
JSS Journal of Statistical Software
January 2005, Volume 12, Issue 6. http://www.jstatsoft.org/

spatstat: An R Package for Analyzing Spatial Point

Patterns

Adrian Baddeley
University of Western Australia

Rolf Turner
University of New Brunswick

Abstract

spatstat is a package for analyzing spatial point pattern data. Its functionality includes
exploratory data analysis, model-fitting, and simulation. It is designed to handle realistic
datasets, including inhomogeneous point patterns, spatial sampling regions of arbitrary
shape, extra covariate data, and ‘marks’ attached to the points of the point pattern.

A unique feature of spatstat is its generic algorithm for fitting point process models
to point pattern data. The interface to this algorithm is a function ppm that is strongly
analogous to lm and glm.

This paper is a general description of spatstat and an introduction for new users.

Keywords: conditional intensity, edge corrections, exploratory data analysis, generalised
linear models, inhomogeneous point patterns, marked point patterns, maximum pseudolikeli-
hood, spatial clustering .

1. Introduction

spatstat is one of several packages in the R language for analysing point patterns in two
dimensions. 1 This paper is a general description of spatstat and may serve as an introduction
for new users. Subsequent papers will cover advanced use of the package Baddeley and Turner
(2005b) and explain its design and implementation Baddeley and Turner (2005a).
A simple example of a point pattern dataset is shown in Figure 1. The points represent the
locations of seedlings and saplings of the Californian giant redwood.
Point pattern data may be much more complicated than Figure 1 suggests. The spatial
sampling region in which the points were recorded may have arbitrary irregular shape, instead
of being a rectangle as in Figure 1. The points may carry additional data (marks). For
example, we may have recorded the height or the species name of each tree. There may be

1 Alternatives include splancs Rowlingson and Diggle (1993); Bivand (2001), spatial Ripley (2001); Venables
and Ripley (1997), ptproc Peng (2003) and SSLib Harte (2003).

http://www.jstatsoft.org/

2 spatstat: An R Package for Analyzing Spatial Point Patterns

Figure 1: The classic Redwoods dataset Ripley (1977) available in spatstat as redwood.

additional covariate data which must be incorporated in the analysis. The spatstat package
is designed to handle all these complications.

Figure 2 shows an example of a dataset which can be handled by spatstat; it consists of points
of two types (plotted as two different symbols) and is observed within an irregular sampling
region which has a hole in it. The label or ‘mark’ attached to each point may be a categorical
variable, as in the Figure, or a continuous variable. See also Figures 6–9.

Figure 2: Artificial example demonstrating the complexity of datasets which spatstat can
handle.

Point patterns analysed in spatstat may also be spatially inhomogeneous, and may exhibit
dependence on covariates. The package can deal with a variety of covariate data structures.
It will fit point process models which depend on the covariates in a general way, and can also
simulate such models.

2. Goals

Our main reasons for writing spatstat were to:

Implement functionality. The research literature on spatial statistics provides a large body
of techniques for analysing spatial point patterns (e.g. Bartlett (1975); Cliff and Ord
(1981); Cressie (1991); Diggle (2003); van Lieshout (2000); Matérn (1986); Møller and
Waagepetersen (2003); Moore (2001); Ripley (1981, 1988); Stoyan, Kendall, and Mecke
(1995); Stoyan and Stoyan (1995); Upton and Fingleton (1985)). However, only a small
fraction of these techniques have been implemented in software for general use.

Journal of Statistical Software 3

Handle real datasets. New techniques published in the literature are often demonstrated
only on a ‘tame’ example dataset, using a rudimentary proof-of-concept implementa-
tion. Such software is typically designed only for rectangular windows; the techniques
themselves may assume that the point pattern is spatially homogeneous; and auxiliary
information (such as covariate data) is often ignored.

For example, the classical redwood dataset of Figure 1 is a subset extracted by Ripley
(1976, 1981) from a larger dataset of Strauss (1975) which is shown in Figure 3. The
full dataset exhibits completely different spatial patterns on either side of the diagonal
line shown on the plot. The diagonal line is a simple example of covariate data. As far
as we are aware, the full dataset has never been subjected to comprehensive analysis.

Strauss’s redwood data

Region I

Region II

Ripley’s subset

Figure 3: The full redwood dataset of Strauss (1975). The square in the bottom left corner
shows the boundaries of the subset extracted by Ripley (1977) as the classical redwood dataset.

Similarly, Figure 4 shows the ant nest data of Harkness and Isham (1983). The full
dataset records the locations of nests of two species of ants, observed in an irregular
convex polygonal boundary, together with annotations showing a foot track through the
region, and the boundary between field and scrub areas inside the region. Rectangular
subsets of the data (marked “A” and “B” on the Figure) were analysed in Harkness and
Isham (1983); Isham (1984); Takacs and Fiksel (1986); Högmander and Särkkä (1999);
Baddeley and Turner (2000) and (Särkkä 1993, section 5.3). Again, as far as we are
aware, the full dataset has never been subjected to detailed analysis inside the correct
window.

Fit realistic models to data. In applications, the statistical analysis of spatial point pat-
terns is conducted almost exclusively using ‘exploratory’ summary statistics such as the
K function Cliff and Ord (1981); Cressie (1991); Diggle (2003); Møller and Waagepetersen
(2003); Ripley (1988); Stoyan et al. (1995); Stoyan and Stoyan (1995); Upton and Fin-

4 spatstat: An R Package for Analyzing Spatial Point Patterns

gleton (1985). An important goal of spatstat is to fit parametric models to spatial
point pattern data. Although methods for fitting point process models have been avail-
able since the 1970’s Besag (1975); Diggle (2003); Ogata and Tanemura (1981, 1984);
Møller and Waagepetersen (2003); Ripley (1981, 1988), most of these methods were very
specific to the chosen model, and there were no software implementations of sufficient
generality to fit realistic models to a real dataset. Recently we described an algorithm
for fitting point process models of very general form Baddeley and Turner (2000). Our
implementation of this algorithm has grown into the package spatstat.

ants

A

B

Figure 4: Harkness-Isham ant nests data. Map of the locations of nests of two species of ants,
Messor wasmanni (4) and Cataglyphis bicolor (◦) in an irregular region 425 feet in diameter.
Data kindly supplied by Professors R.D. Harkness and V. Isham.

3. Capabilities

spatstat supports the following activities.

Creation, manipulation and plotting of point patterns: a point pattern dataset can
easily be created, plotted, inspected, and transformed. Subsets of the pattern can easily be
extracted (e.g. to thin the points or trim the window). Marks can readily be added or removed
from a point pattern. Many geometrical transformations, operations and measurements are
implemented.

Exploratory data analysis: standard empirical summaries of the data, such as the average
intensity, the K function Ripley (1977) and the kernel-smoothed intensity map, can easily

Journal of Statistical Software 5

be generated and displayed. Many other empirical statistics are implemented in the package,
including the empty space function F , nearest neighbour distance function G, pair correlation
function g, inhomogeneous K function Baddeley, Møller, and Waagepetersen (2000), second
moment measure, Bartlett spectrum, cross-K function, cross-G function, J-function, and
mark correlation function. Our aim is eventually to implement the vast majority of the
statistical techniques described in the spatial statistics literature (e.g. Diggle (2003); Stoyan
and Stoyan (1995)).

Parametric model-fitting: a key feature of spatstat is its generic algorithm for fitting
point process models to data. The point process models to be fitted may be quite general
Gibbs/Markov models; they may include inhomogeneous spatial trend, dependence on co-
variates, and interpoint interactions of any order (i.e. not restricted to pairwise interactions).
Models are specified using a formula in the R language, and are fitted using a single function
ppm analogous to glm and gam. A fitted model can be printed, plotted, predicted, updated, and
simulated. Capabilities for residual analysis and model diagnostics will be added in version
1.6.

Simulation of point process models: spatstat can generate simulated realisations of
a wide variety of stochastic point processes. Some process parameters (intensity function,
cluster distribution) may be arbitrary, user-supplied functions in the R language. Markov
point process models of a very general kind (including arbitrary spatial inhomogeneity and
user-supplied interaction potential) are simulated using a fast Fortran implementation of
the Metropolis-Hastings algorithm. Fitted model objects obtained from the model-fitting
algorithm can be simulated directly by Metropolis-Hastings.

4. Demonstration

A few examples of spatstat’s capabilities are shown in the following transcript of an R ses-
sion. A more extensive demonstration can be seen by installing the package and typing
demo(spatstat).

R> library(spatstat)

R> data(cells)

R> cells

planar point pattern: 42 points
window: rectangle = [0,1] x [0,1]

R> plot(cells)

R> plot(ksmooth.ppp(cells))

R> plot(Kest(cells))

These commands performed some exploratory analysis of the dataset cells. The last two
lines displayed a kernel-smoothed estimate of the intensity, and an estimate of the K function.

6 spatstat: An R Package for Analyzing Spatial Point Patterns

R> fit <- ppm(cells, ~1, Strauss(r=0.1))

R> fit

Stationary Strauss process
beta
290.4221
interaction distance: 0.1
Fitted interaction parameter gamma:
[1] 0.0126

R> Xsim <- rmh(fit)

R> plot(Xsim)

This code fits a Strauss point process model to the cells data. The object fit is a fitted point
process model. The code prints a summary of the fitted model, then simulates a realisation
from this fitted model.

R> data(demopat)

R> plot(demopat, box=FALSE)

R> plot(split(demopat))

R> plot(alltypes(demopat, "K"))

This code analyzes the point pattern shown in Figure 2 which consists of points of two different
types. The split command separates the dataset into two point patterns according to their
types, which are then plotted separately. The alltypes command computes the bivariate
(‘cross’) K function Kij(r) for each pair of types i, j and plots them as a 2 × 2 array of
graphs.

R> pfit <- ppm(demopat, ~marks + polynom(x,y,2), Poisson())

R> plot(pfit)

The call to ppm fits a non-stationary Poisson point process to the data in Figure 2. The
logarithm of the intensity function of the Poisson process is described by the R formula
~marks + polynom(x,y,2) which represents a log-quadratic function of the cartesian coor-
dinates, multiplied by a constant factor depending on the type of point. The last line plots
the fitted intensity function as a perspective view of a surface.

5. Data types

The basic data types in spatstat are Point Patterns, Windows, and Pixel Images.
A point pattern is a dataset recording the spatial locations of all ‘events’ or ‘individuals’
observed in a certain region. A window is a region in two-dimensional space. It usually
represents the ‘study area’. A pixel image is an array of “brightness” values for each grid
point in a rectangular grid inside a certain region. It may contain covariate data (such as a
satellite image) or it may be the result of calculations (such as kernel smoothing).

Journal of Statistical Software 7

x

Figure 5: A point pattern, a window, and a pixel image.

spatstat uses the object-oriented features of R (“classes and methods”) to make it easy to
manipulate, analyse, and plot these datasets.

Note that there is no predetermined format for covariate data. Indeed that would be un-
necessarily limiting, as there are many different kinds and formats of covariate information
that might be needed. Our modelling and simulation code accepts covariate data in various
formats.

5.1. Point patterns

A point pattern is represented in spatstat by an object of the class "ppp". A dataset in this
format contains the coordinates of the points, optional ‘mark’ values attached to the points,
and a description of the spatial region or ‘window’ in which the pattern was observed.

To create a point pattern (class "ppp") object we may create one from raw data using the
function ppp, convert data from other formats (including other packages) using as.ppp, read
data from a file using scanpp, manipulate existing point pattern objects using a variety of
tools, or generate a random pattern using one of the simulation routines.

For example, to create a pattern of random points inside the rectangle [0, 10]× [0, 3],

R> x <- runif(20, max=10)

R> y <- runif(20, max=3)

R> u <- ppp(x, y, c(0,10), c(0,3))

The Venables and Ripley spatial library, which is part of the standard distribution of R,
supplies a dataset pines. To convert this into our format,

R> library(spatial)

R> pines <- ppinit("pines.dat")

R> library(spatstat)

R> pines <- as.ppp(pines)

A point pattern must have a window

Note especially that, when you create a new point pattern object, you need to specify the
spatial region or window in which the pattern was observed.

We believe that the observation window is an integral part of the point pattern. A point
pattern dataset consists of knowledge about where points were not observed, as well as the

8 spatstat: An R Package for Analyzing Spatial Point Patterns

locations where they were observed. Even something as simple as estimating the intensity of
the pattern depends on the window of observation. It would be wrong, or at least different, to
analyze a point pattern dataset by “guessing” the appropriate window (e.g. by computing the
convex hull of the points). An analogy may be drawn with the difference between sequential
experiments and experiments in which the sample size is fixed a priori.

For situations where the window is really unknown, spatstat provides the function ripras to
compute the Ripley-Rasson estimator of the window, given only the point locations Ripley
and Rasson (1977).

Marked point patterns

Each point in a spatial point pattern may carry additional information called a ‘mark’. For
example, a pattern of points which are classified into two or more different types (on/off,
case/control, species, colour, etc) may be regarded as a pattern of marked points, where
the mark attached to each point indicates which type it is. Data recording the locations and
heights of trees in a forest can be regarded as a marked point pattern where the mark attached
to a tree’s location is the height of the tree.

In our current implementation, the mark attached to each point must be a single value (which
may be numeric, character, complex, logical, or factor). Many of the functions in spatstat for
marked point patterns require that the mark attached to each point be either

• a continuous variate or “real number”. An example is the Longleaf Pines dataset
(longleaf) in which each tree is marked with its diameter at breast height. The marks
component must be a numeric vector such that marks[i] is the mark value associated
with the ith point. We say the point pattern has continuous marks.

• a categorical variate. An example is the Amacrine Cells dataset (amacrine) in which
each cell is identified as either “on” or “off”. Such point patterns may be regarded as
consisting of points of different “types”. The marks component must be a factor such
that marks[i] is the label or type of the ith point. We call this a multitype point
pattern and the levels of the factor are the possible types.

See Figures 6–7.

Note that, in some other packages, a point pattern dataset consisting of points of two different
types (A and B say) is represented by two datasets, one representing the points of type A and
another containing the points of type B. In spatstat we take a different approach, in which
all the points are collected together in one point pattern, and the points are then labelled by
the type to which they belong. An advantage of this approach is that it is easy to deal with
multitype point patterns with more than 2 types. For example the classic Lansing Woods
dataset represents the positions of trees of 6 different species. This is available in spatstat as
a single dataset, a marked point pattern, with the marks having 6 levels.

Standard datasets

Some standard point pattern datasets are supplied with the package. They are summarised
in Table 1.

Journal of Statistical Software 9

N
a
m
e

D
e
sc

r
ip

t
io

n
R

e
f
e
r
e
n
c
e

M
a
r
k
s

W
in

d
o
w

C
o
v
a
r
ia

t
e
s

a
n
t
s

an
t

ne
st

s
H

ar
kn

es
s

an
d

Is
ha

m
(1

98
3)

sp
ec

ie
s

(2
)

po
ly

go
n

su
br

eg
io

ns
&

lin
e

se
gm

en
ts

a
m
a
c
r
i
n
e

am
ac

ri
ne

ce
lls

D
ig

gl
e

(1
98

6)
ty

pe
(o

n/
off

)
re

ct
an

gl
e

b
e
t
a
c
e
l
l
s

re
ti
na

l
ga

ng
lia

ce
lls

W
äs

sl
e,

B
oy

co
tt

,
an

d
Il
lin

g
(1

98
1)

ty
pe

(o
n/

off
)

re
ct

an
gl

e
b
r
a
m
b
l
e
c
a
n
e
s

br
am

bl
e

ca
ne

s
H

ut
ch

in
gs

(1
97

9)
;
D

ig
gl

e
(1

98
3)

ag
e

(3
cl

as
se

s)
re

ct
an

gl
e

c
e
l
l
s

bi
ol

og
ic

al
ce

lls
R

ip
le

y
(1

98
1)

re
ct

an
gl

e
c
o
p
p
e
r

co
pp

er
de

po
si

ts
B

er
m

an
(1

98
6)

re
ct

an
gl

e
lin

e
se

gm
en

ts
d
e
m
o
p
a
t

ar
ti
fic

ia
l
da

ta
se

t
ty

pe
(A

/B
)

po
ly

go
n

(w
it
h

ho
le

)
f
i
n
p
i
n
e
s

pi
ne

tr
ee

s
tr

ee
he

ig
ht

re
ct

an
gl

e
h
a
m
s
t
e
r

ha
m

st
er

tu
m

ou
r

ce
lls

D
ig

gl
e

(1
98

3)
ty

pe
(2

)
re

ct
an

gl
e

j
a
p
a
n
e
s
e
p
i
n
e
s

pi
ne

tr
ee

s
N

um
at

a
(1

96
4)

;
D

ig
gl

e
(1

98
3)

re
ct

an
gl

e
O

ga
ta

an
d

T
an

em
ur

a
(1

98
4)

l
a
n
s
i
n
g

L
an

si
ng

W
oo

ds
da

ta
G

er
ra

rd
(1

96
9)

sp
ec

ie
s

(6
)

re
ct

an
gl

e
C

ox
(1

97
9)

l
o
n
g
l
e
a
f

L
on

gl
ea

f
P

in
es

da
ta

P
la

tt
et

al
.
(1

98
8)

tr
ee

di
am

et
er

re
ct

an
gl

e
R

at
hb

un
an

d
C

re
ss

ie
(1

99
4)

n
z
t
r
e
e
s

tr
ee

s
M

ar
k

an
d

E
sl

er
(1

97
0)

;
R

ip
le

y
(1

98
1)

re
ct

an
gl

e
r
e
d
w
o
o
d

re
dw

oo
d

sa
pl

in
gs

St
ra

us
s

(1
97

5)
;
R

ip
le

y
(1

97
7)

re
ct

an
gl

e
r
e
d
w
o
o
d
f
u
l
l

re
dw

oo
d

sa
pl

in
gs

(f
ul

l
se

t)
St

ra
us

s
(1

97
5)

re
ct

an
gl

e
su

br
eg

io
ns

s
p
r
u
c
e
s

sp
ru

ce
tr

ee
s

St
oy

an
,
K

en
da

ll,
an

d
M

ec
ke

(1
98

7)
tr

ee
di

am
et

er
re

ct
an

gl
e

s
w
e
d
i
s
h
p
i
n
e
s

pi
ne

tr
ee

s
St

ra
nd

(1
97

2)
;
R

ip
le

y
(1

98
8)

re
ct

an
gl

e

T
ab

le
1:

P
oi

nt
pa

tt
er

n
da

ta
se

ts
su

pp
lie

d
in

sp
at

st
at

ve
rs

io
n

1.
5-

7.

10 spatstat: An R Package for Analyzing Spatial Point Patterns

longleaf

Figure 6: Point pattern with continuous marks (tree diameter). The Longleaf Pines dataset
Platt et al. (1988); Rathbun and Cressie (1994), available as longleaf.

Figure 7: Point pattern with categorical marks (cell type). Hughes’ amacrine cell dataset
Diggle (1986), available as amacrine.

5.2. Windows

An object of the class "owin" (for “observation window”) represents a spatial region or ‘win-
dow’ in the two-dimensional plane. A window usually represents our ‘study area’: the window
of observation of a point pattern, or the region where we want to make predictions, etc.

To create a window object we can build one from data in R, using owin and other tools;
extract the window from one of the point pattern datasets supplied with the package by
typing W <- X$window where X is the point pattern; convert data from other formats using
as.owin; manipulate existing windows using a wide variety of tools or derive a window from
a point pattern or pixel image using various tools.

Journal of Statistical Software 11

Figure 8: Polygonal window (left) and pixellated window (right).

The shape of a window is almost arbitrary; it may be a rectangle, a polygon, a collection of
polygons (including holes), or a binary image mask. See Figure 8.
spatstat supports polygonal windows of arbitrary shape and topology. That is, the boundary
of the window may consist of one or more closed polygonal curves, which do not intersect
themselves or each other. The window may have ‘holes’.
spatstat also supports ‘pixellated’ windows. A matrix with logical entries is interpreted as
a binary pixel image whose entries are TRUE where the corresponding pixel belongs to the
window. Pixellated windows can be created from raw data, read from data files, or created
by analytic equations. They are also produced in spatstat by various geometrical operations,
such as morphological erosion.

5.3. Pixel images

An object of the class "im" represents a pixel image. It is essentially a matrix of numerical
values associated with a rectangular grid of points inside a window in the x, y plane. A pixel
image may be displayed on the screen as a digital image, a contour map, or a relief surface.
Image objects can be created explicitly using im. Data in other formats can be converted to
an "im" object using as.im.

0
4

8

Figure 9: Example of pixel image data. Top: line segment pattern from the copper dataset.
Bottom: a pixel image derived from the copper data. Pixel value is the distance to the
nearest line segment.

A pixel image may contain real experimental data, for example, a satellite image of the study

12 spatstat: An R Package for Analyzing Spatial Point Patterns

region. One of the important roles of pixel images is to provide covariate data for statistical
models. The brightness value of the image at a particular pixel is the value of the spatial
covariate at that location. For example, Figure 9 shows a colour image derived from the
spatial covariates in the copper dataset.

Figure 10: A computed pixel image (displayed as a contour plot): the distance transform of
a point pattern. Obtained by contour(distmap(X)) where X was the point pattern. Dots
indicate original point pattern dataset.

Pixel images are also produced by many functions in spatstat, for example when we apply
kernel smoothing to point pattern data (ksmooth.ppp), when we estimate the second mo-
ment measure of a point process (Kmeasure), compute the geometric covariance of a window
(setcov) or evaluate the distance map of a point pattern (distmap). See Figure 10.

We also use pixel images to represent mathematical functions of the Cartesian coordinates.
Any function object f(x,y) in R can be converted into a pixel image using as.im.

6. Operations on data

Once we have created a point pattern dataset, it can be inspected, plotted and modified using
the commands described here.

6.1. Basic inspection of data

There are print, summary and plot methods for point patterns, windows, and pixel images.

R> hamster

marked planar point pattern: 303 points
multitype, with levels = dividing, pyknotic
Window: rectangle = [0 , 1] x [0 , 1]

R> summary(hamster)

Journal of Statistical Software 13

Marked planar point pattern: 303 points
Average intensity 303 points per unit area
Marks:

frequency proportion intensity
dividing 226 0.746 226
pyknotic 77 0.254 77

Window: rectangle = [0,1] x [0,1]
Window area = 1

R> plot(hamster)

Plotting is isometric, i.e. the physical scales of the x and y axes are the same. For marked point
patterns, the plotting behaviour depends on whether the marks are continuous or categorical,
and typical displays are shown in Figures 6 and 7 respectively. To see the locations of the
points without the marks, type plot(unmark(X)).

The colours, plotting characters, line widths and so on can be modified by adding arguments
to the plot methods. Default plotting behaviour can also be controlled using the function
spatstat.options.

The function identify.ppp, a method for identify, allows the user to examine a point
pattern interactively.

6.2. Subsets of point patterns

spatstat supports the extraction of subsets of a point pattern, with a method for the indexing
operator "[". This performs either “thinning” (retaining/deleting some points of a point pat-
tern) or “trimming” (reducing the window of observation to a smaller subregion and retaining
only those points which lie in the subregion).

If X is a point pattern object then X[subset,] will cause the point pattern to be “thinned”,
retaining only the points indicated by subset. The latter can be any type of subset argument
such as a positive integer vector, a logical vector, or a negative integer vector (the latter
indicating which points should be deleted).

The pattern will be “trimmed” if we call X[, window] where window is an object of class
"owin". Only those points of X lying inside the new window will be retained.

6.3. Other operations on point patterns

Marks can readily be added to and removed from a point pattern using the functions unmark
and setmarks or the operator %mark%. Marks can be manipulated rapidly using the methods
for cut, split and split<- for point patterns. For a point pattern with numerical marks,
cut.ppp will transform the marks into factor levels. For a multitype point pattern, split.ppp
will separate the dataset into a list of point patterns, each consisting of points of one type.
The functions superimpose and "split<-.ppp" will combine several point patterns into a
single point pattern, attaching mark labels if required.

Geometrical operations on point patterns include planar rotation, translation and affine
transformation (rotate, shift and affine). There are functions to compute the distance

14 spatstat: An R Package for Analyzing Spatial Point Patterns

from each point to its nearest neighbour (nndist), the distance between each pair of points
(pairdist) and the distance from each point to the boundary of the window (bdist.points).

6.4. Manipulating windows

The following functions are available for manipulating windows.
bounding.box Find smallest rectangle enclosing the window

with sides parallel to the x and y axes
erode.owin Erode window by a distance r
rotate.owin Rotate the window
shift.owin Apply vector translation
affine.owin Apply an affine transformation
complement.owin Invert (inside ↔ outside)
is.subset.owin Test whether one window contains another
trim.owin Intersect window with rectangle
intersect.owin Intersection of windows
union.owin Union of windows
ripras Estimate window from points

Pixellating windows

The shape of any spatial region may be approximated by a binary pixel image. In spatstat
the image is represented as a window object (class "owin") of type "mask". The following
commands are useful.
as.mask Convert to pixel approximation
raster.x Extract the x coordinates of the pixel raster
raster.y Extract the y coordinates of the pixel raster

The default accuracy of the approximation can be controlled using spatstat.options.

Additionally nearest.raster.point maps continuous cartesian coordinates to raster loca-
tions.

Geometrical computations with windows

The following commands are useful for computing geometrical quantities.

inside.owin Test whether (x, y) points are inside window
area.owin Compute window’s area
diameter Compute window’s diameter
eroded.areas Compute areas of eroded windows
bdist.points Compute distances from data points to window boundary
bdist.pixels Compute distances from all pixels to window boundary
centroid.owin Compute centroid (centre of mass)
distmap Compute distance transform of window

6.5. Pixel images

Functions which return a pixel image include the following.

Journal of Statistical Software 15

Kmeasure Reduced second moment measure of point pattern
setcov Set covariance function of spatial window
ksmooth.ppp Kernel smoothed intensity estimate of point pattern
distmap Distance transform of point pattern

Functions which manipulate a pixel image include the following.
im Create a pixel image
as.im Convert data to pixel image
plot.im Display as digital image
contour.im Display as contour map
persp.im Display as perspective view
[.im Extract subset of pixel image
shift.im Apply vector shift to pixel image
print.im Print basic information
summary.im Print summary
is.im Test whether object is a pixel image

6.6. Programming tools

spatstat also contains some programming tools to assist in calculations with point patterns.
One of these is the function applynbd which can be used to visit each point of the point
pattern, identify its neighbouring points, and apply any desired operation to these neighbours.

For example the following code calculates the distance from each point in the pattern redwood
to its second nearest neighbour:

R> nnd2 <- applynbd(redwood, N = 2, exclude=TRUE,

function(Y, cur, d, r){max(d)})

This has obvious applications for LISA methods Anselin (1995); Cressie and Collins (2001b,a).
One can also use applynbd to perform animations in which each point of the point pattern
is visited and a graphical display is executed. There is an example in demo(spatstat).

7. Exploratory data analysis

The literature on spatial statistics contains a very large number of techniques for the ex-
ploratory analysis of point pattern data. Perhaps the most famous example is Ripley’s K-
function. As far as we know, the vast majority of these techniques have never been imple-
mented in public domain software, apart from the initial ‘proof-of-concept’ implementations
by their original authors. The uptake of new methods in practice seems to have been severely
limited by the lack of such software. Accordingly, one of the main aims of the spatstat project
is to implement the existing, published techniques of spatial statistics in open source software.

7.1. Initial inspection of data

Initial, interactive inspection of a point pattern dataset is supported by the methods for
print, summary, plot and identify mentioned above. The function summary.ppp computes
the average intensity of points, summarises the marks if X is a marked point pattern, and

16 spatstat: An R Package for Analyzing Spatial Point Patterns

describes the window. Subsets of the data can be extracted using the methods for "[", cut
and split.

7.2. Spatial inhomogeneity

One of the important questions about a point pattern dataset is whether it can be treated
as spatially homogeneous. To investigate this, Diggle and others have recommended kernel
smoothing. The function ksmooth.ppp performs kernel smoothing of a point pattern, and
yields a pixel image object.

0
1e

−0
6

2e
−0

6
3e

−0
6

4e
−0

6
5e

−0
6

6e
−0

6

Figure 11: Kernel smoothed intensity estimate for the point pattern in Figure 2, indicating a
clear trend from left to right.

spatstat contains several functions which extend classical techniques (developed for homoge-
neous patterns) to inhomogeneous point patterns. They include Kinhom (an inhomogeneous
version of the K function Baddeley et al. (2000)) and the model-fitting function ppm.

7.3. Summary statistics for unmarked point patterns

Exploratory analysis of point patterns is based largely on summary statistics. The spatstat
package will compute estimates of the summary functions

F (r), the empty space function (contact distribution or ‘point-to-event’ distribution)

G(r), the nearest neighbour distance distribution function (‘event-to-event’ distribution)

J(r), the function J = (1−G)/(1− F)

K(r), the reduced second moment function (”Ripley’s K function”)

g(r), the pair correlation function g(r) = [d
drK(r)]/(2πr)

for a point pattern, and their analogues for marked point patterns.

These estimates can be used for exploratory data analysis and in formal inference about a
spatial point pattern. They are well described in the literature, e.g. Ripley (1981), Diggle

Journal of Statistical Software 17

(2003), Cressie (1991), (Stoyan et al. 1995, Chapter 15), Stoyan and Stoyan (1995). The
J-function was introduced in van Lieshout and Baddeley (1996).

The point pattern is assumed to be stationary (homogeneous under translations) in order
that the functions F,G, J,K be well-defined and the corresponding estimators approximately
unbiased. (There is an extension of the K function to inhomogeneous patterns; see below).

The corresponding spatstat library functions are:
Fest estimate of empty space function F
Gest estimate of nearest neighbour distribution function G
Jest estimate of J-function
Kest estimate of Ripley’s K-function
allstats estimates of all four functions F,G, J,K
pcf estimate of pair correlation function g

(Some others are listed below).

In each of these commands, the user has a choice of several alternative estimation methods.
These estimators are based on different ‘edge corrections’, or strategies for removing the
bias due to ‘edge effects’, which arise because we only observe the point pattern inside a
restricted spatial window. Several dozen alternative edge corrections have been published in
the literature; see Baddeley (1998); Stoyan and Stoyan (1995) for surveys. Part of the spatstat
project is to implement all of these proposed estimators so that they may be compared in
practice.

The routines Fest, Gest, Jest, Kest, pcf each return an object of class "fv" (for “func-
tion value”). This is a data frame with some extra attributes indicating the recommended way
of plotting the function, and other information. It is a convenient way of storing (particularly
for use in future plotting) several different estimates of the same function.

A column labelled r in this data frame contains the values of the argument r for which the
summary function (F̂ (r), etc) has been evaluated. Other columns give the estimates of the
summary function itself, using several competing estimators. Along with the different function
estimates, the data frame includes the vector of theoretical expected values (theo) that the
function would have under the assumption of “complete spatial randomness” (CSR) i.e. under
a homogeneous Poisson point process model.

There are methods for print and plot for the class "fv". The plot method is particularly
useful. It is a generalisation of plot.formula, and enables the summary functions to be
re-plotted in a variety of ways.

There are various recommendations in the literature about how to plot the summary functions
to reveal diagnostic information. An aim of spatstat is to make it easy to plot the summary
functions in different ways.

Probably the most common exploratory graphic is a plot of K̂(r) against r. An example of a

useful transformed graphic is a plot of L(r) =
√

K̂(r)/π against r, as recommended by Ripley
(1981), the rationale being that this procedure linearizes the plot and stabilizes the variance.
Diggle (1983, 2003) recommends plotting K̂(r) − πr2 against r, so as to remove the mean.
These plots can be achieved as follows:

R> Kc <- Kest(cells)

R> plot(Kc)

18 spatstat: An R Package for Analyzing Spatial Point Patterns

r

K
(r

)

0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

data
Poisson

Figure 12: Output of plot(Kest(X)).

R> plot(Kc, cbind(r, sqrt(iso/pi)) ~ r)

R> plot(Kc, cbind(trans,iso,border) - theo ~ r)

Notice the use of cbind in the last two plots. The effect is that several functions (the columns
in the cbind expression on the left hand side) will be plotted in the same plot, against the
variable on the right hand side of the formula.

With respect to the empty space (contact) distribution function F , Ripley (1981, 1988) simply
plots F̂ (r) against r, whereas Diggle (2003) plots F̂ (r) against F0(r) = 1 − exp{−λ̂πr2},
this being the form of F under the assumption of complete spatial randomness. This is
in effect a P–P plot. Another useful graphic (suggested by Murray Aitkin) is a plot of

sin−1(
√

F̂ (r)) against sin−1(
√

F0(r)). The function g(x) = sin−1√x is Fisher’s variance-
stabilising transformation for the binomial estimator of a proportion, and indeed seems to
approximately stabilise the variance in this context.

These alternative plots may be displayed as follows.

R> Fc <- Fest(cells)

R> plot(Fc)

R> plot(Fc, cbind(km, trans, border) ~ theo)

R> fisher <- function(x) { asin(sqrt(x)) }

R> plot(Fc, fisher(cbind(km, trans, border))

~ fisher(theo))

Initially it may be unclear which of the summary functions will provide insight, and it is usu-
ally desirable to calculate and plot estimates of all four. The command plot(allstats(X))
will produce a plot of estimates of the four main summary functions K, F , G and J .

Distances between points are also computed (without edge correction) by:

Journal of Statistical Software 19

nndist nearest neighbour distances
pairdist distances between all pairs of points
exactdt distance from any location to nearest data point

There are also several related alternative functions. For the second order statistics, alterna-
tives are:
Kinhom K function for inhomogeneous point patterns
Kest.fft fast K-function using FFT for large datasets
Kmeasure reduced second moment measure

The function Kmeasure yields a pixel image of the estimated Reduced Second Moment Mea-
sure K (see (Stoyan and Stoyan 1995, p. 245)). This measure is the Fourier transform of the
Bartlett spectrum Bartlett (1964, 1975). Although first defined in the 1960’s this concept ap-
pears not to have been implemented in software until recently. Its usefulness in data analysis
is yet to be explored.

0
5e

−0
5

1e
−0

4
0.

00
01

5
2e

−0
4

Figure 13: The cells dataset (Left) and a density estimate of its second moment measure
(Right).

Figure 13 shows the well-known cells dataset, and a density estimate of its second moment
measure, computed by Kmeasure. [The algorithm takes the raw Bartlett periodogram, mul-
tiplies by the Fourier transform of the bivariate normal density, then takes the inverse FFT
to yield the smoothed density.] The large contour in the centre of the Figure is a region
of low second moment density close to the origin, caused by the spatial inhibition between
points at short distances. The pronounced non-circular shape of this contour suggests that
the interpoint interaction is anisotropic, which does not appear to have been noticed before.

8. Summary statistics for multitype point patterns

Analogues of the G, J and K functions have been defined in the literature for “multitype”
point patterns, that is, patterns in which each point is classified as belonging to one of a
finite number of possible types (e.g. on/off, species, colour). The best known of these is the
bivariate (cross) K function Kij(r) derived by counting, for each point of type i, the number

20 spatstat: An R Package for Analyzing Spatial Point Patterns

of type j points lying closer than r units away.

The corresponding nearest-neighbour function Gij(r) is the distribution of the distance from
a typical point of type i to the nearest point of type j. Using the symbol • to denote points
of any type (i.e. all points regardless of their type) we may define analogous functions Ki•
and Gi•. For further explanation see van Lieshout and Baddeley (1999).

Gcross,Gdot,Gmulti multitype nearest neighbour distributions Gij , Gi•
Kcross,Kdot, Kmulti multitype K-functions Kij ,Ki•
Jcross,Jdot,Jmulti multitype J-functions Jij , Ji•

These functions operate in a very similar way to Gest, Jest, Kest with additional arguments
specifying the type(s) of points to be studied.

8.1. Function arrays

For multitype patterns we might want to compute a summary function for the points of type
i for each of the possible types of the pattern. Alternatively we might want to compute a
summary function for each possible pair of types (i, j).

A function array is a collection of functions fi,j(r) indexed by integers i and j. An example
is the set of cross K functions Kij(r) for all possible pairs of types i and j in a multitype
point pattern (1 ≤ i, j ≤ m where m is the number of types). It is best to think of this as a
genuine matrix or array.

A function array is represented in spatstat by an object of type "fasp" (function array for
spatial patterns). It can be stored, plotted, indexed and subsetted in a natural way. If Z is a
function array, then

R> plot(Z)

R> plot(Z[,3:5])

will plot the entire array, and then plot the subarray consisting only of columns 3 to 5.

The function alltypes will compute a summary statistic for each possible type, or each
possible pair of types, in a multitype point pattern. The value returned by alltypes is a
function array object.

For example if X is a multitype point pattern with 3 possible types,

R> Z <- alltypes(X, "K")

yields a 3 × 3 function array such that (say) Z[1,2] represents the cross-type K function
K1,2(r) between types 1 and 2.

The command plot(Z) will then plot the entire set of cross K functions as a two-dimensional
array of plot panels. Arguments to plot.fasp can be used to change the plotting style, the
range of the axes, and to select which estimator of Kij is plotted. These options apply to all
the plot panels simultaneously.

The command allstats yields a 2×2 function array containing the F , G, J and K functions
of an (unmarked) point pattern.

Journal of Statistical Software 21

0.00 0.05 0.10 0.15

0.
00

0.
02

0.
04

0.
06

r

tra
ns

 ,
th

eo

(off,off)

0.00 0.05 0.10 0.15

0.
00

0.
02

0.
04

0.
06

r

tra
ns

 ,
th

eo

(off,on)

0.00 0.05 0.10 0.15

0.
00

0.
02

0.
04

0.
06

r

tra
ns

 ,
th

eo

(on,off)

0.00 0.05 0.10 0.15

0.
00

0.
02

0.
04

0.
06

r

tra
ns

 ,
th

eo

(on,on)

Array of K functions for amacrine.

Figure 14: The result of plot(alltypes(amacrine, "K")).

8.2. Summary functions for point patterns with continuous marks

Some point pattern datasets are marked, but not multitype. That is, the points may carry
marks that do not belong to a finite list of possible types. The marks might be continuous
numerical values, complex numbers, etc.

An example is the Longleaf Pines data (shown in Figure 6) where the marks represent tree
diameters. In spatstat, a marked point pattern with numerical marks is plotted using circles
of radius proportional to the positive marks, and squares of side length proportional to the
negative marks.

There are a few ways to study such patterns in spatstat. The function markcorr computes
the mark correlation function of an arbitrary marked point pattern. The functions Kmulti,
Gmulti, Jmulti operate on arbitrary marked point patterns. They require arguments I, J
identifying two subsets of the point pattern. These two subsets will be treated as two discrete
types.

Alternatively a marked point pattern can be converted to a multitype point pattern using the
function cut.ppp, for example, classifying the marks into High, Medium and Low. Then one
can apply the abovementioned functions for multitype point patterns. This is usually a good
exploratory step, along with the use of split.ppp to separate the sub-patterns. Of course
one can also ignore the marks (using the function unmark to remove them) and analyse only

22 spatstat: An R Package for Analyzing Spatial Point Patterns

the locations of the points.

9. Model fitting

The most important feature of spatstat is its ability to fit parametric models of spatial point
processes to point pattern data. The scope of possible models is very wide: they may include
spatial trend, dependence on covariates, interpoint interactions of any order (i.e. we are not
restricted to pairwise interactions), and dependence on marks.

Models are fitted by a function ppm which is analogous to glm and lm. The fitted model objects
can be printed, plotted, predicted, and even simulated. Methods for computing residuals and
plotting model diagnostics will be released in version 1.6.

Models are currently fitted by the method of maximum pseudolikelihood, using a computa-
tional device developed by Berman and Turner (1992) which we adapted to pseudolikelihoods
in Baddeley and Turner (2000). Although maximum pseudolikelihood may be statistically
inefficient, it has the virtue that we can implement it in software with great generality. Future
versions of the package will implement other fitting methods.

9.1. Formulating models

The point process models fitted by ppm are formulated in terms of their conditional intensity
rather than their likelihood. The (Papangelou) conditional intensity is a function λ(u,x) of
spatial location u and of the entire point pattern x. See Baddeley and Turner (2000); Cox
and Isham (1980) and the excellent surveys by Ripley (1988, 1989).

For example, the homogeneous Poisson process (complete spatial randomness, CSR) has con-
ditional intensity

λ(u,x) = β

where β is the expected number of points per unit area. The inhomogeneous Poisson process
with intensity function β(u) has conditional intensity

λ(u,x) = β(u). (1)

The Strauss process, a simple model of dependence between points, has conditional intensity

λ(u,x) = βγt(u,x) (2)

where t(u,x) is the number of points of x that lie within a distance r of the location u. Here
r, β > 0 and γ ∈ [0, 1] are parameters.

Our technique fits any model which belongs to the regular exponential family of distributions
and which has a conditional intensity. The conditional intensity can then be written in the
form

λ(u,x) = exp(θTB(u) + ϕTC(u,x)) (3)

where θ, ϕ are the canonical parameters. Both θ and ϕ may be vectors of any dimension,
corresponding to the dimensions of the vector-valued statistics B(u) and C(u,x) respectively.

The term B(u) depends only on the spatial location u, so it represents “spatial trend” or
spatial covariate effects. The term C(u,x) represents “stochastic interactions” or dependence

Journal of Statistical Software 23

between the points of the random point process. For example it is absent if the model is a
Poisson process.

The Strauss process (2) with fixed interaction range r conforms to (3) if we set θ = log β,
ϕ = log γ, B(u) ≡ 1 and c(u,x) = t(u,x).

9.2. Fitting a model to data

Overview

The model-fitting function is called ppm and is strongly analogous to lm or glm. In simple
usage, it is called in the form

ppm(X, trend, interaction, ...)

where X is the point pattern dataset, trend is an S language formula describing the spatial
trend (the function B(u) in equation 3), and interaction is an object of a special class
"interact" describing the stochastic dependence between points in the pattern (the function
C(u,x) in equation (3)). Other arguments may provide covariates and control the fitting
algorithm.

Thus, the function B(u) in (3) is treated as the ‘systematic’ component of the model, and
is described by a formula analogous to the formula for the linear predictor in a generalised
linear model. In this analogy the link is always the logarithm, so the model formula in a ppm
call is always a description of the logarithm of the conditional intensity.

The function C(u,x) in (3) is regarded as a“distributional”component of the model analogous
to the distribution family in a generalised linear model. It is described in spatstat by an object
of class "interact" that we create using specialised spatstat functions, similar to those which
create the family argument to glm.

For example

R> ppm(X, ~1, Strauss(r=0.1),)

fits the stationary Strauss process with interaction radius r = 0.1. The spatial trend formula
~1 is a constant, meaning the process is stationary. The argument Strauss(r=0.1) is an
object representing the interpoint interaction structure of the Strauss process with interaction
radius r = 0.1. Similarly

R> ppm(X, ~x + y, Poisson())

fits the non-stationary Poisson process with a loglinear intensity of the form

β(x, y) = exp(θ0 + θ1x + θ2y)

where θ0, θ1, θ2 are (scalar) parameters to be fitted, and x, y are the cartesian coordinates.
Similarly a log-quadratic intensity in x,

β(x, y) = exp(θ0 + θ1x + θ2x
2)

could be fitted by

24 spatstat: An R Package for Analyzing Spatial Point Patterns

R> ppm(X, ~x + I(x^2), Poisson())

Spatial trend

The trend argument of ppm describes any spatial trend and covariate effects. The default is
~1, which corresponds to a process without spatial trend or covariate effects. The formula ~x
corresponds to a spatial trend of the form λ(x, y) = exp(a+ bx), while ~x + y corresponds to
λ(x, y) = exp(a + bx + cy) where x, y are the Cartesian coordinates. These could be replaced
by any R language formula (with empty left hand side) in terms of the reserved names x, y
and marks, or in terms of some spatial covariates which you must then supply to ppm. There
is no restriction on the formula since the function B(u) in (3) is arbitrary.
The trend formula may be an arbitrary expression involving the Cartesian coordinates. For
example

R> ppm(X, ~ sqrt(x^2 + y^2), Poisson())

fits an inhomogeneous Poisson process with intensity decaying or increasing exponentially
with distance from the origin, while

R> ppm(X, ~ factor(ifelse(x > 2, 0, 1)), Poisson())

fits an inhomogeneous Poisson process with different, constant intensities on each side of the
line x = 2.
spatstat provides a function polynom which generates polynomials in 1 or 2 variables. For
example

~ polynom(x, y, 2)

represents a polynomial of order 2 in the Cartesian coordinates x and y. This would give a
“log-quadratic” spatial trend.2 Similarly

~ harmonic(x, y, 2)

represents the most general harmonic polynomial of order 2 in x and y.
Other possibilities include B-splines and smoothing splines, fitted with bs and s respectively.
These terms introduce smoothing penalties, and thus provide an implementation of“penalised
maximum pseudolikelihood” estimation (cf. Divino, Frigessi, and Green (2000)). For example

R> ppm(X, ~bs(x,2), Poisson())

fits a non-stationary Poisson process whose log conditional intensity is modelled by a B-spline
with 2 degrees of freedom.
The special term offset can also be used in the trend formula. It has the same role in ppm as
it does in other model-fitting functions, namely to add to the linear predictor a term which
is not associated with a parameter. For example

2We caution against using the standard function poly for the same purpose here. For a model formula
containing poly, prediction of the fitted model can be erroneous, for reasons which are well-known to R users.
The function polynom provided in spatstat does not exhibit this problem.

Journal of Statistical Software 25

~ offset(3 * sin(x))

will fit the model with log trend β + 3 sinx where β is the only parameter to be estimated.

It is slightly more tricky to include observed spatial covariates; see Section 9.6 below.

Interaction terms

The higher order (“interaction”) structure can be specified using one of the following functions.
They yield an object (of class "interact") describing the interpoint interaction structure of
the model.

Poisson Poisson process
Strauss Strauss process
StraussHard Strauss process with a hard core
Softcore Pairwise soft core interaction
PairPiece Pairwise interaction, step function potential
DiggleGratton . . . Diggle-Gratton potential
LennardJones Lennard-Jones potential
Geyer Geyer’s saturation process
OrdThresh Ord’s process, threshold on cell area

Note that ppm estimates only the “canonical” parameters of a point process model. These are
parameters θ such that the loglikelihood is linear in θ, as in equation (3), possibly after a
re-parametrisation.

Other so-called“irregular”parameters (such as the interaction radius r of the Strauss process)
cannot be estimated directly by this technique, and their values must be specified a priori, as
arguments to the interaction function. Profile pseudolikelihood Baddeley and Turner (2000)
can be used to fit such parameters.

For more advanced use, the following functions will accept “user-defined potentials” in the
form of an arbitrary S language function. They effectively allow arbitrary point process
models of these three classes.

Pairwise Pairwise interaction, user-supplied potential
Ord Ord model, user-supplied potential
Saturated. . . Saturated pairwise model, user-supplied potential

9.3. Fitted models

The value returned by ppm is a “fitted point process model” of class "ppm". It can be stored,
inspected, plotted and predicted.

R> fit <- ppm(X, ~1, Strauss(r=0.1), ...)

R> fit

R> plot(fit)

R> pf <- predict(fit)

R> coef(fit)

26 spatstat: An R Package for Analyzing Spatial Point Patterns

Methods are provided for the following generic operations applied to "ppm" objects:
print Print basic information
summary Print extensive summary information
coef Extract fitted model coefficients
plot Plot fitted intensity
fitted Compute fitted conditional intensity or trend at data points
predict Compute predictions (spatial trend, conditional intensity)
update Update the fit

Printing the fitted object fit will produce text output describing the fitted model in its
traditional form. For example, the traditional parameters β, γ of the Strauss process (2) are
not in canonical form (3). The print method back-transforms the fitted canonical parameter
θ to the traditional parameters β and γ.

Plotting the fitted model object will display the spatial trend and the conditional intensity,
as perspective plots, contour plots and image plots.

The predict method computes either the spatial trend or the conditional intensity. The
default behaviour is to produce a pixel image of both trend and conditional intensity, where
these are appropriate. The conditional intensity λ(u,x) can be evaluated at any desired
locations u, but x is taken to be the observed data pattern to which the model was fitted.

Examples of calls to predict.ppm are the following:

R> data(cells)

R> m <- ppm(cells,~polynom(x,y,2),Strauss(0.05),

rbord=0.05)

R> trend <- predict(m,type="trend",ngrid=100)

R> cif <- predict(m,type="cif",ngrid=100)

The resulting objects trend and cif are pixel images. One could then plot the resulting
surfaces with calls like

R> persp(trend,theta=-30,phi=40,d=4,

ticktype="detailed",zlab="z")

R> persp(cif,theta=-30,phi=40,d=4,

ticktype="detailed",zlab="z")

We note again that the result of predict may be incorrect if the point process model’s trend
component is expressed in terms of one of the functions poly, bs, lo, or ns.

The plot method (plot.ppm) will take a fitted point process model and plot the trend and/or
the conditional intensity. By default this surface is calculated at a 40×40 grid of points on the
(enclosing rectangle of) the observation window. The plots may be produced as perspective
plots, images, or contour plots. A simple example is

R> plot(fit,cif=FALSE,how="persp")

Here fit is the model fitted to the Numata data on page 27.

Journal of Statistical Software 27

x
2

4
6

8y

2

4

6

8

z

1

2

3

4

5

Figure 15: Fitted log-cubic trend for the full Numata pines data set obtained using
predict.ppm.

9.4. In defence of maximum pseudolikelihood

Disadvantages of maximum pseudolikelihood (MPL) include its small-sample bias and in-
efficiency Besag (1977); Jensen and Møller (1991); Jensen and Künsch (1994) relative to
maximum likelihood estimators (MLE).
However, as far as we are aware, there is currently no software implementation of any MLE
technique for fitting point process models at the level of generality and flexibility that is
achieved in spatstat. Numerical approximation methods Ogata and Tanemura (1986) and
Markov Chain Monte Carlo methods Geyer and Møller (1994); Geyer (1999) are highly spe-
cific to the chosen model, and require careful tuning to ensure good performance. Markov
Chain Monte Carlo is computationally intensive, especially for inhomogeneous spatial pat-
terns, because of increased parameter dimensionality. Recent theoretical improvements Geyer
and Møller (1994); Geyer (1999) have not yet led to better software implementations.
Thus, maximum pseudolikelihood has several advantages. It is extremely fast in execution,
compared to the MLE. Our new implementation of the MPLE also enables new models to be
specified very easily, and accommodates a wide range of models.
In real data analysis, the model should be regarded as tentative, and a fitted model should
be criticised or validated, and possibly modified and re-fitted Chatfield (1988); Cox and Snell
(1981); Davison and Snell (1991); Tukey (1977); Venables and Ripley (1997). The accuracy
of the fitting procedure is not the only consideration. Hence, there is an important place for
quick-and-dirty fitting methods especially in the analysis of real datasets.
When ppm is used, fitting a model encompassing both spatial inhomogeneity and interpoint
interaction becomes routine. For example we can fit the model chosen for the Numata data
in Ogata and Tanemura (1986) as follows:

R> fit <- ppm(numata,~polynom(x,y,3), Softcore(0.5))

28 spatstat: An R Package for Analyzing Spatial Point Patterns

In any case, more accurate estimation algorithms usually require a good starting value of
the parameter estimate, and it is universally the MPL estimate which is used. Thus, an
implementation of MPL is a prerequisite to implementing other techniques.

9.5. Fitting models to multitype point patterns

The function ppm will also fit models to multitype point patterns. A multitype point pattern
is a point pattern in which the points are each classified into one of a finite number of possible
types (e.g. species, colours, on/off states). In spatstat a multitype point pattern is represented
by a "ppp" object X whose marks are a factor. Figure 7 shows an example.
Currently, ppm will not fit models to a marked point pattern if the marks are not a factor.

Trend component

The first-order component (“trend”) of a multitype point process model may depend on the
marks. For example, a stationary multitype Poisson point process could have different (con-
stant) intensities for each possible mark. A general nonstationary process could have a dif-
ferent spatial trend surface for each possible mark.
In order to represent the dependence of the trend on the marks, the trend formula passed to
ppm may involve the reserved name marks.
The trend formula ~1 states that the trend is constant and does not depend on the marks.
The formula ~marks indicates that there is a separate, constant intensity for each possible
mark. The correct way to fit the multitype Poisson process is

R> ppm(X, ~ marks, Poisson())

The result of fitting this model to the data in Figure 7 yields the following output.

Stationary multitype Poisson process
Possible marks:
off on
Intensity:
Trend formula: ~marks

Fitted intensities:
beta_off beta_on
88.68302 94.92830

This indicates that the fitted model is a multitype Poisson process with intensities 88.7 and
94.9 for the points of type “off” and “on” respectively.
Getting more elaborate, the trend formula might involve both the marks and the spatial
locations or spatial covariates. For example the trend formula ~marks + polynom(x,y,2)
signifies that the first order trend is a log-quadratic function of the cartesian coordinates,
multiplied by a constant factor depending on the mark.
The formulae

~ marks * polynom(x,2)
~ marks + marks:polynom(x,2)

Journal of Statistical Software 29

both specify that, for each mark, the first order trend is a different log-quadratic function
of the cartesian coordinates. The second form looks “wrong” since it includes a “marks by
polynom” interaction without having polynom in the model, but since polynom is a covariate
rather than a factor this is is allowed, and makes perfectly good sense. As a result the two
foregoing models are in fact mathematically equivalent. However, the fitted model objects
will give slightly different output.

For example, the first model ~marks * polynom(x,2) fitted to the data in Figure 7 gives the
following output (assuming options("contrasts") is set to its default, namely the ‘treat-
ment’ contrasts):

Nonstationary multitype Poisson process
Trend formula: ~marks * polynom(x, 2)

Fitted coefficients for trend formula:
(Intercept) markson
4.3127945 0.2681231

polynom(x, 2)[x] polynom(x, 2)[x^2]
0.4651860 -0.2363352

markson:polynom(x, 2)[x] markson:polynom(x, 2)[x^2]
-0.6781045 0.4023491

This form of the model gives two quadratic functions: a “baseline” quadratic

P0(x, y) = 4.3127945 + 0.4651860x− 0.2363352x2

and a quadratic associated with the mark level “on”,

Pon(x, y) = 0.2681231− 0.6781045x + 0.4023491x2.

The baseline quadratic is the logarithm of the fitted trend for the points of type off, since off
is the first level of the factor marks. For points of type on, since we are using the treatment
contrasts, the log trend is

P0(x, y) + Pon(x, y) = 4.580918− 0.2129185x + 0.1660139x2.

On the other hand, when the second model ~marks + marks:polynom(x,2) is fitted to the
same dataset, the output is

Nonstationary multitype Poisson process
Trend formula: ~marks + marks:polynom(x, 2)

Fitted coefficients for trend formula:
(Intercept) markson
4.3127945 0.2681231

marksoff:polynom(x, 2)[x] markson:polynom(x, 2)[x]
0.4651860 -0.2129185

marksoff:polynom(x, 2)[x^2] markson:polynom(x, 2)[x^2]
-0.2363352 0.1660138

30 spatstat: An R Package for Analyzing Spatial Point Patterns

This says explicitly that the log trend for points of type off is

Qoff(x, y) = 4.3127945 + 0.4651860x− 0.2363352x2

while for points of type on it is

Qon(x, y) = 4.580918− 0.2129185x + 0.1660139x2.

Hence the two fitted models are mathematically identical.

Interaction component

For the interaction component of a multitype point process model, any of the interaction
structures listed above for unmarked point processes may be used. These interactions do not
depend on the marks, only on the locations of the points. We have additionally defined two
interactions which do depend on the marks:
MultiStrauss multitype Strauss process
MultiStraussHard multitype Strauss/hard core

For the multitype Strauss process, a matrix of “interaction radii” must be specified. If there
are m distinct levels of the marks, we require a matrix r in which r[i,j] is the interaction
radius rij between types i and j. For the multitype Strauss/hard core model, a matrix of
“hardcore radii” must be supplied as well. These matrices will be of dimension m ×m and
must be symmetric.

9.6. Models with covariates

We can also fit point process models in which the point pattern is dependent on spatial
covariates (e.g. altitude, soil pH, or distance to another spatial pattern). Any covariate data
may be used, under the following conditions:

• the covariate must be a quantity Z(u) observable (at least in principle) at each location
u in the window. There may be several such covariates, and they may be continuous
valued or factors.

• the values Z(xi) of Z at each point of the data point pattern must be available.

• the values Z(u) at some other points u in the window must be available. 3

Thus, it is not enough simply to observe the covariate values at the points of the data point
pattern. For example, a dataset consisting of locations of trees in a forest and measurements
of the soil acidity at these locations only, is not sufficient data to fit a model in which tree
density depends on pH.

Covariate data are passed to the function ppm through the argument covariates. It may be
either a data frame or a list of pixel images.

3The accuracy of the algorithm depends on the number of these points and on their spatial arrangement.
For a good approximation to the pseudolikelihood, the density of these points should be high throughout the
window.

Journal of Statistical Software 31

(a) If covariates is a list of pixel images, then each image is assumed to contain the values
of a spatial covariate. The names of the entries in the list should match the names of
covariates used in the trend formula. For example:

R> ppm(X, ~ log(altitude) + pH,

covariates=list(pH=phimage,altitude=image3))

(b) If covariates is a data frame, then the ith row of the data frame is expected to contain
the covariate values for the ith ‘quadrature point’ (see below). The column names of
the data frame should match the names of the covariates used in the trend formula. For
example:

R> ppm(X, ~ log(altitude) + pH, covariates=cov.df)

where cov.df is a data frame with columns called pH and altitude.

Covariates in a list of images

The format (a), in which covariates is a list of images, would typically be used when the
covariate values are already given on a fine grid (e.g. satellite image data, geological survey
data) or are easy to obtain in this form.

Suppose X is a point pattern representing the locations of alpine ash trees, and A is a pixel
image containing values of the terrain elevation in metres above sea level. Then

R> ppm(X, ~bs(alt, 2), covariates=list(alt=A))

fits the inhomogeneous Poisson process model where the density of trees depends on elevation
through a B-spline with 2 degrees of freedom.

It is also convenient to supply covariates in the pixel image format when the covariate value
can easily be computed at any location from existing data. For example, Figure 9 shows a
pixel image of covariate values derived from the copper dataset. The covariate value Z(u) at
pixel u is the distance from u to the nearest line segment in the copper dataset.

Covariates in a data frame

Typically you would use the data frame format (b) if the values of the spatial covariates can
only be observed at certain fixed locations. You need to force ppm to use these locations to
fit the model.

This requires a little more information about the software. Our function ppm is an implementa-
tion of the algorithm of Baddeley and Turner (2000) which is based on a quadrature technique
originated by Berman and Turner (1992). Very briefly, a ‘quadrature scheme’ in spatstat com-
prises both ‘data points’ (the points of the observed point pattern) and ‘dummy points’ (some
other locations in the window). It is usually created using the function quadscheme.

You will need to create a quadrature scheme based on the spatial locations where the covariate
Z has been observed. Then the values of the covariate at these locations are passed to ppm
through the data frame covariates.

For example, suppose that X is the observed point pattern and we are trying to model the
effect of soil acidity (pH). Suppose we have measured the values of soil pH at the points xi

32 spatstat: An R Package for Analyzing Spatial Point Patterns

of the point pattern, and stored them in a vector XpH. Suppose we have measured soil pH at
some other locations u in the window, and stored the results in a data frame U with columns
x, y, pH. Then do as follows:

R> Q <- quadscheme(data=X, dummy=list(x=U$x, y=U$y))

R> df <- data.frame(pH=c(XpH, U$pH))

Then the rows of the data frame df correspond to the quadrature points in the quadrature
scheme Q. To fit just the effect of pH, type

R> ppm(Q, ~ pH, Poisson(), covariates=df)

where the term pH in the formula ~ pH agrees with the column label pH in the argument
covariates = df. This will fit an inhomogeneous Poisson process with intensity that is a
loglinear function of soil pH. You can also try (say)

R> ppm(Q, ~ pH, Strauss(r=1), covariates=df)

R> ppm(Q, ~ factor(pH > 7), Poisson(), covariates=df)

R> ppm(Q, ~ polynom(x, 2) * factor(pH > 7), covariates=df)

9.7. Offset terms

As we mentioned in section 9.2, the special term offset can also be used in the trend formula.
It has the same role in ppm as it does in other model-fitting functions, namely to add to the
linear predictor a term which is not associated with a parameter.

This is specially useful in case-control studies. For example, suppose we have a spatial epi-
demiological dataset containing a point pattern X of the locations of cases of a rare disease,
and another point pattern Y of ‘controls’ which are a sample from the susceptible population.
We want to model X as a point process with intensity proportional to the local density ρ of the
susceptible population. We estimate ρ by taking a kernel-smoothed estimate of the intensity
of Y. Thus

R> rho.hat <- ksmooth.ppp(Y, sigma=1.2)

R> ppm(X, ~offset(log(rho)), covariates=list(rho=rho.hat))

The first line computes the values of the kernel-smoothed intensity estimate at a fine grid of
pixels, and stores them in the pixel image object rho.hat. The second line fits the Poisson
process model with log intensity

log λ(u) = θ + log ρ(u)

where θ is an unknown parameter; that is, it fits the Poisson model with intensity

λ(u) = β ρ(u)

where β = eθ is the only parameter to be estimated. Note that covariates must be a list of
images, even though there is only one covariate. The variable name rho in the model formula
must match the name rho in the list.

Journal of Statistical Software 33

10. Simulation

Stochastic simulation of point process models is another area where the richness of the theo-
retical literature contrasts with the scarcity of stable public domain software.

The spatstat package now has substantial functionality for simulating point processes. In
particular it has the powerful ability to simulate a pattern directly from a fitted model.

The following functions generate random point patterns from various stochastic models. We
follow the R naming convention that a random generator is called rdist where dist is the name
of the probability distribution. These functions return a point pattern (as an object of class
"ppp").
runifpoint n independent random points

uniform in window
rpoint n independent random points

with given density
rmpoint n independent multitype random

points with given density
rpoispp (in)homogeneous Poisson process
rmpoispp multitype (in)homogeneous Poisson
rMaternI Matérn Model I inhibition process Matérn (1986)
rMaternII Matérn Model II inhibition process Matérn (1986)
rSSI Simple Sequential Inhibition
rNeymanScott general Neyman-Scott process
rMatClust Matérn Cluster process Matérn (1986)
rThomas Thomas process
rmh run Metropolis-Hastings algorithm

See Diggle (2003); Møller and Waagepetersen (2003); Stoyan and Stoyan (1995) for informa-
tion about these models. For example

R> plot(rMaternI(200,0.05))

will plot one realisation of the Matérn Model I inhibition process with parameters β = 200
and r = 0.05. See Figure 16.

The function rmh enables simulation from a broad range of point process models. It will
also simulate any of the fitted models obtained from ppm, with a few exceptions (currently
LennardJones and OrdThresh.)

10.1. Poisson processes

Simulation of Poisson processes is effected by the function rpoispp. This will simulate both
homogeneous and inhomogeneous Poisson processes, in arbitrary windows — polygons, poly-
gons with “holes”, and masks, as well as in rectangles. The intensity function of the Poisson
process may be specified by a constant, by an R language function of the coordinates x and
y, or by a pixel image. For example, the commands

R> lambda <- function(x, y) { 100 * exp(3 * x) }

R> X <- rpoispp(lambda, win=square(1))

34 spatstat: An R Package for Analyzing Spatial Point Patterns

rMaternI(100, 0.05)

•

•

••
•

•

•

•

•

•

•
• •

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

••

•
•

•

•

•

•

•

• •

•

•
•

•

•

Figure 16: Realisation of Matérn Model I process.

generate a realisation of the Poisson process with intensity function λ(x, y) = 100e3x in the
unit square.
There is also a function rpoint which generates a fixed number of points in a given window,
again of arbitrary shape, with an arbitrary probability density. The probability density may
again be specified by a constant, a function(x,y), or a pixel image, and does not need to
be normalised.
Examples:

R> data(letterR)

R> X1 <- rpoispp(100,win=letterR)

R> X2 <- rpoint(100,win=letterR)

The point pattern X1 will have about 370 points in it since the area of letterR is about 3.7
units. (To find this out one can use area.owin(letterR).) The point pattern X2 will have
exactly 100 points.

10.2. Doubly-stochastic processes

In a “doubly stochastic” or two-stage model, we first generate points at random according to
a simple mechanism (usually the Poisson process) and then modify the pattern by randomly
deleting or adding or moving some of the points.
The doubly stochastic mechanisms in spatstat for generating point patterns are the Matérn
I and II models, the Matérn cluster process, the Thomas process, and the general Neyman-
Scott process with bounded cluster radius. The corresponding function names are rMaternI,
rMaternII, rMatClust, rThomas and rNeymanScott, respectively. The first two mechanisms
are inhibitory — in each case a Poisson process is generated and then thinned. The other
three mechanisms generate cluster processes, where the centres of the clusters form a Poisson
process. The third and fourth mechanisms are special cases of the fifth.
Examples of usage of these functions:

Journal of Statistical Software 35

R> X1 <- rMaternI(20, 0.05)

R> X2 <- rMaternII(20, 0.05)

R> X3 <- rMatClust(10, 0.05, 4)

R> X4 <- rThomas(10, 0.2, 5)

R> nclust <- function(x0,y0,radius,n){ runifdisc(n, radius, x0, y0)}

R> X5 <- rNeymanScott(10, 0.2, nclust, radius=0.2, n=5)

Note the last example. The Neyman-Scott algorithm accepts an arbitrary random point
process mechanism for generating the clusters.

10.3. Sequential processes

In ‘Simple Sequential Inhibition’, points are added to the window one-by-one, subject to the
constraint that each new point must lie at least r units away from any existing point. The
procedure terminates when it is not possible to add any more points satisfying this constraint.
Termination must occur after a (random) finite number of steps. This process is implemented
in spatstat as rSSI.

R> X <- rSSI(0.05, 200)

10.4. Metropolis-Hastings algorithm

The function rmh is an implementation of the Metropolis-Hastings algorithm for simulating
point processes. A wide range of different processes can be simulated.
The function rmh is generic and has two methods, rmh.default which simulates a point
process model specified explicitly by a list of its parameters, and rmh.ppm which simulates
a point process model that has been fitted to data by the fitting function ppm. This latter
ability is very useful in the context of Monte Carlo inference techniques.

R> m <- list(cif="strauss",

par=c(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))

R> X1 <- rmh(model=m,start=list(n.start=80), control=list(nrep=5e6))

R> fit <- ppm(cells, ~x, Strauss(0.1))

R> X2 <- rmh(fit,start=list(n.start=200), control=list(nrep=1e5))

In theory, any point process model which can be specified by means of a computable condi-
tional intensity function can be simulated by Metropolis-Hastings, subject to some conditions
to ensure convergence of the Markov Chain. But, for efficiency, the underlying calculations
should be performed in dynamically loaded, compiled code (we use Fortran 77). So one
would naively imagine that, each time we want to simulate a new model, we would have to
write a new subroutine to calculate the model’s conditional intensity function, and compile
and link this to the existing code. This would appear to make it impossible to simulate an
arbitrary fitted point process model automatically, since the spatial trend component (the
trend argument to ppm) is specified by an arbitrary R language formula.
Fortunately there is a solution. The Metropolis-Hastings algorithm requires a series of random
‘proposal’ points. We have implemented the Metropolis-Hastings algorithm so that, instead

36 spatstat: An R Package for Analyzing Spatial Point Patterns

of generating its proposal points internally, it accepts as input a sequence of proposal points
which are expected to be uniformly distributed in the simulation window W . Now suppose
we want to simulate a point process X with conditional intensity

λX(u,x) = exp(θTB(u) + ϕTC(u,x)).

Consider the related, simpler, point process Y with conditional intensity

λ(u,x) = exp(D + ϕTC(u,x)) (4)

where D is a constant. If we run the Metropolis-Hastings algorithm for the simpler process Y ,
but we supply it a sequence of proposal points generated from the non-uniform distribution
with probability density

f(u) ∝ exp(θTB(u)),

then it can be shown that this is equivalent to running the Metropolis-Hastings algorithm for
the desired process X. In other words, it is sufficient to implement the Metropolis-Hastings
algorithm for stationary point processes with conditional intensities of the form (4).

The implementation of rmh in version 1.5 of spatstat can currently generate simulated realisa-
tions of the Strauss process; Strauss process with a hard core; the Soft Core process; Spatial’s
saturation process; pairwise interaction processes proposed by Diggle, Gratton and Stibbard
(in rmh.default only) and by Diggle and Gratton; and multitype versions of the Strauss
and Strauss/hard core processes. It can also generate processes with an arbitrary pairwise
interaction function given as a vector of values or as a stepfun object. All these processes
may have a spatial trend, which can be specified either explicitly as a function(x,y) or a
pixel image, or implicitly as the trend in a fitted point process model.

11. Model checking

The reader may have noticed that spatstat does not provide some common statistical func-
tionality such as

• confidence intervals or standard errors for summary statistics

• model diagnostics

• goodness-of-fit tests.

In fact this is a failing of the literature rather than the software. There are no simple ex-
pressions for confidence intervals and no simple methods for testing goodness-of-fit for a fitted
spatial point process model.

What are commonly referred to as “confidence bands” for the K function are in fact the
critical bands for a Monte Carlo test of a fixed null hypothesis Ripley (1981). Usually the
null hypothesis assumes the point pattern is a realisation of a uniform Poisson process.

Simulation-based techniques Ripley (1981); Geyer (1999); Møller and Waagepetersen (2003)
can be used to provide estimates of standard errors and confidence bands, and to perform
goodness-of-fit tests of a fitted model. However, their implementation depends sensitively on
the type of model, and their application is computationally intensive.

Journal of Statistical Software 37

A general method of residual analysis and model diagnostics for fitted point process models
was recently developed by Baddeley, Turner, Møller, and Hazelton (2004). This will be added
to spatstat soon.

12. Future development

The spatstat package currently contains about 170 user-level functions, making it one of the
largest contributed packages available for R. It is growing at the rate of about 30 new user-level
functions per year.

The next major addition will be a capability for residual analysis and diagnostics for fitted
point process models, using the methods of Baddeley et al. (2004).

The ppm function has an argument method which selects the parameter estimation technique.
Currently the only option is method="mpl" representing Maximum Pseudolikelihood. The
next step will be to implement the Huang and Ogata (1999) approximation to Maximum
Likelihood.

Other planned additions include perfect simulation of some point process models Møller and
Waagepetersen (2003), anisotropic summary statistics Stoyan and Stoyan (1995), LISA meth-
ods Anselin (1995), and Monte Carlo tests.

User feedback is a vital part of the development process. We welcome feedback and suggestions
from all users. We also appreciate receiving new datasets for inclusion in the package.

Acknowledgements

spatstat was written by Adrian Baddeley and Rolf Turner, using substantial contributions of
code from Marie-Colette van Lieshout, and with contributions from J.B. Chen, Y.C. Chin, S.
Eglen, P. Grabarnik, U. Hahn, M.B. Hansen, K. Hornik, J. Mateu, L.S. Nielsen, B.D. Ripley,
B. Rowlingson, A. Sarkka, K. Schladitz, B.T. Scott, M. Stevenson, B. Turlach, and A. van
Burgel.

References

Anselin L (1995). “Local Indicators of Spatial Association – LISA.” Geographical Analysis,
27, 93–115.

Baddeley A (1998). “Spatial sampling and censoring.” In O Barndorff-Nielsen, W Kendall,
M van Lieshout (eds.), “Stochastic Geometry: Likelihood and Computation,” chapter 2,
pp. 37–78. Chapman and Hall, London.

Baddeley A, Møller J, Waagepetersen R (2000). “Non- and Semiparametric Estimation of
Interaction in Inhomogeneous Point Patterns.” Statistica Neerlandica, 54(3), 329–350.

Baddeley A, Turner R (2000). “Practical Maximum Pseudolikelihood for Spatial Point Pat-
terns (with discussion).” Australian and New Zealand Journal of Statistics, 42(3), 283–322.

38 spatstat: An R Package for Analyzing Spatial Point Patterns

Baddeley A, Turner R (2005a). “Implementing Algorithms for Spatial Point Pattern Analysis
in R.” In preparation.

Baddeley A, Turner R (2005b). “Modelling Spatial Point Patterns in R.” Submitted for
publication.

Baddeley A, Turner R, Møller J, Hazelton M (2004). “Residual Analysis for Spatial Point
Processes.” Research Report 2004/08, School of Mathematics and Statistics, University of
Western Australia. Submitted for publication.

Bartlett M (1964). “The Spectral Analysis of Two-Dimensional Point Processes.” Biometrika,
51, 299–311.

Bartlett M (1975). The Statistical Analysis of Spatial Pattern. Chapman and Hall, London.

Berman M (1986). “Testing for Spatial Association Between a Point Process and Another
Stochastic Process.” Applied Statistics, 35, 54–62.

Berman M, Turner T (1992). “Approximating Point Process Likelihoods with GLIM.” Applied
Statistics, 41, 31–38.

Besag J (1975). “Statistical Analysis of Non-lattice Data.” The Statistician, 24, 179–195.

Besag J (1977). “Efficiency of Pseudolikelihood Estimation for Simple Gaussian Fields.”
Biometrika, 64(3), 616–618.

Bivand R (2001). “More on Spatial Data.” R News, 1(3), 13–17. URL http://CRAN.
R-project.org/doc/Rnews/.

Chatfield C (1988). Problem Solving: A Statistician’s Guide. Chapman and Hall.

Cliff A, Ord J (1981). Spatial Processes: Models and Applications. Pion, London.

Cox D, Snell E (1981). Applied Statistics: Principles and Examples. Chapman and Hall.

Cox DR, Isham V (1980). Point Processes. Chapman and Hall, London.

Cox T (1979). “A Method for Mapping the Dense and Sparse Regions of a Forest Stand.”
Applied Statistics, pp. 14–19.

Cressie N (1991). Statistics for Spatial Data. John Wiley and Sons, New York.

Cressie N, Collins L (2001a). “Analysis of Spatial Point Patterns using Bundles of Product
Density LISA Functions.” Journal of Agricultural, Biological and Environmental Statistics,
6, 118–135.

Cressie N, Collins L (2001b). “Patterns in Spatial Point Locations: Local Indicators of Spatial
Association in a Minefield with Clutter.” Naval Research Logistics, 48, 333–347.

Davison A, Snell E (1991). “Residuals and Diagnostics.” In D Hinkley, N Reid, E Snell
(eds.), “Statistical Theory and Modelling (in honour of Sir David Cox FRS),” chapter 4,
pp. 83–106. Chapman and Hall, London.

Diggle P (1983). Statistical Analysis of Spatial Point Patterns. Academic Press, London.

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Journal of Statistical Software 39

Diggle P (1986). “Displaced Amacrine Cells in the Retina of a Rabbit: Analysis of a Bivariate
Spatial Point Pattern.” Journal of Neuroscience Methods, 18, 115–125.

Diggle P (2003). Statistical Analysis of Spatial Point Patterns. Arnold, second edition.

Divino F, Frigessi A, Green P (2000). “Penalised Pseudolikelihood Estimation in Markov
Random Field Models.” Scandinavian Journal of Statistics, 27(3), 445–458.

Gerrard D (1969). “Competition Quotient: A New Measure of the Competition Affecting
Individual Forest Trees.” Research Bulletin 20, Agricultural Experiment Station, Michigan
State University.

Geyer C (1999). “Likelihood Inference for Spatial Point Processes.” In O Barndorff-Nielsen,
W Kendall, M van Lieshout (eds.), “Stochastic Geometry: Likelihood and Computation,”
Number 80 in Monographs on Statistics and Applied Probability, chapter 3, pp. 79–140.
Chapman and Hall / CRC, Boca Raton, Florida.

Geyer C, Møller J (1994). “Simulation Procedures and Likelihood Inference for Spatial Point
Processes.” Scandinavian Journal of Statistics, 21(4), 359–373. ISSN 0303-6898.

Harkness R, Isham V (1983). “A Bivariate Spatial Point Pattern of Ants’ Nests.” Applied
Statistics, 32, 293–303.

Harte D (2003). “Statistical Seismology Library (SSLib).” URL http://homepages.
paradise.net.nz/david.harte/SSLib/

Högmander H, Särkkä A (1999). “Multitype Spatial Point Patterns with Hierarchical Inter-
actions.” Biometrics, 55, 1051–1058.

Huang F, Ogata Y (1999). “Improvements of the Maximum Pseudo-Likelihood Estimators
in Various Spatial Statistical Models.” Journal of Computational and Graphical Statistics,
8(3), 510–530.

Hutchings M (1979). “Standing Crop and Pattern in Pure Stands of Mercurialis Perennis and
Rubus Fruticosus in Mixed Deciduous Woodland.” Oikos, 31, 351–357.

Isham V (1984). “Multitype Markov Point Processes: Some Approximations.” Proceedings of
the Royal Society of London, Series A, 391, 39–53.

Jensen J, Künsch H (1994). “On Asymptotic Normality of Pseudo-Likelihood Estimates for
Pairwise Interaction Processes.” Annals of the Institute of Statistical Mathematics, 46,
475–486.

Jensen J, Møller J (1991). “Pseudolikelihood for Exponential Family Models of Spatial Point
Processes.” Annals of Applied Probability, 1, 445–461.

Mark A, Esler A (1970). “An Assessment of the Point-centred Quarter Method of Plotless
Sampling in some New Zealand Forests.” Proceedings of the New Zealand Ecological Society,
17, 106–110.

Matérn B (1986). Spatial Variation. Number 36 in Lecture Notes in Statistics. Springer
Verlag, New York.

http://homepages.paradise.net.nz/david.harte/SSLib/
http://homepages.paradise.net.nz/david.harte/SSLib/

40 spatstat: An R Package for Analyzing Spatial Point Patterns

Møller J, Waagepetersen R (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Moore M (ed.) (2001). Spatial Statistics: Methodological Aspects and Applications. Number
159 in Lecture Notes in Statistics. Springer.

Numata M (1964). “Forest Vegetation, Particularly Pine Stems in the Vicinity of Choshi —
Coastal Flora and Vegetation in Choshi, Chiba Prefecture, IV (in Japanese).” Bulletin of
the Choshi Marine Laboratory, (6), 27–37. Chiba University.

Ogata Y, Tanemura M (1981). “Estimation of Interaction Potentials of Spatial Point Pat-
terns through the Maximum Likelihood Procedure.” Annals of the Institute of Statistical
Mathematics, B 33, 315–338.

Ogata Y, Tanemura M (1984). “Likelihood Analysis of Spatial Point Patterns.” Journal of
the Royal Statistical Society, Series B, 46, 496–518.

Ogata Y, Tanemura M (1986). “Likelihood Estimation of Interaction Potentials and External
fields of inhomogeneous Spatial Point Patterns.” In I Francis, B Manly, F Lam (eds.),
“Pacific Statistical Congress,” pp. 150–154. Elsevier.

Peng RD (2003). “Multi-dimensional Point Process Models in R.” Journal of Statistical
Software, 8(16), 1–27.

Platt WJ, Evans GW, Rathbun SL (1988). “The Population Dynamics of a Long-Lived Conifer
(Pinus Palustris).” The American Naturalist, 131, 491–525.

Rathbun SL, Cressie N (1994). “A Space-Time Survival Point Process for a Longleaf Pine
Forest in Southern Georgia.” Journal of the American Statistical Association, 89, 1164–
1173.

Ripley B (1976). “The Second-order Analysis of Stationary Point Processes.” Journal of
Applied Probability, 13, 255–266.

Ripley B (1977). “Modelling Spatial Patterns (with discussion).” Journal of the Royal Statis-
tical Society, Series B, 39, 172–212.

Ripley B (1981). Spatial Statistics. John Wiley and Sons, New York.

Ripley B (1988). Statistical Inference for Spatial Processes. Cambridge University Press.

Ripley B (1989). “Gibbsian Interaction Models.” In D Griffiths (ed.), “Spatial Statistics: Past,
Present and Future,” pp. 1–19. Image, New York.

Ripley BD (2001). “Spatial Statistics in R.” R News, 1(2), 14–15. URL http://CRAN.
R-project.org/doc/Rnews/.

Ripley BD, Rasson J-P (1977). “Finding the Edge of a Poisson Forest.” Journal of Applied
Probability, 14, 483–491.

Rowlingson B, Diggle P (1993). “Splancs: Spatial Point Pattern Analysis Code in S-PLUS.”
Computers and Geosciences, 19, 627–655.

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Journal of Statistical Software 41

Särkkä A (1993). Pseudo-Likelihood Approach for Pair Potential Estimation of Gibbs Pro-
cesses. Number 22 in Jyväskylä Studies in Computer Science, Economics and Statistics.
University of Jyväskylä.

Stoyan D, Kendall W, Mecke J (1987). Stochastic Geometry and its Applications. John Wiley
and Sons, Chichester.

Stoyan D, Kendall W, Mecke J (1995). Stochastic Geometry and its Applications. John Wiley
and Sons, Chichester, second edition.

Stoyan D, Stoyan H (1995). Fractals, Random Shapes and Point Fields. Wiley.

Strand L (1972). “A Model for Stand Growth.” In“IUFRO Third Conference Advisory Group
of Forest Statisticians,”pp. 207–216. INRA, Institut National de la Recherche Agronomique,
Paris.

Strauss D (1975). “A Model for Clustering.” Biometrika, 63, 467–475.

Takacs R, Fiksel T (1986). “Interaction Pair-Potentials for a System of Ants’ Nests.” Biomet-
rical Journal, 28, 1007–1013.

Tukey J (1977). Exploratory Data Analysis. Addison-Wesley, Reading, Mass.

Upton G, Fingleton B (1985). Spatial Data Analysis by Example. Volume I: Point Pattern
and Quantitative Data. John Wiley and Sons, Chichester.

van Lieshout M (2000). Markov Point Processes and their Applications. Imperial College
Press.

van Lieshout M, Baddeley A (1996). “A Nonparametric Measure of Spatial Interaction in
Point Patterns.” Statistica Neerlandica, 50, 344–361.

van Lieshout M, Baddeley A (1999). “Indices of Dependence Between Types in Multivariate
Point Patterns.” Scandinavian Journal of Statistics, 26, 511–532.

Venables W, Ripley B (1997). Modern Applied Statistics with S-PLUS. Springer, second
edition.

Wässle H, Boycott B, Illing RB (1981). “Morphology and Mosaic of On- and Off-Beta Cells
in the Cat Retina and some Functional Considerations.” Proceedings of the Royal Society
London Ser. B, 212, 177–195.

Affiliation:

Adrian Baddeley
School of Mathematics & Statistics
University of Western Australia
Nedlands WA 6009
Australia
E-mail: adrian@maths.uwa.edu.au
URL: http://www.maths.uwa.edu.au/~adrian/

mailto:adrian@maths.uwa.edu.au
http://www.maths.uwa.edu.au/~adrian/

42 spatstat: An R Package for Analyzing Spatial Point Patterns

Rolf Turner
Department of Mathematics and Statistics
University of New Brunswick
Fredericton, New Brunswick
Canada E3B 5A3
E-mail: rolf@math.unb.ca
URL: http://erdos.math.unb.ca/~rolf/

Journal of Statistical Software Submitted: 2004-11-10
January 2005, Volume 12, Issue 6. Accepted: 2005-01-26
http://www.jstatsoft.org/

mailto:rolf@math.unb.ca
http://erdos.math.unb.ca/~rolf/
http://www.jstatsoft.org/

	Introduction
	Goals
	Capabilities
	Demonstration
	Data types
	Point patterns
	Windows
	Pixel images

	Operations on data
	Basic inspection of data
	Subsets of point patterns
	Other operations on point patterns
	Manipulating windows
	Pixellating windows
	Geometrical computations with windows

	Pixel images
	Programming tools

	Exploratory data analysis
	Initial inspection of data
	Spatial inhomogeneity
	Summary statistics for unmarked point patterns

	Summary statistics for multitype point patterns
	Function arrays
	Summary functions for point patterns with continuous marks

	Model fitting
	Formulating models
	Fitting a model to data
	Overview
	Spatial trend
	Interaction terms

	Fitted models
	In defence of maximum pseudolikelihood
	Fitting models to multitype point patterns
	Trend component
	Interaction component

	Models with covariates
	Covariates in a list of images
	Covariates in a data frame

	Offset terms

	Simulation
	Poisson processes
	Doubly-stochastic processes
	Sequential processes
	Metropolis-Hastings algorithm

	Model checking
	Future development

