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Abstract: Large quantities of spatiotemporal (ST) data can be easily collected from various
domains such as transportation, social media analysis, crime analysis, and human mobility analysis.
The development of ST data analysis methods can uncover potentially interesting and useful
information. Due to the complexity of ST data and the diversity of objectives, a number of ST analysis
methods exist, including but not limited to clustering, prediction, and change detection. As one of
the most important methods, clustering has been widely used in many applications. It is a process
of grouping data with similar spatial attributes, temporal attributes, or both, from which many
significant events and regular phenomena can be discovered. In this paper, some representative ST
clustering methods are reviewed, most of which are extended from spatial clustering. These methods
are broadly divided into hypothesis testing-based methods and partitional clustering methods that
have been applied differently in previous research. Research trends and the challenges of ST clustering
are also discussed.
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1. Introduction

Large-scale data mining brings new opportunities and challenges for discovering hidden valuable
information from enormous data sets. In particular, with the rapid development of positioning
technologies as well as the emergence of a large number of positioning devices, a vast amount of
data could be easily collected from different sources. These sources could come from broad domains,
including government documentary and decades of collected data, transportation [1], and social
media [2]. For example, governments conduct censuses and own large datasets containing information
about population change, human movement, and economic characteristics during different periods for
planning and policy making. Many floating cars such as taxi and truck installing GPS receivers can
monitor running state and record spatial and temporal information every second. Social media like
Facebook and Twitter can post users’ experiences at a given place and time. All this spatiotemporal
information is useful for pattern analysis in space and time. Space can be represented by an address,
geographical coordinates of latitudes and longitude, or local (X, Y) coordinates. Time can be shown by
year, month, and day and sometimes as detailed as hour, minute, or second. Spatiotemporal (ST) data
types can be divided into five categories containing events, geo-referenced variables, geo-referenced
time series, moving points, and trajectories [3] (Figure 1). The collected datasets, regardless of if they
are in tabular or graphical forms, are often too complex to be understood. An efficient spatiotemporal
analysis method is important to mine meaningful patterns for better understanding or visualization [4].

ISPRS Int. J. Geo-Inf. 2019, 8, 112; doi:10.3390/ijgi8030112 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/2220-9964/8/3/112?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi8030112
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2019, 8, 112 2 of 16

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  2 of 15 

 

 
Figure 1. Context for spatiotemporal (ST) clustering (source: Kisilevich, et al. [3]). 

A good approach is to put data with similar characteristics together to find interesting and useful 
features. Clustering is one popular unsupervised method for discovering potential patterns and is 
widely used in data analysis, especially for geographical data [5]. It aims to group events according 
to neighboring occurrence and/or similar attributes. Most clustering algorithms should measure the 
distance between each pair. Various distance functions are adopted in the clustering methods, such 
as the Euclidean and Manhattan distance functions. A famous application of clustering occurred in 
1854, when Dr John Snow found that clusters of cholera cases occurred around a public water pump, 
which was the source of the spread of cholera. Clustering is a high-performance tool for detecting hot 
spot patterns in spatial/ST data analysis [6]. ST data analysis methods can be classified into six 
categories—clustering, prediction, change detection, frequent pattern mining, anomaly detection, 
and relationship mining [7]. Clustering has been used in many applications [8]. In some cases, 
spatiotemporal clustering methods are not all that different from two-dimensional spatial clustering 
[9–11]. Figure 2 shows the procedure of clustering. For raw spatiotemporal data, the first step is 
cleaning and reorganization. Incorrect and missing data should be identified and deleted before 
applying an appropriate clustering algorithm. However, different parameters can affect the 
clustering results. It is necessary to adjust parameters for a better understanding of cluster results and 
interpreting potential information. 

Figure 1. Context for spatiotemporal (ST) clustering (source: Kisilevich, et al. [3]).

A good approach is to put data with similar characteristics together to find interesting and
useful features. Clustering is one popular unsupervised method for discovering potential patterns
and is widely used in data analysis, especially for geographical data [5]. It aims to group events
according to neighboring occurrence and/or similar attributes. Most clustering algorithms should
measure the distance between each pair. Various distance functions are adopted in the clustering
methods, such as the Euclidean and Manhattan distance functions. A famous application of clustering
occurred in 1854, when Dr John Snow found that clusters of cholera cases occurred around a public
water pump, which was the source of the spread of cholera. Clustering is a high-performance
tool for detecting hot spot patterns in spatial/ST data analysis [6]. ST data analysis methods can
be classified into six categories—clustering, prediction, change detection, frequent pattern mining,
anomaly detection, and relationship mining [7]. Clustering has been used in many applications [8].
In some cases, spatiotemporal clustering methods are not all that different from two-dimensional
spatial clustering [9–11]. Figure 2 shows the procedure of clustering. For raw spatiotemporal data,
the first step is cleaning and reorganization. Incorrect and missing data should be identified and
deleted before applying an appropriate clustering algorithm. However, different parameters can affect
the clustering results. It is necessary to adjust parameters for a better understanding of cluster results
and interpreting potential information.

There are still many challenges for extracting useful ST patterns due to complex data types.
Many methods simply treat the temporal dimension of spatiotemporal data as an additional dimension.
With different units of time and space, clustering results could have big differences when considering
the scale of time. Multiple scales effect is another challenge as the clustering results depend on
the various spatial and temporal scales. Different space regions and temporal periods could form
distinguished clusters.

In this paper, we only focus on the clustering methods of the events ST data type. In our
view, these could be divided into two categories, the hypothesis testing-based methods and the
partition-based methods. The former one mainly uses a probability model and statistical hypothesis
testing to find significant clusters. In general, the null hypothesis is that the distribution of events is
random; if it is rejected, a cluster could be formed. The partitional clustering methods mostly utilize
distance functions to compute the closeness of events to distinguish cluster and noise. Some popular
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Figure 2. Procedure of clustering.

2. From Spatial to ST Clustering

In this section, we will first briefly discuss spatial clustering. There is no clear definition
of clustering [12,13] and different categories have overlap such that an algorithm could contain
more than one feature of categories. Therefore, a lot of methods have been proposed according
to diverse principles. Han, et al. [6] divided major clustering methods into four categories,
which were partitioning methods, hierarchical methods, grid-based methods, and density-based
methods. Partitioning methods divide the entire dataset into several groups. For example, K-means is
the most popular clustering method in the partitioning methods. It is an iteration process to find the
cluster and its center. Based on this theory, Kaufman and Rousseeuw [14] proposed partitioning around
medoids (PAM) and clustering large application (CLARA) to improve the efficiency of clustering.
Ng and Han [15] proposed clustering large applications based upon randomized search (CLARANS)
to investigate not only detect points but also polygon objects. Hierarchical methods can separate
a dataset into multiple levels based on distance or density functions. For example, Balanced iterative
reducing and clustering using hierarchies (BIRCH) use a tree structure to form clusters with speed
and efficiency [11]. Chameleon finds the clusters by measuring the similarity of data and grouping
them [16]. Clustering using Representatives (CURE) [17] can identify non-spherical shapes of clusters
within a large database. Density-based methods have the ability to discover different shapes of clusters.
For example, density based spatial clustering of applications with noise(DBSCAN) [18] is a well-known
algorithm for detecting an arbitrary shape of clusters, and many people have proposed improved
methods to overcome any drawbacks and promote efficiency [19–22]. DBSCAN is sensitive to input
parameters, however, ordering points to identify the clustering structure (OPTICS) [9] could prevent
this problem from affecting the clustering results. However, it cannot get accurate cluster results.
A method called DENCLUE (Density-based clustering) uses a kernel density estimation model to
identify the high density of clusters with an arbitrary shape. Grid-based methods build a grid structure
for storing the dataset and each grid is the basic unit to form a cluster [23,24]. Asides from the four
categories, many other methods have also been proposed, such as model based methods [25,26].

The major difference between spatial and ST clustering is the ‘time’ element, which is treated
as either another dimension or an attribute. By space, it can be at least 2-dimensional (X,Y) or
3-dimensional (X,Y,Z) in which events or attributes are clustered. Most socio-economic information,
such as population and traffic, is considered as variations in 2-dimensions [(X,Y) + attribute] only;
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whereas natural phenomena, such as temperature and pressure, vary with space and height [(X,Y,Z)
+ attribute]. When ‘time’ is added, it may be treated as merely an attribute to 2-dimensional or
3-dimensional space, for example, a date when a certain event occurs or a record is created; but this
does not allow clustering in terms of time. An alternative common method is to model ‘time’ as
a third dimension in addition to the 2-dimensional [(X,Y, T) + attribute] space. Therefore, some ST
clustering methods have been developed from spatial clustering methods [27–30]. The addition of
a time dimension to the 3-dimensional [(X,Y, T, Z) + attribute] space is still a challenging issue to model
and to visualize. There is a need in many applications to integrate spatial and temporal information
together for more detailed and accurate analyses. For example, in the study of human mobility, there is
a need to identify at what time and where people cluster instead of just relying on census data or
a generalized pattern of population distribution. This applies in the same way to crime patterns,
traffic patterns etc. In the following sections, we will discuss the different categories of ST clustering.

3. Hypothesis testing-based methods

In the field of statistics, some existing fundamental research has been studied [31], including ST
point pattern detection and analysis [32,33]. Hypothesis testing is used to determine the probability
of a given hypothesis being true or not. The advantage of this method is it considers space and time
information together. It is a new research direction that could allow some traditional spatial statistics
to be extended for ST data analysis. For example, Di Martino and Sessa [34] proposed an extended
algorithm of fuzzy c-means to find circular clusters from ST data. This method could reduce the
noise and outliers influencing clustering results. Detailed processes of some famous algorithms are
described below.

3.1. Space–time interaction methods

A number of methods have been explored for detecting ST clustering. The core essence of a cluster
is that objects should be close to each other in the space or time dimension. Knox and Bartlett [35]
proposed a test to quantify a space and time interaction of disease. Low-intensity disease detection by
joining space and time analysis was conducted in Reference [36]. Improvements to existing drawbacks
were proposed by others [37]. In this method, critical space distance α and time distance β should be
manually defined first. Pairs of cases less than the critical space distance and time distance separately
were regarded as near in space and time. The test statistics equation was:

K = ∑N
i=1 ∑i−1

j=1 dijtij (1)

where K was the total number of paired cases smaller than the critical space and time distance, N was
the total number of data. dij was space adjacency, if the distance between i and j was less than α, it was
equal to 1, otherwise equal to 0. tij was time adjacency, if the distance between i and j was less than β,
it was equal to 1, otherwise equal to 0. The Monte Carlo method was used for the significant test of K
and a predefined number of runs was identified. The probability value of K being larger than the test
statistic should belong to right hand tail of null distribution. The disadvantage of this method was
critical space and time distances values may be assigned subjectively.

A modification was proposed by Mantel [38] who multiplied the sum of time distances by the
sum of spatial distances. The test statistic of Mantel’s test was similar to Knox’s test. It focused on the
problem of selecting the critical distances of Knox’s test. It is based on a simple cross-product term:

Z = ∑N
i=1 ∑N

j=1 ds
ijd

t
ij (2)
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where ds
ij is the distance between data i and j in space. dt

ij is the distance between data i and j in time.
Then, it is normalized:

M =
1

(N2 − N − 1) ∑N
i=1 ∑N

j=1

(
ds

ij − ds
)

ss

(
dt

ij − dt
)

st
(3)

where M is the standardized Mantel statistic and N is the number of data. ds
ij is the distance between

data i and j in space. dt
ij is the distance between data i and j in time. ds is the average distance of all

data in space. dt is the average distance of all data in time. ss and st are the standard deviations of
data in space and time, respectively. This equation allowed for different units of space and time in the
same framework, and multiple scale problems could be solved by limiting the range of correlation
coefficient values into [−1,1].

3.2. Spatiotemporal k Nearest Neighbors Test

Jacquez [39] proposed a spatiotemporal k nearest neighbors test to test space and time
simultaneously. The statistic counted the number of k nearest neighbors in space and time dimension
and evaluated under the null hypothesis of independent in two dimensions. Two test statistics were
defined, which are Dk and ∆Dk. Dk is the count of case pairs of k nearest neighbors. It is large when
space and time interact. ∆Dk is the count number of difference between consecutive k nearest neighbors.
Some concepts are as follows:

N: Number of cases.
dij: Spatial measure, when dij = 1 case j is a k nearest neighbor of case i in space, otherwise equal to 0.

tij: Spatial measure, when tij = 1 case j is a k nearest neighbor of case i in time, otherwise equal to 0.

Dk: Is a cumulative test statistic, where Dk =
N
∑

i=1

N
∑

j=1
dijtij.

∆Dk: Is k– specific test statistic, where ∆Dk = Dk − Dk−1.

Dk was not independent because it included a smaller k value of nearest neighbor. ∆Dk was
independent because it only contained specific k nearest neighbors. The null hypothesis was that the
distribution of events was independent from each other in space and time. Reference distribution was
built by repeating many times to generate a random distribution for testing the statistics of probability
values by comparing Dk and ∆Dk. However, the disadvantage of this method was that the k value
could result in different test results.

3.3. Scan Statistics

Scan statistics is a popular method and software [40] can implement scan statistics for detecting
clusters. Joseph Naus [41] has been called the father of scan statistics as his method has helped to
solve many research problems. The space scan statistic was developed from an original scan statistics
method based on the scanning window process [42]. A circular scan window with different radii
is used to find circular clusters of two-dimensional spatial data with a statistical significance test.
An appropriate radius is important to avoid too large or too small clusters, otherwise the results could
be meaningless and hard to interpret. Normally, the upper limit of the circle should not include more
than 50 percent of all the dataset. Each point could be the center of a circle that contains different
numbers of other points. Space and space–time scan statistics have many similar calculation processes.

Space–time scan statistics was extended from space scan statistics to detect clusters with the
highest likelihood ratio by moving a cylinder as a scan window to scan ST data [43,44]. Figure 3 shows
the difference between the two methods. The left graph uses space scan statistics to detect clusters,
the red center is the core point and the larger circle is the scan window for detection. The right
graph uses space–time scan statistics to find clusters, it adopts a red cylinder as the scan window.
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Space–time scan statistics considers the time dimension and is an extension of space scan statistics
in that a three-dimensional cylinder instead of a two-dimensional circle is used. The time interval
between events is the height of cylinder.
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Kulldorff, et al. [44]).

As with the space scan statistic, the null hypothesis is that the spatiotemporal distribution of events
is random. The scan window of the cylinder was changed with different radii and height, looking for
the maximum value of log likelihood ratio of all the circles as the cluster region. The formulation was:

S = log
(

nz

uz

)nz(N − nz

N − uz

)(N−nz)

I
(

nz

uz
>

N − nz

N − uz

)
(4)

where S was the log likelihood of cylinder, nz and uz were the observed and expected number of
points, respectively, N was the total number of observed points, and I was the indicator function. If the
left side was larger than right side, I was equal to 1, otherwise equal to 0. Many distribution functions
could be used, one of which was the Poisson distribution. To obtain the simulated distribution
for significance testing of clusters, Monte Carlo replications of data were used to obtain likelihood
ratio statistics S. It was necessary to obtain p values by generating replications such as 999 or even
higher to calculate the probability of a random appearance of an observed high-density cluster in
a cylindrical window. The likely clusters could be based on the lowest p value, which was defined
by the cylindrical window. However, similar to space scan, the disadvantage of this method was
that it could not discover the arbitrary shape of ST data. To overcome this problem, flexible spatial
scan statistic [45] and flexibly shaped space–time scan statistic [46] were proposed in 2005 and 2008,
respectively. FleXScan [47] is the software that was developed to analyze spatial data by using flexible
spatial scan statistics. Compare with spatial and space–time scan statistics that can only detect circular
or cylinder clusters with variable size, these two methods have the ability to detect non-circular
and non-cylinder clusters with high accuracy. For example, Tango and Takahashi [45] proposed
a flexible spatial scan statistics method that was illustrated using simulated disease maps in the Tokyo
Metropolitan area. First, they divided the entire area into many small regions and the location of each
region was the administrative population centroid. Next, the set of irregularly shaped windows were
consisted K concentric circles and connected regions, where K is a pre-specified maximum length
of cluster. The idea was also used in the flexible space–time scan statistic. However, both of these
were fitted to a small cluster size. Neill [48] gave a very comprehensive account of spatial and ST
clustering methods, especially in the area of scan statistics methods and Bayesian clustering methods.
They proposed a statistical framework for detecting clusters in detail. The results of case studies
show it has good performance compared to previous studies. However, they are still subject to the
limitations of statistical methods.
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4. Partitional Clustering Methods

In the previous section, clustering of hypothesis testing-based methods was developed based on
mathematical theory of probability and statistics. In this section, partitional clustering methods are
introduced. These methods mainly focus on identifying whether data belong to a cluster or noise by
using different distance functions. They have a clear grouping process to form a cluster by determining
the similarity of data. Some well-known methods are described as follows:

4.1. DBSCAN

DBSCAN is a very popular method, especially in the data mining community [5,6]. It has been
extended for many different types of data. The biggest advantages of this method is that it can find
clusters with arbitrary shape and noise points [18]. The key idea is that each cluster should include at
least a minimum number of points with a fixed radius. Similar to kernel density estimation (KDE),
DBSCAN can also be extended for spatiotemporal data. ST-DBSCAN [27,49] was proposed to cluster
spatiotemporal data. Wang, et al. [49] added another radius rt which is the temporal neighborhood
radius. The core points should satisfy directly the density reachable in both spatial radius rs and
temporal radius rt.

To define an appropriate spatial and temporal radius, k-dist graph was used to decide values.
Generally speaking, cluster data should be clearly separated from noise data. To do this, the distance
of each point to its k nearest neighbor, called the k value, was calculated. As depicted in Figure 4,
the left graph shows the distribution of point sample, clearly indicating three similar density clusters
surrounded by noise points. The right graph was drawn based on a descending order of k values.
The smooth red line on the right part of the graph highlights cluster points that have a low k value,
but the left part of the red line indicates noise points that have high values. An appropriate threshold
could be selected from the graph with an obvious and abrupt change from high value of small number
of points to low value of large number of points.
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Another method was called ST-GRID. The core idea was that a three-dimensional grid covers
the entire dataset followed by merging the dense neighboring cells. First, the above k-dist graph
could be used to define the border length of the grid and put all the data into a multi-dimension grid.
Second, the number of points in each cell was counted. Those equal or larger than k + 1 were merged
with neighbor cells as a cluster. The process was repeated until no additional cells could be merged.

Compared with the above method, more detailed data such as non-spatial data should be
considered when extending DBSCAN [27,50]. A new method called ST-DBSCAN was proposed
for discovering clusters based on three attributes; non-spatial, spatial, and temporal attributes of data.
Basic concepts were the same as conventional DBSCAN except for three modifications.

When DBSCAN only considers one distance parameter to find similar data, ST-DBSCAN used
two distance parameters for two-dimensional data. One distance measured two points distance in
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spatial scale. Another distance measured non-spatial attributes. Euclidean distance was adopted to
calculate the two distances.

Eps =
√
(x1− x2)2 + (y1− y2)2 (5)

where x and y represented spatial information. DBSCAN algorithm’ result could be affected by
selecting a different radius. If the dataset included different densities of clusters, a single radius
could not clearly identify each cluster. To solve the problem, they proposed a concept called
the density factor. Each cluster has their own density factor. To calculate it, three concepts of
distances are introduced, which are density_distance_max, density_distance_min and density_distance.
Density_distance_max was the maximum distance between object p and its neighbor objects within
the radius Eps. Density_distance_min was the minimum distance of each cluster. The density_distance
of object p was defined as density_distance_max (p)/density_distance_min (p). The density_factor
was defined as follows.

Density_ f actor(C) = 1/
[

∑ density_distance(p)
|C|

]
(6)

The density_factor C denoted the degree of each cluster. If the points of a cluster were close to each
other, density_diatance_min would decrease, the density_distance would be quite large, and the
density_factor would be close to 0. Otherwise, if points were a little further away from each other,
the density_distance would be quite small and the density_factory would be close to 1.

For non-spatial values of objects, this added value could change the average value of existing
points when clustering. To solve the problem, ST-DBCSAN compared the average value of a cluster
with every other point. If the absolute difference between the average value and object value was
larger than a threshold, that point should not to be contained in the cluster.

4.2. Kernel Density Estimation

Kernel density estimation (KDE) [51,52] is a nonparametric density estimation method widely
used for detecting clusters from spatial data to discover high-density significant geographic events.
Gaussian function is an efficient and popular choice for kernel density estimation. The KDE equation
can be extended as follows:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
=

1
nh

n

∑
i=1

1√
2π

e−
1
2 (

x−xi
h )

2

(7)

where n was the number of sample data, h meant the bandwidth parameter, and K was the kernel
density functions. Many kernel functions had been defined for different situations. An appropriate
bandwidth could lead to a good density result. The function of Scott’s rule of thumb was used to
calculate bandwidth with the equation as follows:

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5 (8)

where σ̂ was the standard deviation of sample data, and n meant the number of sample data. This rule
of thumb was very easy to compute and could be accepted as an accurate estimator. There are mainly
two ways to extend KDE for spatiotemporal data by adding a time dimension (Table 1).
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Table 1. Comparison of different extension methods.

Authors Methods

Brunsdon, et al. [53]
Nakaya and Yano [54]

Wei, et al. [55]

Temporal attribute is regarded as another dimension, calculate space
and time kernel density estimations separately.

Lee, et al. [29]
1. Setting a threshold to filter inappropriate space and time distances.
2. Standardization of space and time data for integrating them with

same kernel function.

Conventional KDE should be extended by adjusting the parameters for spatiotemporal data.
Brunsdon, et al. [53] extended the two-dimensional KDE into three-dimensional for space and time data
analysis. It helped to visualize and understand the trend of spatiotemporal data. The three-dimensional
spatiotemporal KDE formula was:

f̂ (x, y, z) =
1

nh2
s ht

n

∑
i=1

ks

(
x− xi

hs
,

y− yi
hs

)
kt

(
t− ti

ht

)
=

1
nh2

s ht

n

∑
i=1

ks(us)kt(ut) (9)

where the notation was the same as Equation (5), kt was the kernel function for time, ht was the
bandwidth parameter of time kernel. Spatial and temporal information were treated separately, each of
which had its own bandwidths and kernel functions. Nakaya and Yano [54] adopted this method for
visualizing high-density crime events during a specific time interval in Kyoto. A threshold was set
to filter data beyond a defined range. For most data, the longer space/time distance between two
datasets, the lower possibility of their correlation. For example, if the time distance of two adjacent
data was larger than a threshold, there was no need to calculate kernel density. The advantage of this
method was no requirement to define a density function of time, but time was regarded as a constant.
The formula was:

f̂ (x, y, z) =
1

nh2
s

n

∑
i=1

ks

(
x− xi

hs
,

y− yi
hs

)
, ut < ht =

1
nh2

s

n

∑
i=1

ks(us), ut < ht (10)

In this formula, only kernel density of space needs to be calculated. However, it is difficult to
define an appropriate method for filtering time. In order to directly integrated space and time data,
the process of standardization should be conducted before density estimation with the following
equations:

s =
s′ − s

hs
(11)

and,

t =
t′ − t

ht
(12)

where s′, t′ were spatial and temporal raw data, s, t could be referenced values for standardizing raw
spatial and temporal data and hs,ht were their kernel bandwidths. The advantage of standardization of
raw spatial and temporal data was to remove the different measurement units of spatial and temporal
data. The results of standardization of spatial and temporal data was that they have similar ranges for
easy integration. The calculation of kernel density estimation was

f̂ (x, y, z) =
1

nh2
s ht

n

∑
i=1

kst(ust) =
1

nh2
s ht

n

∑
i=1

ks

(
x− xi

hs
,

y− yi
hs

,
t− ti

ht

)
(13)

ust =

√(
x− xi

hs

)2
+

(
y− yi

hs

)2
+

(
t− ti

ht

)2
(14)

However, it is noted that bandwidth selection was a critical problem that will affect cluster results.
The unit of time was another problem because different units lead to different density of clusters.
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4.3. Windowed Nearest Neighbor Method

Based on the idea of spatiotemporal k nearest neighbors test, windowed nearest neighbor method
for mining spatiotemporal clusters was proposed several years ago [56]. Spatiotemporal point data
could be represented by STp, each point indicated by STp(si, ti), and its neighbor could be defined as:

STp =
{

STp(si, ti), STp(si+1, ti+1), STp(si+2, ti+2), . . . . . . , STp(si+n, ti+n)
}

(15)

For k nearest neighbors, the time interval of consecutive two points should be smaller than
a threshold, |Ti+1 − Ti| ≤ ∆T. The distances D

(
STp

)
from a given point to the rests are gradually

increasing with time satisfied as:

D
(
STp(si, ti), STp(si+1, ti+1)

)
≤ D

(
STp(si, ti), STp(si+2, ti+2)

)
≤ . . . ≤ D

(
STp(si, ti), STp(si+k, ti+k)

)
(16)

Similar to space–time scan statistics, each event could be regarded as a center of cylinder with
a spatial radius and temporal height. A cylinder as a window includes spatiotemporal neighbors of
a given event. A core event’s neighbor should contain a minimum number of other points. The first
step is to distinguish between a cluster of events and noise; second is to connect the cylinder into
cluster events. Figure 5 shows the spatiotemporal density connectivity of events from a horizontal
perspective to form the cluster.
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In their method, an ST Poisson point process was used to construct probability density function
with the equation:

P(k) =
λkV

k!
e−λV (17)

where k was the number of events in the volume of V, λ was the constant. The density of cylinder D
can be calculated by:

D =
k

π∆St∆T
(18)

where k was the number of events, and ∆T was the temporal interval constant. ∆St could be regarded
as a threshold calculated by an expectation maximization (EM) algorithm [57]. A detailed process of
the EM algorithm can be found in Byers and Raftery [58]. After the density connected events were
divided into cluster events and noise features, they were linked by the cylinder for connecting events
into clusters.
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5. Applications

ST data clustering methods are widely used in many research areas, which we have divided into
the following categories.

Crime analysis: Criminal events usually repeatedly occur under the same situation and a similar
time. Tracing the changes of a crime path is meaningful. Nakaya and Yano [54] explored the possibility
of tracing crime events with three-dimensional attributes in a space–time cube relative to kernel
density estimation and scan statistics to get the clustering of crime events and visualizing the crime
events patterns. Hu, et al. [28] proposed a new modification of an existing method to increase the
predictive accuracy of crime hotspots. They refined spatiotemporal kernel density estimation by
generalized product kernels and adopted a data driven bandwidth selection to decide bandwidth.
Residential burglaries data of Baton Rouge was used to predict crime hotspots.

Events detection: Many events could be detected using clustering methods, such as helicopter
crash accidents from social media data [59]. By using space–time scan statistics, a ST significant cluster
of London helicopter crash locations were found. Many other events like football games and train and
flight delays could also be detected. Clustering earthquake events could help to understand trends
and mechanisms [60,61]. Many small earthquakes can happen before or after a strong earthquake.
By using ST clustering methods, clusters of earthquakes can be identified in space and time. ST kernel
density estimation can be used for predicting ambulance demand. It is difficult to predict ambulance
demand accurately from large-scale datasets of past events. Zhou and Matteson [62] proposed a model
of spatiotemporal kernel density predictive method to explore ambulance demand precisely. KDE is
also widely used in creating a density map of road accidents to identify its distribution pattern [63].
This could help to predict and reduce the number of incidents in the future.

Mobility: Human mobility data such as phone call data could reflect urban growth in space
and time. It would provide information for authorities to plan and manage cities in a smart way.
It helps planners to understand where and when different groups of people interact in urban space.
Jiang, et al. [64] discovered the clusters of human mobility pattern by kernel density estimation and
integrating various spatial and temporal data to predict human daily routines. Krisp, et al. [65]
proposed directed kernel density estimation to recognize movement and direction of crowds and was
effective in visualizing the movement of crowds.

Disease analysis: ST clustering methods could be applied in analyzing disease dispersion and
trends. Visualizing space–time clusters of dengue fever pattern in Cali using extension of kernel
density estimation method has been applied [66,67]. The occurrence and spread of disease has a strong
regular pattern in certain regions. Analyzing the former spread of disease to predict the future spread
direction is meaningful for governments and hospitals to control diseases. Gomide, et al. [68] analyzed
not only the location and time the disease was contracted, but also the reaction of the population
when facing the disease. They used the ST-DBSCAN clustering method to explore the ST distribution
characteristics of disease incidents to group nearby cities that have similar incident rates. A linear
regression model was built to predict the number of diseases using the proportion of user experiences.
Napier, et al. [69] proposed a novel Bayesian model to identify the cluster of similar temporal disease
trends rather than disease estimation and prediction. Adin, et al. [70] proposed a two-stage approach
to estimate disease risk maps. Compared with traditional methods, their method has the ability to
overcome the problem of local discontinuities in the spatial pattern that cannot be modeled. It has
a good performance of spatiotemporal smoothing for estimating risks of disease mapping.

6. Conclusion and Future Works

ST data clustering analysis is a hot topic and has already been studied extensively [71]. ST
data types can be classified into three categories, namely point, line, and polygon. In this paper,
only point pattern is considered and existing clustering methods are divided into two parts,
one is hypothesis testing based, and another is partitional clustering methods. ST data is more
complicated than other types of data because of the additional dimension of time from two-dimensional
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spatial analysis. Some popular and representative methods are introduced in previous sections.
However, simply regarding time as an extended dimension may ignore some important patterns that
are hard to be detected. New methods should consider integrating time and other attributes together.

Clustering is an important step to detect patterns from a large amount of data. It can be used in
many application domains, including transportation, social media, and urban development. It focuses
on finding hotspots from raw data. These hotspots are the foundation for pattern understanding.
Adjusting different parameters of the clustering method for different data types is needed to get an
optimum result. An appropriate clustering method can help discover potential and useful information
from a large volume of data. Asides from investigating new algorithms, related research problems
have been developed, such as the computational issues of ST data [72]. As mentioned before,
even though extended algorithms could be used to detect clusters, these are more than mere geometrical
considerations. There is a need to predefine thresholds such as radius, distance, and density based
on the rules or knowledge from specific themes. As such, new research trends and methods need to
be developed.

ST data analysis has attracted much research attention and a lot of methods have been
developed [73]. However, there are still some issues and challenges to be solved. Several challenge
issues are described as follows:

1. Multiple scales clustering of ST data is an important research topic. Clustering results could be
different with both changing map scales and data scale of nominal, ordinal, interval, or ratio
value (i.e., with increasing attribute information). The problem of multiple scales is related to
different shapes, sizes, and densities of event distribution. A changing clustering algorithm with
changing scales for different applications is worth investigating in the future.

2. Modifiable areal unit problem is still a problem in clustering. It has a strong relationship with
scale selection. With different units of spatial and temporal data, clustering results could be
variable with the choices of appropriate spatial and temporal units. Especially for temporal
information, diverse time periods could indicate different cluster patterns. The identification of
optimal spatial and temporal units should be considered.

3. Different types of ST data analysis should be considered to develop diverse clustering
methods. In many existing studies, most algorithms are focused on point features or events.
However, trajectory data from GPS and other positioning equipment can record locational
information in a linear dimension, thus demanding new methods for line clustering. The same
applies for outliers’ detection [74,75] and classification algorithms that have not been investigated
thoroughly yet.

4. Different patterns could result from using different methods or time periods. It is difficult to
detect the best pattern based on one algorithm. Generally speaking, raw data could contain
many different kinds of pattern. For efficient mining of potential patterns, new algorithms for
evaluating the accuracy or reliability of various patterns should be investigated in the future.

5. Clustering methods for multiple dimensional data beyond the third dimension need to be
developed for analysis and visualization.
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