
ECE160: Foundations of Computer Engineering I

Lecture #17 -- Functions (IV): 
C Standard Library Functions & Recursions

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.



Administrative Issues

• Lab#7 starting on Monday, March 13  
– Due 5pm, Wednesday, March 15

• Homework#4 assigned today  
– Due 9am, Wednesday, March 22

• Today’s topics  
– C standard library functions (Cont’d)
– Repetitive algorithms
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Review of Lectures #16
• Two ways to pass parameters to functions

– Passing by value: a copy of the data (argument’s 
value) is passed to the called function. 

– Passing by reference: any reference to a parameter 
is the same as a reference to the variable in the 
calling function

• C has a rich collection of standard library 
functions which are ready to be used in your 
programs
– Mathematical functions
– More in Lecture#17
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Review Questions (True/False)

• ____ The value of floor(-3.7) is –3

• ____ The value of abs(7) is -7

• ____ The value of expression ceil(1.234*100+0.3)/100 is 1
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Outline
• C standard library functions (Cont’d)

– Random number generation functions: 
srand(), rand()

– Character functions

• Repetitive processes
– Iterations
– Recursions
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General Library Functions
(most in stdlib.h)

Random Number Generation Functions
srand()        
rand()
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Seed Random Generation Function srand()
• Prototype:

void srand (unsigned int seed); 

• Generates the first seed for a pseudorandom 
number series.
– a pseudorandom number series is a repeatable series 

of numbers with random properties.
– a seed is a variable used by rand() to calculate the 

next number in the series
– a large prime number is preferred

srand(997);
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srand() (cont’d)
• To generate a truly random number series, the seed 

must be a random number! 
– Use a seed that is a function of current date or time of day

srand(time(NULL));

– A different series can be got each time you run the program

Note: srand is called only once for each random number series, 
usually only once in a program!

The C library function time() in time.h can be used, which returns 
the time since the Epoch (00:00:00 UTC, January 1, 1970), 
measured in seconds.
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Random Number Generator rand()

• Prototype:
int rand (void)

• Returns a pseudorandom integer between 0 and 
RAND_MAX.

• RAND_MAX is defined in the standard library as the 
largest number that rand() can generate (>=32767)

• Each call generates the next number in a random 
number series

• Use seed 1 if srand() is not called before the 1st call to 
rand()
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Exercise (1)

• Write a program that generates 3 random 
numbers and prints them out. 
– Remember to include the “stdlib.h” and 

“time.h” files.
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#include "stdio.h"
#include "stdlib.h"
#include "time.h"

void main(void)
{

int rand1;
int rand2;
int rand3;

srand(time(NULL));

rand1 = rand();
rand2 = rand();
rand3 = rand();
printf("The numbers are %d %d %d\n", rand1, rand2, rand3);

}

Solution

Exercises: 
Try it with and without calling 
the srand() function; 

Run the program twice for 
each case and compare the 
results



• With srand(time(NULL));

• Without srand(time(NULL));
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Every time you 
run the 
program you get 
different three 
random 
numbers

You always get 
the same three 
random 
numbers
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Scaling Random Numbers

• To generate random numbers in a narrower range 
than provided by library

• Scaling is done using the modulus operator.
rand() % M

returns random numbers in the range 0 to M-1.

• Example:
rand() % 31

 random numbers in range 0~30



Dr. Xing 14

Scaling Random Numbers (Cont’d)

• To scale numbers in the range min ~ max, we 
scale like this:

rand() %((max + 1)-min) + min

• Example: 
rand() % ((30+1)-20)+20 
 rand() % 11 + 20

random numbers in range 20~30
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Exercise (2)

What is the range of the following random
numbers?

rand() % 11  
rand()%10 +10
rand()%5-1  
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Modify Exercise (3)

• Modify the program in the random number 
generation example (Slide 11) so that the 
program generates random numbers in the 
range 100-200. 
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Standard Characters Functions
(in ctype.h)

• Classifying functions
• Converting functions
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Classifying Functions

• Examine a character and tell its type
• Format:         int is…(int testchar);
• Return either 1 (true) or 0 (false)
• Examples:

– int isalpha(int c); tests whether c belongs to the alphabetical set 
(A…Z, a…z)

– int islower(int c); tests whether it is a lower case character
– int isupper(int c); tests whether it is an upper case character.
– int isdigit(int c); tests whether it is a digit (0…9).
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Character Conversion Functions

• Convert a character from one type to another
• Format:    int   to….(int oldchar);
• Return an integer that is the value of the converted 

character
• Examples:      

– int toupper(int c); converts the input character to an upper 
case character.

– int tolower(int c); converts the input character to a lower case 
character.
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Exercise (4)
#include "stdio.h"
#include "ctype.h" 
void main(void)
{      

char c;
int m;
printf("Please enter a character\n");
scanf_s("%c", &c);
if(isdigit(c))   printf("You entered a digit\n");
if(isalpha(c)) 

{
printf("You entered a letter\n");
if(isupper(c))  printf("You entered an uppercase letter\n");
if(islower(c)) 
{      printf("You entered a lowercase letter\n");

m = toupper(c);
printf("I converted the character to uppercase %c\n",m);   

}
}

}

Testing exercises: 
Run the program with the 
following inputs and under the 
results:

A
9
f
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Review Questions (True/False)

• ____ The character classifications are found in the 
standard library header file stdlib.h

• ____ To check if a character is uppercase, the toupper
function is used

• ____The expression rand()%20-6 can create a random 
number in the range –6 ~ 14
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Outline
C standard library functions (Cont’d)
Random number generation functions: 

srand(), rand()
Character functions

• Repetitive processes
– Iterations
– Recursions
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Repetitive Algorithms

• Two approaches to writing repetitive algorithms
– Using loops (for, while, do…while)

• Iterative way
• A repetitive function is defined iteratively whenever the 

definition involves only the parameter(s) and not the function 
itself

– Using recursion: a repetitive process where a function 
calls itself. 



Dr. Xing 24

Example
• Write a function to compute a factorial:

– product of the integral values from 1 to n
– Example:  

factorial(3) = 3*2*1=6



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0   if    1*2*...*)1(*
0   if                                1
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nnn
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nfactorial
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Implementation #1 (Iterative)
#include "stdio.h"
long factorial(int n);
void main(void)
{

int a;
long f;
printf("Enter a number \n");
scanf_s("%d",&a);

f =factorial(a);

printf("The factorial is %d \n", f);

}

?
Define factorial () 

using a for loop
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Repetitive Algorithms (Revisit)

• Two approaches to writing repetitive algorithms
– Using loops (for, while, do…while)

• Iterative way
• A repetitive function is defined iteratively whenever the 

definition involves only the parameter(s) and not the function 
itself

– Using recursion: a repetitive process where a 
function calls itself. 



Recursive Definition
• Recursive definition

– A repetitive function is defined recursively whenever the 
function appears within the definition itself.

• Example: the computation of a factorial:
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Example: Decomposition of factorial(3)





>−
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=
0   if     )1(*

0   if                                1
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nnfactorialn
n

nfactorial

factorial(3)=3*factorial(2)

factorial(2)=2*factorial(1)

factorial(1)=1*factorial(0)

factorial(3)=3*factorial(2)=3*2=6

factorial(2)=2*factorial(1)=2*1=2

factorial(1)=1*1=1

factorial(0)=1
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Note!

• Recursive solution involves a two-way journey
– First we decompose the problem from top to bottom
– Then we solve it from bottom to top

• Base case:
– The statement that “solves” the problem: factorial(0)
– Every recursive function must have a base case
– Once the base case has been reached, the solution 

begins
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Implementation #2 (recursive)
#include "stdio.h"
long factorial(int n);
void main(void)
{

int a;
long f;
printf("Enter a number \n");
scanf_s("%d",&a);

f =factorial(a);

printf("The factorial is %d \n", f);

}

?
Define factorial () 

using recursion


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Note!

• Every recursive call must either solve part of 
the problem or reduce the size of the problem

• Rules for designing a recursive function:
– First determine the base case
– Then determine the general cases (other cases)
– Combine the base case and general case into a 

function
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Exercise (5a)
• Write a recursive function that generates 

Fibonacci numbers
– Named after Leonardo Fibonacci (an Italian 

mathematician)
– A series in which each number is the sum of the 

previous two numbers
– Example: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,……

Rules for designing a recursive function:
First determine the base case
Then determine the general cases (other cases)
Combine the base case and general case into a function
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Exercise (5b)

• Write an iterative function that generates 
Fibonacci numbers using a for loop
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Summary of Lectures #17

• C standard library functions (2)
– Random number generation functions: 

srand(), rand()
– Character functions

• Two approaches to writing repetitive algorithms
– Using loops (for, while, do…while; iterative 

way)
– Using recursion: is a repetitive process where 

a function calls itself
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Things To Do

• Review lecture notes
• Run the programs on Slides 11, 16, 20, 25, 30 

(Refer to the Solution file for complete programs if 
they are not available in the lecture)

Next Topics 

• Files 
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