
Perform Simple Linear Regression on Auto Dataset 

 

We have to perform simple linear regression On Auto data sets with mpg as the dependent 

variable and horsepower as an independent variable. 

With the help of linear regression, we can find how horsepower and mpg variables are related. 

How much change will occur in Mpg because of horsepower and we can also get the nature of 

the relationship between the variables.  

Linear regression is nothing but an attempt to model a relationship between the variables. In 

which one will be the independent variable and the other will be the dependent variable. In other 

words, fitting a Regression Y= a + b*X line on the data. 

Y=a + b*X 

Y and X are dependent and independent variables, and a and b are parameters of the regression. 

With the help of Regression, we can also predict the value of the Dependent variable with 

respect to any value of independent variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We will start the regression in python by calling our Auto datasets. 



Auto = pd.read_csv("/content/Auto (1).csv") 

Auto.head() 

 

 

 

After calling the data we will check whether NA value are present in the data. 

 

 

We got the above output. From the fig, we can see that only the horsepower variable contains the 

NA value. So we will use the column mean on horsepower to replace the NA value with the 

mean of the column. 

 

Auto=Auto.fillna(value=Auto['horsepower'].mean()) 

 

With the help of the above code, we will fill Na values in horsepower with the mean. 

 

As we are only using two variables from the whole dataset, we will create a new dataset AutoR 

with only two variables Mpg and horsepower 

 

 

 

AutoR=Auto[['mpg','horsepower']] 



AutoR.head() 

 

 
 

The above fig will be the output after creating of the new Dataset AutoR from the Auto dataset. 

This will help us to perform our regression task more easily. 

 

Now we will see whether there is a correlation between the Mpg and horsepower. 

 

AutoR.corr() 

viz=sns.heatmap(AutoR.corr(),annot=True) 

 

 

       
 

From the above fig, we can see that there is a Negative correlation between the Mpg and 

horsepower.  This means if we increase the value of any variable the value of the above carriable 

will decrease. And -0.77 indicate that there is a significant correlation between both variables. 

 

 

 

 

 

 



 

 

 

Now we will assign X and y values to perform our Regression. Remember X is the independent 

variable which is horsepower and y is the independent variable which is Mpg. 

 

y=AutoR[['mpg']] 

X=AutoR[['horsepower']] 

 

Now, we have Assigned X and Y values we will now perform our Regression with the help of 

OLS which means Least square regression.  

 

X=sm.add_constant(X) 

model=sm.OLS(y,X) 

results=model.fit() 

print(results.summary()) 

 

The reason the constant is added in your regression model—it forces the residuals to have that 

crucial zero mean. Furthermore, if you don't include the constant in your regression model, you 

are actually setting the constant to equal zero. 

 
 

 

 



The above table is a summary of the linear regression we performed on Mpg as the dependent 

variable and horsepower as an independent variable. 

After performing the Stats model OLS we got this table in which we got 397 observations which 

we will explain. 

We can see DF residual in the table which is also called the Degree of freedom of the 

residuals. It is calculated with the formula n-k-1 where n is the number of observations, and k is 

the number of independent variables. We have 397 observations as we can see in the table above. 

We have used 1 independent variable which we can verify with DF model in the table which 

tells us how many independent variables we have used to perform this regression. So, if we 

calculate DF residual by the formula, we get 397-1-1 = 395 same as we can see in the table.  

Covariance type tells the relationship between the independent and dependent variables. As 

there are less outliers and there is significance relationship between the variables which means 

we are getting the regression line on the graph the table show non robust Covariance Type. 

Now we have R squared value which tells us how much variation in dependent variables can be 

explained through independent variables. As our R squared value is 0.595 which means 59.5 % 

variation in Y can be explained from X. maximum value of R can be 1 so the high R squared 

value means the regression is good. 

The constant term is the intercept which we can use to draw a regression line. During regression, 

OLS removes some values of the independent variable which do not have much impact on the 

dependent variable. So, the constant is the average of the values which were removed. 

The coefficient term of this regression is -0.1578, it tells that if the independent variable rises 

by 1 unit we will see a decrease in the dependent Variable by -0.1578. Which tells the negative 

relationship between independent and dependent variables. 

To understand the P value significance we have to first understand the Null hypothesis. 

According to Null hypothesis there is no correlation between the variables. If P values is 

P<0.05 the Null hypothesis is rejected which means there is relationship between variables. If 

wee see the table P value is 0.0 which means Null hypothesis is rejected and there is 

relationship between the variables.  

 

The above terms are the relevant term that we required for this Question. The above terms tell 

the nature of the relationship between the independent and dependent variables.  

 

 

 

 

 



 

from sklearn import linear_model 

 

model_sl = linear_model.LinearRegression(fit_intercept=

True)  

 

x_train = Auto['horsepower'].values.reshape(-1, 1) 

y_train = Auto['mpg'] 

model_sl.fit(x_train, y_train) 

 

model_sl.intercept_, model_sl.coef_ 

model_sl.predict(np.array([98]).reshape(-1, 1)) 

 

array([24.5370278]) 

Now we have done the regression we can predict the value of Mpg for any value of horsepower. 

Before the prediction, we will use a linear model on the OLS which will give us intercept and 

coefficient which will help us to predict the Mpg value.  

As you can see we are predicting the value of Mpg when the value of horsepower is 98. From the 

above fig, we can see that value of mpg is 24.53 when horsepower is 98. 

We can Predict the value of Mpg for any value of Horsepower. Let’s predict the value of mpg 

when horsepower is 200. 

 model_sl.predict(np.array([200]).reshape(-1, 1)) 

array([8.436865]) 

 

So the value of Mpg when horsepower is 200 is 8.43. 

 

Now if we compare the two Answers we can see that there is a negative correlation between 

Mpg and Horsepower. With the increase in horsepower value, there is the decrease in the value 

of mpg. 

 

 

 

Now we have to to find the 95% confidence and prediction intervals of our Data. 



 

        mean   mean_se  mean_ci_lower  mean_ci_upper  obs_ci_lower  \ 

0  24.537028  0.253797      24.038067      25.035989     14.722193    

 

   obs_ci_upper   

0 34.351862   

From above fig we can see that 95% confidence interval our from 14.722 to 34.35 and the 

prediction interval is from 24.03 to 24.035 

 

There are many libraries in python from which we can plot the graph. Now we will plot the 

regression line . 

 

plt.scatter(x_train,y_train) 

plt.scatter(x_train,ypred, color='red') 

plt.show() 

 

 
  

A regression line can be used to predict the value of y for a given value of x. Regression analysis 

identifies a regression line. The regression line shows how much and in what direction the 

response variable changes when the explanatory variable changes. 



The fig shows that the red line is the regression line, which shows the value of Mpg decrease 

when the value of Mpg increases. This shows the slope is negative which tells about the negative 

relationship between the two variables. 

 

 

 

 

 

 

Diagnostic plots. 

model1_fitted_y = results.fittedvalues 

model1_norm_residuals = results.get_influence().resid_studentized_internal 

model1_norm_residuals_abs_sqrt = np.sqrt(np.abs(model1_norm_residuals)) 

model1_leverage = results.get_influence().hat_matrix_diag 

 

# plot 1: residuals vs. fitted values 

plot1 = plt.figure(1) 

sns.residplot(model1_fitted_y, Auto['mpg'], lowess=True, line_kws={'color'

:'red', 'lw':1}) 

plot1.axes[0].set_title('Residuals vs Fitted') 

plot1.axes[0].set_xlabel('Fitted values') 

plot1.axes[0].set_ylabel('Residuals') 

 

# plot 2: normal Q-Q 

plot2 = sm.qqplot(model1_norm_residuals, fit=True, line='45') 

plot2.axes[0].set_title('Normal Q-Q') 

plot2.axes[0].set_xlabel('Theoretical quantiles') 

plot2.axes[0].set_ylabel('Standardized residuals'); 

 

# plot 3: scale-location 

plot3 = plt.figure(3) 

plt.scatter(model1_fitted_y, model1_norm_residuals_abs_sqrt) 

sns.regplot(model1_fitted_y, model1_norm_residuals_abs_sqrt, scatter=False

, ci=False, lowess=True, line_kws={'color':'red', 'lw':1}) 

plot3.axes[0].set_title('Scale-Location') 

plot3.axes[0].set_xlabel('Fitted values') 

plot3.axes[0].set_ylabel('$\sqrt{|Standardized Residuals|}$'); 

 

# plot 4: residuals vs. leverage 

plot4 = plt.figure(4) 



plt.scatter(model1_leverage, model1_norm_residuals) 

sns.regplot(model1_leverage, model1_norm_residuals, scatter=False, ci=Fals

e, lowess=True, line_kws={'color':'red', 'lw':1}) 

plot4.axes[0].set_title('Residuals vs Leverage') 

plot4.axes[0].set_xlabel('Leverage') 

plot4.axes[0].set_ylabel('Standardized residuals') 

 

 

 

                        
 

 

                        
As we have to see whether the residual exhibit nonlinear pattern we will analyze the residual vs 

fitted plot. 

If the red line in the center of the plot follows the horizontal pattern we say that the residual has a 

linear pattern. If we analyze the plot we can see that the red line is horizontal but roughly deviate 

but it is not too much that means the residual follows a linear pattern and the dataset is 

appropriate for linear regression  

 

The Normal Q-Q whether the residual is normally distributed or not.If the residual falls on the 

straight diagonal line means residual are normally distributed. 

 

If we analyze our plot we can see that residual falls on the straight line , but some residuals 

deviate at the end of the line but they are not many , so we can declare that rsiduals are normally 

distributed.  

 



The Standarised Residual plot is to check assumption of equal variance among the the residual in 

our regression models. 

By the definition the red line on the plot whould follow horzontal pattern and if we see our plot 

the red line follow the horizontal path with very little deviation , so we can say that assumption 

of equal variance were not violated in this case. 

 

The map shows the influential points on the plot. The plot which changes the direction of the line 

have more influential. We can see the point far from other may have more influential but also 

have high redidual.  
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In [1]:

In [2]:

In [3]:

In [4]:

Out[2]: mpg cylinders displacement horsepower weight acceleration year origin name

0 18.0 8 307.0 130.0 3504 12.0 70 1 chevrolet
chevelle malibu

1 15.0 8 350.0 165.0 3693 11.5 70 1 buick skylark 320

2 18.0 8 318.0 150.0 3436 11.0 70 1 plymouth satellite

3 16.0 8 304.0 150.0 3433 12.0 70 1 amc rebel sst

4 17.0 8 302.0 140.0 3449 10.5 70 1 ford torino

Out[3]: mpg             0

cylinders       0

displacement    0

horsepower      5

weight          0

acceleration    0

year            0

origin          0

name            0

dtype: int64

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
import sklearn
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import statsmodels.api as sm
import seaborn as sns
import plotly.express as px
​
​
​

Auto = pd.read_csv("/content/Auto (1).csv") 
Auto.head()
​
​

Auto.isnull().sum()

Auto=Auto.fillna(value=Auto['horsepower'].mean())
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In [5]:

In [6]:

In [7]:

In [8]:

Out[5]: mpg             0

cylinders       0

displacement    0

horsepower      0

weight          0

acceleration    0

year            0

origin          0

name            0

dtype: int64

Out[6]: mpg horsepower

0 18.0 130.0

1 15.0 165.0

2 18.0 150.0

3 16.0 150.0

4 17.0 140.0

Out[7]: mpg horsepower

mpg 1.000000 -0.771441

horsepower -0.771441 1.000000

Auto.isnull().sum()

AutoR=Auto[['mpg','horsepower']]
AutoR.head()

AutoR.corr()

viz=sns.heatmap(AutoR.corr(),annot=True)
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In [9]:

In [10]:

In [11]:

                           OLS Regression Results                            

==============================================================================

Dep. Variable:                    mpg   R-squared:                       0.595

Model:                            OLS   Adj. R-squared:                  0.594

Method:                 Least Squares   F-statistic:                     580.6

Date:                Mon, 03 Oct 2022   Prob (F-statistic):           1.45e-79

Time:                        01:05:35   Log-Likelihood:                -1200.1

No. Observations:                 397   AIC:                             2404.

Df Residuals:                     395   BIC:                             2412.

Df Model:                           1                                         

Covariance Type:            nonrobust                                         

==============================================================================

                coef    std err          t      P>|t|      [0.025      0.975]


------------------------------------------------------------------------------

const         40.0058      0.729     54.903      0.000      38.573      41.438

horsepower    -0.1578      0.007    -24.096      0.000      -0.171      -0.145

==============================================================================

Omnibus:                       21.884   Durbin-Watson:                   0.902

Prob(Omnibus):                  0.000   Jarque-Bera (JB):               24.108

Skew:                           0.557   Prob(JB):                     5.82e-06

Kurtosis:                       3.464   Cond. No.                         324.

==============================================================================


Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctl
y specified.


/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureW
arning: In a future version of pandas all arguments of concat except for the ar
gument 'objs' will be keyword-only

 x = pd.concat(x[::order], 1)


       mean   mean_se  mean_ci_lower  mean_ci_upper  obs_ci_lower  \

0  24.537028  0.253797      24.038067      25.035989     14.722193   


  obs_ci_upper  

0     34.351862  


y=AutoR[['mpg']]
X=AutoR[['horsepower']]

X=sm.add_constant(X)
model=sm.OLS(y,X)
results=model.fit()
print(results.summary())

xnew = np.array([[1., 98.]])
ynew = results.get_prediction(xnew)
print(ynew.summary_frame(alpha=0.05))
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In [12]:

In [17]:

In [14]:

Out[12]: 0      19.485996

1      13.961431

2      16.329102

3      16.329102

4      17.907549

        ...    


392    26.431165

393    31.797886

394    26.746854

395    27.536078

396    27.062544

Length: 397, dtype: float64

Out[17]: array([24.5370278])

ypred = results.predict(X)
ypred

from sklearn import linear_model
​
​
model_sl = linear_model.LinearRegression(fit_intercept=True) 
​
x_train = Auto['horsepower'].values.reshape(-1, 1)
y_train = Auto['mpg']
model_sl.fit(x_train, y_train)
​
​
model_sl.predict(np.array([98]).reshape(-1, 1))

plt.scatter(x_train,y_train)
plt.scatter(x_train,ypred, color='red')
plt.xlabel("Horsepower")
plt.ylabel("Mpg")
plt.show()
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In [18]:

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin
g: Pass the following variables as keyword args: x, y. From version 0.12, the o
nly valid positional argument will be `data`, and passing other arguments witho
ut an explicit keyword will result in an error or misinterpretation.

 FutureWarning


/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin
g: Pass the following variables as keyword args: x, y. From version 0.12, the o
nly valid positional argument will be `data`, and passing other arguments witho
ut an explicit keyword will result in an error or misinterpretation.

 FutureWarning


/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin
g: Pass the following variables as keyword args: x, y. From version 0.12, the o
nly valid positional argument will be `data`, and passing other arguments witho
ut an explicit keyword will result in an error or misinterpretation.

 FutureWarning


Out[18]: Text(0, 0.5, 'Standardized residuals')

model1_fitted_y = results.fittedvalues
model1_norm_residuals = results.get_influence().resid_studentized_internal
model1_norm_residuals_abs_sqrt = np.sqrt(np.abs(model1_norm_residuals))
model1_leverage = results.get_influence().hat_matrix_diag
​
# plot 1: residuals vs. fitted values
plot1 = plt.figure(1)
sns.residplot(model1_fitted_y, Auto['mpg'], lowess=True, line_kws={'color':'red',
plot1.axes[0].set_title('Residuals vs Fitted')
plot1.axes[0].set_xlabel('Fitted values')
plot1.axes[0].set_ylabel('Residuals')
​
# plot 2: normal Q-Q
plot2 = sm.qqplot(model1_norm_residuals, fit=True, line='45')
plot2.axes[0].set_title('Normal Q-Q')
plot2.axes[0].set_xlabel('Theoretical quantiles')
plot2.axes[0].set_ylabel('Standardized residuals');
​
# plot 3: scale-location
plot3 = plt.figure(3)
plt.scatter(model1_fitted_y, model1_norm_residuals_abs_sqrt)
sns.regplot(model1_fitted_y, model1_norm_residuals_abs_sqrt, scatter=False, ci=Fa
plot3.axes[0].set_title('Scale-Location')
plot3.axes[0].set_xlabel('Fitted values')
plot3.axes[0].set_ylabel('$\sqrt{|Standardized Residuals|}$');
​
# plot 4: residuals vs. leverage
plot4 = plt.figure(4)
plt.scatter(model1_leverage, model1_norm_residuals)
sns.regplot(model1_leverage, model1_norm_residuals, scatter=False, ci=False, lowe
plot4.axes[0].set_title('Residuals vs Leverage')
plot4.axes[0].set_xlabel('Leverage')
plot4.axes[0].set_ylabel('Standardized residuals')
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