖x‖)
(2)

where xi ∈ {x1, x2, ...xn} is an observed point, h is the bandwidth and q(‖x‖) is the

border correction [14]. The level of smoothing depends on the bandwidth h. There

is no general rule for selecting the bandwidth. However, Berman and Diggle (1989)

proposed a criterion for choosing a bandwidth that minimizes the mean square error

(MSE).
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2.3 Second-Order Properties

Here we are interested in investigating the level and type of interaction between

events. That is, whether the events are independent, regular or clustered. In an

informal sense, for any two points x and y, the second-order intensity is the probability

of any pair of events occurring around location x and y, respectively. Second-order

properties can be measured using the K−function or other type of functions we will

see later.

2.4 Complete Spatial Randomness (CSR)

A completely spatially random process is a homogeneous Poisson Point Process

(HPP) [3]. For Complete Spatial Randomness(CSR), the following must hold:

1. Events in a given region are independent and uniformly distributed.

2. The number of events in a given region, say S, follows a Poisson distribution

with mean λ|S|, where λ is the intensity or mean number of events per unit area and

|S| is the area of the region.

The first property implies that the occurrence of an event say, x does not affect the

probability of occurrence of another event, say y nearby. Thus, there is no interaction

between events in the same neighborhood. Similarly, the second property implies

that the intensity or the mean number of events is the same everywhere in the region.

Hence, we say the process is a Homogeneous. When the intensities vary within

the region, the process is termed an Inhomogeneous. CSR is an ideal process and

usually not achievable in reality. However, CSR is useful in exploratory analysis of a

data set and also for pattern distinction as regular, clustered or random.
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In this thesis, we test for CSR using a distance method. We are considering

nearest distances, pairwise distances and empty space distances.

Pairwise distances dij = ‖xi − xj‖,∀i 6= j ∈ S.

Nearest distances di = min{dij,∀i 6= j ∈ S} for each point i in S.

Empty space distances d(u) = mini‖u− xi‖,∀i ∈ S, the distance between from a

fixed reference location u in S to the nearest data point [2]. From these distances we

estimate the G − function, F − function, K − function and J − function.

2.5 The G − function

The G − function measures the distribution of distances from an arbitrary event

to its nearest neighbors [14]. Let di denote the distance from event i to other nearest

events in the region. For n events in the region S,

Ĝ(r) =
1

n

n∑
i=1

(di ≤ r) (3)

di =


1 if di ≤ r,∀i

0 otherwise

where, di = minj{dij, ∀j 6= i ∈ S}, i = 1, 2, ..., n. The expected value of the G −

function under CSR with intensity λ is G(r) = 1− e−λπr2 . When G(r) > 1− e−λπr2 ,

a clustering pattern is suggested, while G(r) < 1− e−λπr2 suggests a regular pattern.

We compare point processes with the CSR by plotting the empirical function Ĝ(r)

against the theoretical expectation G(r).

17



2.6 The F − function

The F − function measures the distribution of all distances from an arbitrary

point k in the plane to the nearest observed event j [14].

F̂(r) =
1

m

m∑
k=1

(dk ≤ r) (4)

dk =


1 if dk ≤ r,∀k

0 otherwise

where, dk = minj{dkj,∀j ∈ S}, k = 1, 2, ...,m, j = 1, 2, ..., n. The expected value of

the F − function under CSR with intensity λ is F(r) = 1− e−λπr2 .

Unlike the G − function, F(r) < 1 − e−λπr
2

suggests a clustering pattern, while

F(r) > 1 − e−λπr2 suggests a regular pattern. We compare point processes with the

CSR by plotting the empirical function F̂(r) against the theoretical expectation F(r).

2.7 The K − function

The K − function also known as the Ripley’s K − function is denoted by K(r).

For a stationary process, it is the expected number of points within a distance r of

an arbitrary event in the point process. That is,

K̂(r) =
E(# of events within r distance of an arbitrary event)

λ
(5)

where λ is the intensity of the point process.

Considering a region S, the expected number of events is λ|S|. Thus, under CSR,

K(r) = πr2. Again, K(r) > πr2 suggests clustering, while K(r) < πr2 suggests a

18



regular pattern.

Various estimators for K − function have been proposed. We are considering the

estimator based on pairwise distances that takes edge-effects into account.

K̂(r) =
1

λ̂N

N∑
i

∑
j 6=i

w−1ij (dij ≤ r) (6)

dij =


1 if dij ≤ r,∀i 6= j

0 otherwise

where wij =
aij

2πdij
is the edge correction, aij is the length of the arc of the circle

defined by radius r within the region S and dij = ‖xi − xj‖,∀i 6= j ∈ S [9].

2.8 The J − function

The J − function is a combination of the G − function and the F − function

defined as

J (r) =
1− G(r)

1−F(r)
(7)

[2]. For CSR, G(r) = F(r); therefore, J (r) ≡ 1. Values of J (r) < 1 suggest

clustering, while J (r) > 1 suggest regularity.
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3 CASE STUDY

To illustrate the spatial-temporal analysis of spatial point patterns through time,

the earthquakes in a given region of the world from 1974 to September 2015 will be

considered. In this chapter the data set will be described first; separate analyses from

the point of view of space and time will be done. Later, the joint spatial-temporal

analysis will be applied.

3.1 Data Set

Our data is obtained from the US Geological Survey website [12]. The region

of interest is from latitude −18◦ and 0◦ and longitude −83◦ and −68◦. This region

includes Peru, Ecuador, some small parts of Brazil, Bolivia and Chile. We are con-

sidering only earthquakes magnitude 5 and above. Earthquakes with magnitudes less

than 5 rarely cause significant damage and can be difficult to locate especially when

it occurs outside the United States of America [12]. The location of the earthquakes

is in terms of longitude and latitude. For each earthquake, the magnitude, depth

and date and time is considered as well. There are a total of 1359 earthquakes of

magnitude 5 or more since January 1974 to September 2015 in this region within

those lines of longitude and latitude where the earthquakes actually happen. There

are some sections in the Pacific Ocean within those lines of longitude and latitude

where no earthquake of magnitude 5 or more happen. Thus, we defined our region as

shown in the Figure 2. Figure 2 (left) shows the region in red lines and the maps of

the countries within the region in black lines. On the right of Figure 2 is the location

of the earthquakes within the region.
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Our data is originally in latitude-longitude format but to avoid negatives or east-

west designation we converted the data to the Universal Transverse Mercator (UTM)

coordinate system for some of our estimations. UTM system makes calculations easier

since distance between points is in metric just like the Cartesian coordinates unlike

the latitude-longitude system that is in angular format. We want to stress that this

change however, does not change the location of the earthquakes as we can see in

Figure 3 below. Just a note, although you need to make no changes, when plotting

these points in 2D, the software is making a conversion already from 3D to 2D to plot.
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Figure 2: Study region
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3.2 Spatial Analysis

In terms of space, we want to analyze the distribution of events in the region (first

order properties) and the level of interaction between events (second order properties).

3.2.1 First-Order Properties

We begin our spatial analysis by considering the distribution of the events in the

region using quadrat count. The quadrat count in Table 1 shows that the intensity

of events is not constant. We see from the table that most of the events (326 events)

happen within the area bounded by longitude (−75◦, −71◦) and latitude (−20◦,

−14.75◦), and the least is zero in three different regions. All other regions experience

varying intensities between these two extremes . The distribution of points and their

Table 1: Quadrat Count

Lat \ Long [−83◦,−79◦] (−79◦, −75◦] (−75◦, −71◦] (−71◦, −67◦]
(−4.25◦, 1◦] 114 118 0 0

(−9.5◦, −4.25◦] 88 127 92 1
(−14.75◦, −9.5◦] 20 197 109 19
[−20◦, −14.75◦] 0 64 302 108

count is shown in Figure 4.
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Figure 4: Quadrat Count

Figure 5 shows the plot of the kernel intensity estimates. The blue areas indicate

lower intensity while the yellow regions indicate highest intensity. Intensity increases

from blue to yellow as seen in the color scale on the right. We observe that there are

more events at the lower diagonal part of the region than the other parts. In addition,

the intensities decreases as we move up diagonally. At the top right and bottom left,

there is little or no intensity at all. Unequal intensities show that the events are not

homogeneous.
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Figure 5: Spatial Intensity
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3.2.2 Second-Order Properties

The estimated F ,G,J and K functions is shown inin Figure 6. Four different

plots are produced for each function. For each of the plots, we are only interested in

the theoretical Poisson and the border corrected estimated.
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Figure 6: F ,G, J and K functions plots
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For the F − function we have the estimates in Table 2 below:

Table 2: F Estimates

key meaning

km Kaplan-Meier estimate
rs border corrected estimate
cs Chui-Stoyan estimate
theo theoretical Poission estimate

As seen in Figure 6, the border corrected estimated is below the theoretical Poisson

estimate, indicating that the earthquakes are clustered. This is because the observed

points are further away from an arbitrary point xi for the clustered process than in

CSR.

Similarly, for the G − function, the estimates are given in Table 3.

Table 3: G Estimates

key meaning

km Kaplan-Meier estimate
rs border corrected estimate
han Hanisch estimate
theo theoretical Poission estimate

Again, as seen in Figure 6, the border corrected estimated is above the theoretical

Poisson estimate, indicating that the earthquakes are clustered. This is because the

observed points are closer to each other for the clustered process than the CSR.

The J − function produce similar estimates. From Figure 6, the estimated border

corrected estimate is below 1, which indicates that the earthquakes are clustered.

Finally, the K − function estimates are given in Table 4.
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Table 4: K Estimates

key meaning

trans translation-corrected estimate
border border corrected estimate
iso Ripley isotropic correction estimate
theo theoretical Poission estimate

The plot of the K− function in Figure 6 shows that the border corrected estimated

is above the theoretical Poisson estimate for CSR, indicating that the earthquakes

are clustered.

Therefore, from all the four estimates above, we see that the events do not follow

complete spatial randomness. However, we cannot conclude at this stage that the

events are clustered, because even with completely random pattern it is hard to

obtain the theoretical Poisson estimate, say Kpois, due to random variability. Thus,

we need to construct envelopes that will give the bounds of the estimated functions

under CSR. If the estimated functions falls outside the bounds, we can conclude the

pattern is not CSR. Here, we construct the envelop for only the K − function and a

transformation of it which is the L− function, given by

L(r) =

√
K(r)

π
(8)

[2]. Transforming the estimator with the square root approximately stabilises the

variance of the estimator. Thus, making it easier to access any deviation. We see for

both functions in Figure 7 that the estimates lie very far away from the confidence

bounds and look similar as the initial estimates. Therefore, we conclude that the

events are indeed clustered. The estimates for both functions are the same and are
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given in Table 5.
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Figure 7: Envelopes plot of K and L functions

Table 5: K and L Estimates

key meaning

obs observed values estimate
theo theoretical values for CSR estimate
hi upper pointwise envelope from simulations estimate
lo lower pointwise envelope from simulations estimate

Clearly the estimated K and L functions for the observed values lie outside the

range of highest and lowest values of the K and L under complete spatial randomness.

Therefore, we conclude that the events are clustered. This is not surprising because

earthquakes happen along fault planes and high magnitude earthquakes tend to have

a lot of aftershocks. Hence, these events happen only around the faults in the region
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and very close to each other which brings about clustering.

We are especially interested in how clustered the points are. So we plot the

histogram of the nearest neighbor distances. Figure 8 (left) below is the histogram of

the distribution of the distance to the nearest neighbors. The histogram shows that

majority of the earthquakes occur within a distance of 20,000m. In all the nearest

neighbors are not more than 70km away which explains why the G − function in

Figure 8 (right) increases high at shorter distances above the theoretical Poisson.
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Figure 8: Histogram of distance to nearest neighbor and G−function for earthquakes

A possible explanation of this could be due to aftershocks. Aftershocks are earth-

quakes that occur after the main earthquakes usually within a day or two after the

main earthquake. They are usually smaller than the main earthquake and occur in

the same area. If an aftershock is larger than a main earthquake, it is recorded as a

main earthquake and the previous one recorded as the foreshock.
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3.3 Analysis With Respect to Time

With respect to time, we are interested in the behaviour of the frequency of events

in terms of:

• The frequency of events per year.

• The frequency of events per year by months.

• The frequency of events in a given month for all years.

3.3.1 Time Series of the Frequency of Events Per Year and Per Year by Months

The time series of the frequency of earthquakes per year by months is shown in

Figure 9 (top) and the time series of the frequency of earthquakes per year year is

shown in Figure 9 (bottom).
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Figure 9: Time series plots for frequency events from 1974 - 2014 per year by months

(top) and frequency of events from 1974 - 2014 per year(bottom).
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The time series plots of the frequency of events of magnitude 5 or more per year by

months shows that the frequency of events appear to be stationary with two potential

outliers between 2000 and 2010. The same behavior is observed for the time series plot

of the frequency of earthquakes per year. However, the variability of the frequency of

events per year seems to slightly increase as time passes. A summary of the behavior

of the two time series is shown in the box plots in Figure 10.
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Figure 10: Box plots for frequency events from 1974 - 2014 per year (left) and fre-

quency of events from 1974 - 2014 per year by months (right).

Figure 10 (left) indicates that the frequency of events per year is right skewed
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with two outliers: 2001 with 102 events, and 2007 with 80 events. For the frequency

of events per year by months (right), the distribution is also skewed to the right with

nine outliers and a maximum of 59 events in June, 2001. This is an indication that

some months are more prone to earthquakes in a year than others. This led us to

consider the frequency of events in a given month for all years. Over all, the lower

quartile, median, and upper quartile of the frequency of events per year is higher than

that of the frequency of events per year by months.

Next, we want to identify the model for each of the time series in Figure 9. The

plotted autocorrelation (ACF) and partial autocorrelation (PACF) functions for each

of the time series in Figure 11 reveals that the frequency of events per year by month

looks like a first order moving average, MA(1). All the ACF and PACF decays after

lag 1 which is typical of moving average of order 1. For the frequency of events per

year, the ACF and PACF decays with a spike at lag 6 indicating that the time series

was generated by white noise.

The follow up is to determine whether there is periodicity. The cumulative pe-

riodogram for the frequency of events per year by months in Figure 12 (top right)

indicates that the time series for the frequency of earthquakes per year by months

in Figure 9 appeared to be an MA(1) while the cumulative periodogram for the fre-

quency of events per year (bottom right) in Figure 12 indicates that the time series

for the frequency of earthquakes per year in Figure 9 seems to be generated by a

white noise process.
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Figure 12: Periodogram and Cumulative Periodogram

There appears to be non-constant variability in the time series of the frequency

of events per year, but this has no effect on the behavior of the time series in Figure

9 as seen in Figure 13. Comparing the histogram of the frequency of events and

the natural logarithm of the frequency of events in Figure 13 we see that the two

distributions look similar. Thus, the logs transformation has no significant effect on

the shape of the distribution.
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The augmented Dickey-Fuller test applied to test for random walk against a sta-

tionary alternative for the frequency of events per year has p − value = 0.02802

favoring the alternative hypothesis of stationary process. Similarly, for the frequency

of events per year by month, the p − value = 0.01 also favoring the alternative hy-

pothesis of stationary process. Due to the fact that the time series of the frequency of

events per year and the frequency of events per year by month is close to be considered

a white noise, no attempt was made of fitting ARIMA models.
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3.3.2 Time Series Analysis of the Frequency of Events in a Given Month for All

Years

As seen earlier, some months appear to be more prone to incidents of earthquakes

than others. Here, we want to look at the behavior of the number of earthquakes in

each month for every year from 1974 - 2014. The frequency of events for all months

except for June and August ranges between 0 and 15 as seen in Figure 14. February,

March, May, July, September and December are very similar with a maximum of

eight events. January, April, October and November have one or two peaks at about

14 or 15 for some years, but all others are between 0 and 8.

With the case of June and August, we observe that the extreme numbers just

happened once while in all other years they behave similar to the other months.

The ACFs in Figure 15 and the PACFs in Figure 16 shows no trend or seasonality,

thus, there is no indication that June and August are actually prone to having more

earthquakes. The extreme cases are probably due to some unusual occurrence in the

faults. In all, the frequency of events for all the months appear stationary with few

outliers for some months.
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Figure 14: Monthly time series for the frequency of earthquakes from 1974 - 2014
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Figure 15: Autocorrelation function for monthly time series for the frequency of

earthquakes from 1974 - 2014
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Figure 16: Monthly time series for the frequency of earthquakes from 1974 - 2014
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Even though this work is focused on time and space, it is interesting also to look

at the magnitude of the earthquakes. Figure 17 displays the maximum magnitude

per year. We also look at the autocorrelation and partial autocorrelation functions

of the maximum magnitudes of the earthquakes per year in Figure 18. The ACF and

PACF reveal that the maximum magnitude per year also appears to be a white noise.
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Figure 17: Maximum magnitude of earthquakes per year
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Figure 18: ACF and PACF of maximum magnitude of earthquakes per year

The histogram of the distribution of the maximum intensity of earthquakes in

Figure 19A looks symmetric. To find out if the distribution is normal, we plot the

normal quantile-quantile plot (qqplot) and also perform Shapiro-Wilk’s normality

test. From the qqplot in Figure 19B we see that the initial and final points deviate

from the line but most of the points lie on the line or close to the line. Also, the

p− value = 0.2546 for the Shapiro-Wilk’s test at 5% significance level, hence we fail

to reject the null hypothesis and conclude that the distribution of the intensity of

earthquake magnitude 5 or more is normal.

Shapiro-Wilk normality test

data: ts_max

W = 0.96605, p-value = 0.2546
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4 EXPLORING THE SPATIAL POINT PATTERNS SIMULTANEOUSLY WITH

RESPECT TO SPACE AND TIME

Spatio-temporal point processes can be considered as a two-plus-one space-time

distributions (R2×R+) that is, two dimensional for the space and one for time which

is fundamentally different from either of the two space dimensions. In this sense, two-

plus-one does not equal three, thus R2 × R+ 6= R3. Thus, for any event we consider

the location say ~xi and time of occurence say ti, hence {(~xi, ti) : i = 1, 2..., n} where

(~xi, ti) ∈ S × T for some predefined spatial region S and temporal region T . Diggle

[5] classified spatio-temporal point processes as either continuous, spatially discrete

or temporally discrete [5].

• Continuous : The process is classified as continuous if an event can occur at

any place and time. Here both location and time are continuous variables.

• Spatially Discrete : This is a process that can occur only at specific locations

at any time. In this case, the location is a discrete variable but time is a

continuous variable.

• Temporally Discrete: A temporally discrete process can happen anywhere

but within specific times. Therefore, the location is a continuous variable while

the time is a discrete variable.

• First Order Separable : A spatio-temporal point process is first-order sepa-

rable if its intensity λ(s, t) can be factorized as

λ(s, t) = m(s)µ(t) (9)
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, for all (s, t) ∈ S × T

• Second Order Separable : A stationary spatio-temporal point process is

second-order separable if the covariance density,

γ(u, v) = λ2(u, v)− λ2 (10)

can be factorized as

γ(u, v) = γs(u)γt(v) (11)

. This does not mean independence of space and time; it is implied.

For our application, we are assuming that the earthquakes occur anywhere in

an ordered sequence through time. The date and time of each event is recorded,

thus, even with aftershocks, there is a time difference in hours, minutes or seconds.

To distinctly represent each event with a unique time, we assign the event with an

integer value of the date and time in seconds, calculated using the function unclass

in base package in R [11]. The first event happened on 1974-01-05 at 08:33:50 GMT

and the integer value for this time is 126606830. The next two events both happened

on 1974-01-14 at 15:52:47 GMT and 17:35:17 GMT respectively. And their integer

values are 127410767 and 127416917 respectively, which implies that even if we have

events that are separated by a second, they will have different integer time values.

Initially, we were considering January 1, 1974 as the start date for our observations,

so that the time of occurrence of an event is the number of days from the start date

to the date of occurrence. The first event in 1974 was on January 5, 1974, thus

we assigned a time of 4 to the event. However, problems arose with aftershocks

happening within the same day. Thus, we had two or more events with the same
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time. The maximum number of aftershocks in our data is 25, which occurred on

June 24, 2001 between 11:13AM to 23:27PM, within latitude [-17.463, -16.888] and

longitude [-72.409,-17.29]. Because these aftershocks happen very close to the main

events, and on the same day, they look as one big event on the map. Hence, to

distinguish these events is very difficult. But, we solved this problem easily when we

assigned an integer value to each event. In a future study, it will be quite interesting

to study dispersion and frequency of aftershocks within a day, but this study is not

on aftershocks.

Figure 20 shows the scatter plot of the spatio-temporal data without marking

points by time. The plot on the left is based on the locations, X is the longitude and

Y is the latitude. The size of the points are all same, the dark areas are simply due

to overlaps of points. This suggests that we have more that one earthquake occurring

at particular places. Another reason is because of the aftershocks. The right plot is

the cumulative plot of the time part of the spatio-temporal data.

In comparison, in Figure 21, the earthquakes are plotted through time using the

plot function in stpp [8]. Here, points have different sizes and shades of color. The

size and shade of the points depend on the time the earthquake occurred. Points

representing recent events are larger and darker. The size shrinks and the color fades

as time passes. Therefore, it is easier to distinguish between events in terms of time

here as compared to the plot in Figure 20. Another way to visualize the data points

is through animation plots using stan and animation functions in stpp package [8]
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Figure 20: Scatter plot of earthquakes
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Figure 21: Plot of earthquakes through time
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4.1 First-Order Property

For any spatio-temporal process, the expected number of events per unit area

per unit time known as the intensity, characterize the first-order property. In other

words, the density of the point patterns describe the first-order effects. In what

follows from now, we denote the number of events and expected number of events in

a given region S and within time T as N(S × T ), E[N(S × T )] respectively, area of

S as |S|, time interval as |T | and the first-order intensity as λ1(S, T ). Thus, going

by this, λ̂1 = n
|S×T | = 1359

270×14942. = 0.000337 earthquakes per kilometer squared per

day and 0.1213 per kilometer squared per year. This is only true for a homogeneous

spatio-temporal point process. In general, Diggle [5] defined the first order property

as

λ(x, t) = lim
|dx|,|dt|→0

{
E[N(dx, dt)]

|dx||dt|

}
(12)

[5].

Practically, the distinction between first-order and second order intensity is diffi-

cult without making some assumptions. We need the assumption of separability to

distinguish between first-order and second-order effects. Thus, we assume that the

first-order effects are separable. That is λ(s, t) = m(s)µ(t). We find a non-parametric

Gaussian kernel estimate for the spatial intensity m(s) with an appropriate band-

width. There are several methods for choosing the bandwidth. We want to choose a

bandwidth that minimizes the mean square error of the estimated spatial intensity.

For the temporal intensity µ(t), we use a parametric log-linear model. Figure 22

shows the density plot of the temporal intensity. The temporal intensity estimate is

based on the density of the time (in weeks) of occurrence of the earthquakes. The

47



plot shows that the temporal intensity has been slightly decreasing from late 1974 to

mid 1975. After that, there has been a rise in intensity till mid 1976, and it became

stationary afterwards.
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Figure 22: Estimated temporal intensity of the time of occurrence of events in weeks

In Figure 23 we have the 2-dimensional kernel estimate of the spatial intensity.

The yellow regions in the kernel estimate show the intensity of the earthquakes. We

see from the yellow strip running from the bottom to the top on the left of the region

that, a lot of earthquakes happen near the coast of Peru with more clustering around

the coast of Central and Southern Peru. We also see some clustering around the

Peru-Brazil border.
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Figure 23: Kernel Estimate of Spatial Intensity

4.2 Second-Order Property

Here, we are interested in the pairwise correlation between two pairs of events in

a sub-region. We now consider the joint spatio-temporal intensity function for any

two locations. That is,

λ2(~x, ~y, s, t) = lim
|d~x|,|d~y|,|ds|,|dt|→0

{
E[N(d~x× d~y)N(ds× dt)]

|d~x||d~y||ds||dt|

}
(13)

where, (~x, s) and (~y, t) are any two locations within the region [5].

Now, we are considering only the K − function for the spatio-temporal point

process. We define the homogeneous Poisson Process K − function for the joint
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space and time for any radius u and time v by

KST (u, v) = πu2v (14)

. For any inhomogeneous Poisson process (STIK-function), KST (u, v) > πu2v indi-

cates clustering while KST (u, v) < πu2v indicates regularity. Diggle [5] defined the

second-order intensity reweighted stationary K − function as

KST (u, v) = 2

∫ u

0

∫ v

0

g(u′, v′)u′du′dv′ (15)

where g(u′, v′) = λ(u,v)
λ(s,t)λ(s′,t′)

, u = ‖s− s′‖, and v = ‖t− t′‖ [8]. The STIK-function is

estimated by using a non-parametric estimator function called STIKhat, defined by:

K̂ST (u, v) =
1

S × T
n

nv

nv∑
i=1

nv∑
j=1;j>i

1

wij

1

λ(si, ti)λ(sj, tj)
{‖si − sj‖ ≤ u; ti − tj ≤ v}

(16)

where nv is the number of events for which ti ≤ T1− v, T = [T0, T1] [8]. This function

is estimated using an approximated unbiased estimator, based on the event location

~xi, i = 1, 2, ..., n in the region S × T as:

K̂ST (u, v) =
1

S × T
n

nv

nv∑
i=1

nv∑
j=1;j>i

1

wij

1

λ(~xi)λ(~xj)
1 {uij ≤ u}1{ti − tj ≤ v} (17)

where λ(xi) is the intensity of ordered events xi such that ti < t1+1 at xi = (si, ti).

Temporal and spatial edge effects are accounted for by nv and wij.

Figure 24 shows the plot of the nonparametric estimated K − function in space

and time up to a radius of 100,000m = 100km and time period of 35 weeks. Not

much can be said about the plot until we compare the estimated values of K̂ST (u, v)

with the πu2v, that is the K-estimate under CSR. Hence, we plot K̂ST (u, v) − πu2v

as shown in Figure 25.
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Figure 24: Inhomogeneous K-function estimate (Khat)

Figure 25 shows the contour plot of the estimated K̂ST (u, v)−πu2v using different

bandwidths. To tell the point in space and time at which we have spatio-temporal

clustering, we compare the contour plot of K̂ST (u, v)−πu2v using different bandwidth,

h. On the extreme left, h = 4, the middle has a bandwidth that gives the minimum

Mean Squared Error (mse) and on the extreme right h = 20. There is no rule of

thumb for choosing h. Though the h based on the mse is usually preferred, for our

case h = 20 gives a better estimate. The positive regions indicate spatio-temporal

clustering while the negative regions indicate regularity.

Diggle [5] defined the Pair Correlation Function (PCF) as

g((s, t), (s′, t′)) =
λ2((s, t), (s

′, t, ))

λ(s, t)λ(s′, t′)
(18)

Informally, this is interpreted as the standardized density probability that an event

occurs in ds × dt and ds′ × dt′. For a Poisson process, g((s, t), (s′, t′)) = 1. Values

of g((s, t), (s′, t′)) < 1 suggest inhibition between points while g((s, t), (s′, t′)) > 1
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Figure 25: Khat

suggest clustering. We have contour plot of the PCF in Figure 26 and the perspective

plot in Figure 27 for the 3-dimensional view. Figure 26 suggests clustering up to a

distance of about 4km and a time of 15 weeks.
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Figure 26: PCFhat
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5 FURTHER EXPLORATION OF EARTHQUAKES WITH RESPECT TO

SPACE AND TIME

In the previous section we applied the methods found in the literature to the

earthquakes example. In this section, we are proposing the use of some simple plots

that would help us to further explore the joint analysis of time and space together in

the case of the earthquakes.

5.1 Spatial Analysis of Events in Years and Months With Extreme Number of

Events

We pose the question: Is the spatial distribution in a given year associated to

the number of events happening that year? To answer that question, we plotted the

location of the events for each year and sorted the years with respect to the number

of events. We considered, two years with the least number of events, and two years

with the highest number of events.

Figure 28 shows that for the two years with least events, the distribution of events

appear random. In 1986 there were a total of 17 earthquakes which occurred all over

the region. In 1993, the lowest for the 41 years from 1974 to 2014 was observed with

a total of 14 events. These appeared even more sparse than was observed for 1986

with three more events. We observed that in both years the earthquakes tend to

occur more around the central part of the region than the other areas and the events

appear to follow a random process.

In contrast, Figure 29 shows two of the years with the most events with 2001
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Figure 28: Years with the least frequency of events

having the most earthquakes for the 41 years, that is 102, and 2007 following with 80

events. In 2001, we observed that most of the events are clustered in the lower part

of the region while the rest are sparse randomly within the region. In 2007, there

appears to be more clustering in the lower part of the region and slight clustering in

the upper part, but the events in the middle portion appears to be more random.

From the plot of those two years, the natural explanation is that for years with

more earthquakes, there is a higher chance that most of the events will be clustered

around a particular area probably due to the presence of aftershocks. A natural

question that follows is whether the clustering occurs in specific months or not?

Figure 30 gives us more insight about what happened in the years with very high

number of earthquakes. We see from the plots that the clustered events all happened

within the same month. From this analysis, we conclude that at least in this region,
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Figure 29: Years with the most frequency of events

when there is a low number of earthquakes, they tend to be randomly distributed.

However, when the number of earthquakes in a year is high, they tend to be clustered

both with respect to space and time because several of them tend to happen in a

certain subregion and month.

5.2 Data Simulation With an Inhomogeneous Poisson Process

From all the previous analysis, it can be concluded that the earthquakes in this

region follow an Inhomogeneous Poisson Process. The stpp package [8] offers the

possibility of generating random processes. Therefore, we wanted to explore how

the simulated data assuming an Inhomogeneous Poisson Process for the study region

would look if data were simulated using the same intensity as that of the earthquake

data.

The random inhomogeneous Poisson process generated using the inhomogeneous
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Figure 30: Months with the most frequency of events

intensity estimate shown in Figure 31 looks very similar to the original data. The

generated data follows the density of the nonparametric intensity, thus areas with

higher concentration turn to have more generated points than areas with low density.

The two simulations below look very similar, but there are still some differences. The

red circles show some of the different concentration of events happening within the

same region in the two different simulations. By contrast if we assumed a homoge-

neous process as in Figure 32, the data would be scattered all over the region which

is entirely different from the original data.
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Figure 31: Random Inhomogeneous Poisson Process with estimated kernel. The red

circles indicate different concentration within the same region from the two simula-

tions.

Figure 32: Random Homogeneous Poisson Process with estimated kernel
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5.3 Analysis of Consecutive Events

We consider the case of discrete time and space so that we can calculate the

probability of an event happening within a certain number of days and distance away

from the previous event. The maximum distance and number of days between any

two earthquakes is 1239km and 101 days respectively. The distances are calculated

using sp package [1] in R, because the coordinates are in longitude and latitude and

not in the Cartesian plane. Thus, we cannot use the Euclidean distances method. We

divide the distance into equal intervals of 5 from 0 to 1240. Similarly, for the days we

divide them into intervals of 10.1 from 0 to 101. We find the quadrat count in Table

5.3 and hence the joint and marginal probabilities in Table 5.3. The x and y in the

tables represent the days and distances respectively.

The plot in Figure 33 below shows that most of the earthquakes happen within

the first 20 days, the majority of which are within the first 10 days. This is not

surprising because of the aftershocks.

For instance, from Table 5.3, we see that the likelihood of an earthquake occurring

within 428km of the previous within the first 10 days is 27.3%. Again for all consec-

utive earthquakes, the likelihood of occurrence within the first 10 days is 62.5%, and

the likelihood of occurrence within the first 428km is 36.38%.

Overall, the chance of a consecutive earthquake occurring decreases as the distance

from the events increases and the number of days increases. Another probability of

interest for us is to find out how far the consecutive earthquakes can occur given

a fixed number of days. In Table 7, we estimate the conditional probabilities of

consecutive earthquakes occurring within the five distance intervals for given time
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Figure 33: Distance and days between consecutive earthquakes

periods. For instance, within the first 10 days, there is a probability of 43.7% that

another earthquake will occur from the previous within 428Km.

Distance and days between consecutive events
y \x 0–10.1 –20.2 –30.3 –40.4 –50.5 –60.6 –70.7 –80.8 –90.9 –101 Total
–1240 40 19 11 2 2 1 0 0 1 1 77
–1710 82 40 19 5 3 2 2 0 0 0 153
–1280 146 68 28 12 5 4 2 0 0 2 267
–856 210 86 36 22 9 2 1 0 1 0 367
0–428 371 61 31 16 9 4 1 0 1 0 494
Total 849 274 125 57 28 13 6 0 3 3 1358
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Joint probabilities of distance and days between consecutive events
y \x 0–10.1 –20.2 –30.3 –40.4 –50.5 –60.6 –70.7 –80.8 –90.9 –101 Total
–124 0.030 0.014 0.008 0.002 0.002 0.001 0 0 0.001 0.001 0.057
–1710 0.06 0.030 0.014 0.004 0.002 0.002 0.002 0 0 0 0.113
–1280 0.108 0.050 0.021 0.009 0.004 0.003 0.002 0 0 0.002 0.20
–856 0.155 0.063 0.027 0.016 0.007 0.002 0.001 0 0.001 0 0.270
0–428 0.273 0.045 0.023 0.012 0.007 0.003 0.001 0 0.001 0 0.364
Total 0.625 0.202 0.092 0.042 0.0206 0.010 0.004 0 0.002 0.002 1

Conditional probabilities of distance given days between consecutive events
y \x 0–10.1 –20.2 –30.3 –40.4 –50.5 –60.6 –70.7 –80.8 –90.9 –101 Total
–1240 0.047 0.069 0.088 0.035 0.071 0.077 0 0 0.333 0.333 0.058
–1710 0.097 0.146 0.152 0.088 0.107 0.154 0.333 0 0 0 0.113
–1280 0.172 0.248 0.224 0.211 0.179 0.308 0.333 0 0 0.667 0.197
–856 0.247 0.314 0.288 0.386 0.321 0.154 0.167 0 0.333 0 0.270
0–428 0.437 0.223 0.248 0.281 0.321 0.308 0.167 0 0.333 0 0.364
Total 1.0000 1 1 1 1 1 1 0 1 1 1
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5.4 Time Between Consecutive Events

We want to consider the distribution of the time until the occurrence of the next

event. Intuitively, we expect this to follow an exponential distribution. However, to

be sure for certainty, we would fit the distribution using fitdistrplus [4] package in R.

The empirical density and cumulative distribution in Figure 34 suggests that the time

between consecutive earthquakes follows an exponential or a gamma distribution as

we can see in Cullen Frey plot in Figure 35.
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Figure 34: Empirical density and cumulative density distribution of time between

consecutive events

The cumulative distributions(CDF), probability plot (P-P plot) and quantile plots

(Q-Q plot) in Figure 36 are calculated based on the default Hazens rule. The CDF

plot shows that the distribution follows an exponential or gamma distribution. Thus,

for more insight we look at the Q-Q plot. The Q-Q plot shows lack of fit at the right
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Figure 35: Cullen Frey plot

tail of the distribution while the P-P plot shows lack of fit at the center. In any case,

the gamma is a better fit than the exponential. The fitted distribution is:

Fitting of the distribution ’ gamma ’ by maximum likelihood

Parameters:

estimate Std. Error

shape 0.53480414 0.017045816

rate 0.04859697 0.002375889

5.5 Relationship Between Magnitude and Frequency of Events

Now we pose the question: Is the number of earthquakes in a year associated to

the intensity of the strongest earthquake in the year?

The scatter plot of the frequency of events per year and the maximum magni-

tude per year reveals a positive relationship. We see from the plot that the higher

the magnitude of the strongest earthquake, the higher the frequency and vice versa.

However, the relationship does appear to be rather quadratic than linear. Below is
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Figure 36: Comparison of Weibull, exponential, and gamma distribution

the summary of the quadratic model.

Call:

lm(formula = num1 ~ mag1 + mag2)

Residuals:

Min 1Q Median 3Q Max

-19.878 -5.837 1.315 6.163 12.708

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 815.777 127.780 6.384 1.69e-07 ***

mag1 -245.132 36.973 -6.630 7.82e-08 ***

mag2 18.994 2.666 7.125 1.67e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 8.079 on 38 degrees of freedom

Multiple R-squared: 0.7486, Adjusted R-squared: 0.7354

F-statistic: 56.58 on 2 and 38 DF, p-value: 4.042e-12

The p-values of the coefficients are all significant at a significance level α = 0.05.

In addition, the R-squared is 74.86% indicating that about 75% of the variability is

explained by the model, which is good. Figure 37 shows the scatter plot and the

fitted regression curve. A more flexible representation of the relationship between
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Figure 37: Quadratic model fit for the frequency of events per year on maximum

magnitude of events

maximum intensity and number of events might be described. With that purpose, a

nonparametric regression using np − package [10] was applied. Figure 38 shows the

scatter plot and the nonparametric curve dictated by the data. The nonparametric

regression approach seems to be more appropriate in this case. The second order

polynomial is a more rigid model and suggests that as magnitude increases at first, the
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number of events goes down first and then up. On the other hand, the nonparametric

regression suggests that up to magnitude 7.3, the number of earthquakes in the year

is partly stable. But, when the strongest earthquake has intensity 7.5 or more, the

number of earthquakes in the year increases dramatically.
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Figure 38: Non-parametric quadratic model fit for the frequency of events per year

on maximum magnitude of events
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6 CONCLUSIONS

In this thesis, we have applied both spatial and spatio-temporal tools to analyze

the behavior of earthquakes between longitude −83◦ and −68◦, and latitude −18◦

and 0◦ which includes Peru, Ecuador, and some parts of Brazil, Bolivia and Chile.

From the analysis of space only, we see that the intensity of the earthquakes is not

uniform. Most of the earthquakes happen in southern Peru and along the coast of

Northern Peru and Ecuador. The analysis in terms of time only shows that the rate

of occurrence of the earthquakes appears to be white noise. In addition, the number

of earthquakes in a year is more or less the same for each year. There were years with

exceptionally high number of earthquakes, but there is no pattern to this effect. The

same explanations goes for the rate of earthquakes in a given month for all the years.

Further, the simultaneous space-time analysis behaved similar to the space only

analysis. The intensity is inhomogeneous. There is a high interaction between earth-

quakes at very short distances and short time periods as can be seen from the Pair

Correlation Function (PCF). Also, when there are fewer earthquakes in a year, these

tend to be more randomly located than when there are many earthquakes. The

probable explanation of this, coming from the regression analysis of magnitude on

frequency is that the years that have one or more earthquakes of great magnitude

(greater than or equal to 7.5), there are several aftershocks that increases the number

of earthquakes for that year. The aftershocks are naturally located near the location

of the original strong earthquake, and thus the events are more clustered..

Random simulations of the earthquakes also strongly supports that the intensity of

the earthquakes is inhomogeneous. The random simulation using the inhomogeneous
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intensity estimate is almost the same as the original data which is not the case for

the simulation with homogeneous intensity.

The application of tools for spatial temporal analysis provides an additional per-

spective beyond what separate analysis of time alone or space alone provide. The

existing tools of spatial-temporal analysis such as the K− function and the pairwise

correlation were applied to the case study. However the additional analysis proposed

in this thesis regarding the distances in time and space between consecutive events

and the joint analysis of time, space and a third variable (magnitude) proved also to

be useful to understand earthquakes.

Although this thesis only revealed the behavior of earthquakes, the same tools

could be applied to other cases of spatial-temporal point patterns. In a similar way,

more tools, such as spatial models, could be applied to the analysis of earthquakes.
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