
ECE160: Foundations of Computer Engineering I

Lecture #17 -- Functions (IV): 
C Standard Library Functions & Recursions

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.



Administrative Issues

• Lab#7 starting on Monday, March 13  
– Due 5pm, Wednesday, March 15

• Homework#4 assigned today  
– Due 9am, Wednesday, March 22

• Today’s topics  
– C standard library functions (Cont’d)
– Repetitive algorithms

Dr. Xing 2



Dr. Xing 3

Review of Lectures #16
• Two ways to pass parameters to functions

– Passing by value: a copy of the data (argument’s 
value) is passed to the called function. 

– Passing by reference: any reference to a parameter 
is the same as a reference to the variable in the 
calling function

• C has a rich collection of standard library 
functions which are ready to be used in your 
programs
– Mathematical functions
– More in Lecture#17



Dr. Xing 4

Review Questions (True/False)

• ____ The value of floor(-3.7) is –3

• ____ The value of abs(7) is -7

• ____ The value of expression ceil(1.234*100+0.3)/100 is 1



Dr. Xing 5

Outline
• C standard library functions (Cont’d)

– Random number generation functions: 
srand(), rand()

– Character functions

• Repetitive processes
– Iterations
– Recursions



Dr. Xing 6

General Library Functions
(most in stdlib.h)

Random Number Generation Functions
srand()        
rand()



Dr. Xing 7

Seed Random Generation Function srand()
• Prototype:

void srand (unsigned int seed); 

• Generates the first seed for a pseudorandom 
number series.
– a pseudorandom number series is a repeatable series 

of numbers with random properties.
– a seed is a variable used by rand() to calculate the 

next number in the series
– a large prime number is preferred

srand(997);



Dr. Xing 8

srand() (cont’d)
• To generate a truly random number series, the seed 

must be a random number! 
– Use a seed that is a function of current date or time of day

srand(time(NULL));

– A different series can be got each time you run the program

Note: srand is called only once for each random number series, 
usually only once in a program!

The C library function time() in time.h can be used, which returns 
the time since the Epoch (00:00:00 UTC, January 1, 1970), 
measured in seconds.



Dr. Xing 9

Random Number Generator rand()

• Prototype:
int rand (void)

• Returns a pseudorandom integer between 0 and 
RAND_MAX.

• RAND_MAX is defined in the standard library as the 
largest number that rand() can generate (>=32767)

• Each call generates the next number in a random 
number series

• Use seed 1 if srand() is not called before the 1st call to 
rand()



Dr. Xing 10

Exercise (1)

• Write a program that generates 3 random 
numbers and prints them out. 
– Remember to include the “stdlib.h” and 

“time.h” files.



Dr. Xing 11

#include "stdio.h"
#include "stdlib.h"
#include "time.h"

void main(void)
{

int rand1;
int rand2;
int rand3;

srand(time(NULL));

rand1 = rand();
rand2 = rand();
rand3 = rand();
printf("The numbers are %d %d %d\n", rand1, rand2, rand3);

}

Solution

Exercises: 
Try it with and without calling 
the srand() function; 

Run the program twice for 
each case and compare the 
results



• With srand(time(NULL));

• Without srand(time(NULL));

Dr. Xing Lecture #17 12

Every time you 
run the 
program you get 
different three 
random 
numbers

You always get 
the same three 
random 
numbers



Dr. Xing 13

Scaling Random Numbers

• To generate random numbers in a narrower range 
than provided by library

• Scaling is done using the modulus operator.
rand() % M

returns random numbers in the range 0 to M-1.

• Example:
rand() % 31

 random numbers in range 0~30



Dr. Xing 14

Scaling Random Numbers (Cont’d)

• To scale numbers in the range min ~ max, we 
scale like this:

rand() %((max + 1)-min) + min

• Example: 
rand() % ((30+1)-20)+20 
 rand() % 11 + 20

random numbers in range 20~30



Dr. Xing 15

Exercise (2)

What is the range of the following random
numbers?

rand() % 11  
rand()%10 +10
rand()%5-1  



Dr. Xing 16

Modify Exercise (3)

• Modify the program in the random number 
generation example (Slide 11) so that the 
program generates random numbers in the 
range 100-200. 



Dr. Xing 17

Standard Characters Functions
(in ctype.h)

• Classifying functions
• Converting functions



Dr. Xing 18

Classifying Functions

• Examine a character and tell its type
• Format:         int is…(int testchar);
• Return either 1 (true) or 0 (false)
• Examples:

– int isalpha(int c); tests whether c belongs to the alphabetical set 
(A…Z, a…z)

– int islower(int c); tests whether it is a lower case character
– int isupper(int c); tests whether it is an upper case character.
– int isdigit(int c); tests whether it is a digit (0…9).



Dr. Xing 19

Character Conversion Functions

• Convert a character from one type to another
• Format:    int   to….(int oldchar);
• Return an integer that is the value of the converted 

character
• Examples:      

– int toupper(int c); converts the input character to an upper 
case character.

– int tolower(int c); converts the input character to a lower case 
character.



Dr. Xing 20

Exercise (4)
#include "stdio.h"
#include "ctype.h" 
void main(void)
{      

char c;
int m;
printf("Please enter a character\n");
scanf_s("%c", &c);
if(isdigit(c))   printf("You entered a digit\n");
if(isalpha(c)) 

{
printf("You entered a letter\n");
if(isupper(c))  printf("You entered an uppercase letter\n");
if(islower(c)) 
{      printf("You entered a lowercase letter\n");

m = toupper(c);
printf("I converted the character to uppercase %c\n",m);   

}
}

}

Testing exercises: 
Run the program with the 
following inputs and under the 
results:

A
9
f



Dr. Xing 21

Review Questions (True/False)

• ____ The character classifications are found in the 
standard library header file stdlib.h

• ____ To check if a character is uppercase, the toupper
function is used

• ____The expression rand()%20-6 can create a random 
number in the range –6 ~ 14



Dr. Xing 22

Outline
C standard library functions (Cont’d)
Random number generation functions: 

srand(), rand()
Character functions

• Repetitive processes
– Iterations
– Recursions



Dr. Xing 23

Repetitive Algorithms

• Two approaches to writing repetitive algorithms
– Using loops (for, while, do…while)

• Iterative way
• A repetitive function is defined iteratively whenever the 

definition involves only the parameter(s) and not the function 
itself

– Using recursion: a repetitive process where a function 
calls itself. 



Dr. Xing 24

Example
• Write a function to compute a factorial:

– product of the integral values from 1 to n
– Example:  

factorial(3) = 3*2*1=6





>−
=

=
0   if    1*2*...*)1(*
0   if                                1

)(
nnn
n

nfactorial



Dr. Xing 25

Implementation #1 (Iterative)
#include "stdio.h"
long factorial(int n);
void main(void)
{

int a;
long f;
printf("Enter a number \n");
scanf_s("%d",&a);

f =factorial(a);

printf("The factorial is %d \n", f);

}

?
Define factorial () 

using a for loop





>−
=

=
0   if    *)1(*...*2*1
0   if                                1

)(
nnn
n

nfactorial



Dr. Xing 26

Repetitive Algorithms (Revisit)

• Two approaches to writing repetitive algorithms
– Using loops (for, while, do…while)

• Iterative way
• A repetitive function is defined iteratively whenever the 

definition involves only the parameter(s) and not the function 
itself

– Using recursion: a repetitive process where a 
function calls itself. 



Recursive Definition
• Recursive definition

– A repetitive function is defined recursively whenever the 
function appears within the definition itself.

• Example: the computation of a factorial:

Dr. Xing Lecture #17 27





>−
=

=
0   if     )1(*

0   if                                1
)(

nnfactorialn
n

nfactorial



Dr. Xing 28

Example: Decomposition of factorial(3)





>−
=

=
0   if     )1(*

0   if                                1
)(

nnfactorialn
n

nfactorial

factorial(3)=3*factorial(2)

factorial(2)=2*factorial(1)

factorial(1)=1*factorial(0)

factorial(3)=3*factorial(2)=3*2=6

factorial(2)=2*factorial(1)=2*1=2

factorial(1)=1*1=1

factorial(0)=1



Dr. Xing 29

Note!

• Recursive solution involves a two-way journey
– First we decompose the problem from top to bottom
– Then we solve it from bottom to top

• Base case:
– The statement that “solves” the problem: factorial(0)
– Every recursive function must have a base case
– Once the base case has been reached, the solution 

begins



Dr. Xing 30

Implementation #2 (recursive)
#include "stdio.h"
long factorial(int n);
void main(void)
{

int a;
long f;
printf("Enter a number \n");
scanf_s("%d",&a);

f =factorial(a);

printf("The factorial is %d \n", f);

}

?
Define factorial () 

using recursion





>−
=

=
0   if     )1(*

0   if                                1
)(

nnfactorialn
n

nfactorial



Dr. Xing 31

Note!

• Every recursive call must either solve part of 
the problem or reduce the size of the problem

• Rules for designing a recursive function:
– First determine the base case
– Then determine the general cases (other cases)
– Combine the base case and general case into a 

function



Dr. Xing 32

Exercise (5a)
• Write a recursive function that generates 

Fibonacci numbers
– Named after Leonardo Fibonacci (an Italian 

mathematician)
– A series in which each number is the sum of the 

previous two numbers
– Example: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,……

Rules for designing a recursive function:
First determine the base case
Then determine the general cases (other cases)
Combine the base case and general case into a function



Dr. Xing 33

Exercise (5b)

• Write an iterative function that generates 
Fibonacci numbers using a for loop



Dr. Xing Lecture #20 34

Summary of Lectures #17

• C standard library functions (2)
– Random number generation functions: 

srand(), rand()
– Character functions

• Two approaches to writing repetitive algorithms
– Using loops (for, while, do…while; iterative 

way)
– Using recursion: is a repetitive process where 

a function calls itself



Dr. Xing 35

Things To Do

• Review lecture notes
• Run the programs on Slides 11, 16, 20, 25, 30 

(Refer to the Solution file for complete programs if 
they are not available in the lecture)

Next Topics 

• Files 


	ECE160: Foundations of Computer Engineering I� �Lecture #17 -- Functions (IV): �C Standard Library Functions & Recursions
	Administrative Issues
	Review of Lectures #16
	Review Questions (True/False)
	Outline
	General Library Functions�(most in stdlib.h)�
	Seed Random Generation Function srand()
	srand() (cont’d)
	Random Number Generator rand()
	Exercise (1)
	Solution
	Slide Number 12
	Scaling Random Numbers
	Scaling Random Numbers (Cont’d)
	Exercise (2)
	Modify Exercise (3)
	Standard Characters Functions�(in ctype.h)�
	Classifying Functions
	Character Conversion Functions
	Exercise (4)
	Review Questions (True/False)
	Outline
	Repetitive Algorithms
	Example
	Implementation #1 (Iterative)
	Repetitive Algorithms (Revisit)
	Recursive Definition
	Example: Decomposition of factorial(3)
	Note!
	Implementation #2 (recursive)
	Note!
	Exercise (5a)
	Exercise (5b)
	Summary of Lectures #17
	Things To Do

