
ECE160: Foundations of Computer Engineering I

Lecture #20 – Files (II)

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.

Administrative Issues (3/29)

• Lab#9
– Review Exam#2 problems
– Due 5pm, Wednesday, March 29

• Today’s topics
– Files II (L#20)

Dr. Xing 2

Dr. Xing 3

Review of Lectures #18
• Files: a collection of information/related data treated as a unit
• How to declare a file_pointer

• How to open a file

– To create a link between a file stored in actual disk and a file pointer
– Returns a valid address if the open succeeds, otherwise NULL (a C-

defined constant for no address)

• How to close a file

– To free system resources (memory space)
– Returns integer ZERO if the close succeeds, otherwise EOF (-1)

FILE *file_pointer;

file_pointer = fopen(“file_name”, “mode”);

int fclose(FILE *file_pointer);

Dr. Xing 4

Outline

• To read from a file
• To write output to a file
• Character input/output function

Dr. Xing 5

How to Read data from a File?

Using fscanf() :

fscanf(file_pointer, “format_string”, address_list)

• Reads the contents of the file indicated by the file_pointer
according to the conversion code in format_string.

• Contents read are put into the address given by the
address_list.

Read from keyboard:

scanf(“format string”, address list)

function arguments

Note: in Microsoft Visual Studio, we use fscanf_s(…)

Dr. Xing 6

An Example

• Two values will be read from input file indicated by
example_ptr

• The integer value  the memory cell reserved for a
• The float value  the memory cell reserved for b

FILE *example_ptr;
example_ptr = fopen(“L19test.txt”, “r”);
fscanf(example_ptr, “%d%f”, &a, &b);

Dr. Xing 7

Exercise (1)

• Find errors, if any, in the following
statement:

scanf(“myfile”, “%4d %6d”, week, year);

Dr. Xing 8

Example Program
#include <stdio.h>
void main(void)
{
double x ;
int i, k;
FILE *inptr;

inptr=fopen (“ECE160.DAT","r");
fscanf(inptr,"%d",&i);
fscanf(inptr,"%d %lf",&k,&x);

fclose(inptr);

printf("i=%5d\nk=%5d\nx=%9.3lf\n",i, k, x);
}

variable
declarations

declaring a file_pointer variable to be
used with in functions fopen(), fscanf(),
and fclose()

Calling fopen() to allow the
program to access the disk file
ECE160.DAT creating a
link between inptr and the
actual file

fscanf() works similar to scanf().
However, it uses the file pointed by the
file_pointer inptr

Closing the file
to free
resources
pointed by inptr

Dr. Xing 9

Note!

• The input file indicated by the file_pointer
– Should have an acceptable file name
– Must be linked with a file_pointer using fopen() before it is

used
– Should be closed after it is used fclose(file_pointer);

fscanf(file_pointer, “format_string”, address_list)

FILE  file_pointer  actual_file on the disk

FILE *file_pointer; file_pointer = fopen(“file_name”, “r”);

Dr. Xing 10

Outline

• To read from a file
• To write output to a file
• Character input/output function

Dr. Xing 11

How to Write output to a File

• The output displayed on the screen is lost when the
screen scrolls or clears

• To keep a permanent record of the output, write the
output to a file
– Using fprintf()
– Use a file editor to view the output in a file or print the result on

a printer

printf(“format_string”, data_list)

Dr. Xing 12

Function fprintf()

fprintf(file_pointer, “format_string”, data_list)

Writes the values of data in data_list using the given
format_string to a file that is linked to the program
using the file_pointer

fprintf(example_ptr, “week = %5d\n year = %5d\n”, week, year)

The values of week and year are written to an external file
that has a file pointer named example_ptr using the format
string given in the double quotes.

An example:

Dr. Xing 13

Exercise (2)

• Find errors, if any, in the following statement:

printf(*myfile, “week=%4d\n year= %6d”, &week, &year);

Dr. Xing 14

Example Program

variable
declarations

declaring a file_pointer variable to be
used with in functions fopen(), fprintf(),
and fclose()

Calling fopen() to allow the
program to access the disk file
Example.OUT  creating a
link between myfile and the
actual file

fprintf() works similar to printf().
However, it uses the file pointed by the
file_pointer myfile

Closing the file
to free
resources
pointed by
myfile

#include <stdio.h>
void main(void)
{
double x =327.5;
int week=7, year=2005;
FILE *myfile;

myfile=fopen (“Example.OUT",“w");
fprintf(myfile,“week=%6d\nyear=%6d\n",week, year);
fprintf(myfile,“income=%lf\n",x);

fclose(myfile);

}

Dr. Xing 15

Note!

• Like the input file in fscanf(), the output file indicated
by the file_pointer in fprintf()
– Should have an acceptable file name
– Must be linked with a file_pointer before it is used
– Must be opened before it is used
– Should be closed after it is used fclose(file_pointer);

FILE  file_pointer  actual_file on the disk

FILE *file_pointer; file_pointer = fopen(“file_name”, “w”);

fprintf(file_pointer, “format_string”, data_list)

Dr. Xing 16

Summary

• Use scanf() function to read data from keyboard
• Use fscanf() function to read data from a disk file

• Use printf() function to write output on the screen
• Use fprintf() function to write output to an external disk

file

Dr. Xing 17

#include <stdio.h>
int main(void)
{
FILE *fp;
int num1 = 100;
int num2 = 200;
int num3 = 300;
int a = 0, b = 0, c = 0;

//fp = fopen("Xing_file1.txt","w");
fopen_s(&fp, "Xing_file1.txt", "w");

if (!fp)
{
printf("I was not able to open file\n");
return(1);
}

fprintf(fp, "%d\n%d\n%d\n", num1, num2, num3);

if (fclose(fp) == EOF)
{
printf("I was not able to close file\n");
return(2);
}

//fp = fopen("Xing_file1.txt","r");
fopen_s(&fp, "Xing_file1.txt", "r");

if (!fp)
{
printf("I was not able to open file\n");
return(1);
}

fscanf_s(fp, "%d%d%d", &a, &b, &c);

printf("a is %d\nb is %d\nc is %d\n",a,b,c);

if (fclose(fp) == EOF)
{
printf("I was not able to close file\n");
return(2);
}

}

A Complete
Example

Dr. Xing 18

Exercise (3)
• Write a program that writes the following data

to a file (fprintf()). It then reads the data from
the file (fscanf()) and prints them out on the
screen (one per line) (printf())

10
3.14 20

#include "stdio.h"
void main(void)
{

int i = 10;
float j = 3.14;
int a = 20;

int ii;
float jj;
int aa;

FILE *fp;

... ...
}

Dr. Xing 19

Outline

• To read from a file
• To write output to a file
• Character input/output function

Dr. Xing 20

Review (from Lecture#4)

• A character is stored in a computer’s memory as an
integer representing the ASCII code of the
corresponding character (https://www.ascii-
code.com/).

• Examples (ASCII in Dec):
• ‘0’ – 48 ‘1’ – 49 ‘a’ – 97 ‘\n’ -- 10

• For this reason, a character in C can be interpreted
as a small integer; C often treats a character like an
integer!

Dr. Xing 21

Character Input/Output Functions

• Character input functions read one character
at a time from a text stream

• Character output functions write one
character at a time to a text stream

Dr. Xing 22

getchar(), putchar()

• int getchar(void);
– It reads a single character from the standard input stream (a

character typed in at the keyboard) and returns its value.
– EOF is returned if an error is detected
– To call getchar function, nothing is enclosed in the parentheses
– Note the return type is integer

• int putchar(int mychar);
– It writes one character to the standard output.
– EOF is returned if any error occurs during the write operation
– The character it wrote will be returned in case of success

Dr. Xing 23

Examples
getchar();

– A character is read from the keyboard, but not
stored in any variable’s memory cell

c1=getchar();
– A character is read from the keyboard, but stored in

the memory cell reserved for variable c1

Dr. Xing 24

Examples
putchar(‘x’);

– causes the character x to be printed on the screen

• printf() and putchar():
Assume
char c1=‘a’, c2=‘b’;

putchar(c1);
putchar(‘ ’);
putchar(c2);
putchar(‘\n’);

printf(“%c %c\n”, c1, c2);

Dr. Xing 25

Note!

• getchar() and putchar() read and write the
standard input (keyboard) and output (monitor)
streams

• To work with disk files, use getc()/fgetc() and
putc()/fputc()

Dr. Xing 26

Character I/O Functions (Cont’d)

• int getc(FILE *fp);
int fgetc(FILE *fp);
– They read the next character from a file with file_pointer fp.
– EOF is returned when an end of file is detected, or an error

occurs

• int putc(int mychar, FILE *fp);
int fputc(int mychar, FILE *fp);
– They write a character to a file with file_pointer fp.
– If the character is successfully written, the function returns it
– EOF is returned if any error occurs.

27

/* This program writes data from the keyboard into a file */
#include "stdio.h"
int main(void)
{

FILE *fp;
int c;

printf("This program writes your input to a file.\n");
//fp = fopen("mycopyfile.txt", "w");
fopen_s(&fp, "mycopyfile.txt", "w");
if (!fp)
{ printf("Error. I couldn't open the file.\n");

return 1;
}

while ((c = getchar()) != EOF)
{

fputc(c, fp); /* Note the automatic conversion of c to char */
}

if (fclose(fp) == EOF)
{ printf("Error. I couldn't close the file.\n");

return 2;
}
printf("I have created your file.\n");
return 0;

}

Dr. Xing 28

An Interesting Problem

• Read 3 integers from the keyboard, add them
up, and print their sum.

• 3 solutions:
– using scanf
– using scanf, a function, and pass by reference
– using getchar and atoi (a C library function

converting from the string argument to an integer)

Dr. Xing 29

Solution 1: using scanf()

• Read 3 integers from the keyboard, add them
up, and print their sum.

#include "stdio.h"
int main(void)
{

int k=1; //counter variable
int a;
int sum = 0;
printf("Please enter 3 numbers to add.\n");

..//use a while loop

return 0;
}

Dr. Xing 30

Solution 2:
using scanf, a
function, and
pass by
reference

#include "stdio.h"
void add(int *s, int n);
int main(void)
{
int a;
int k = 1; // counter variable
int sum = 0;

printf("Please enter numbers to add.\n");

while (k<=3)
{
scanf_s("%d", &a);
.. //function call
k++;
}

printf("The sum result is %d\n", sum);
return 0;
}

.. //function definition

Dr. Xing 31

Solution 3:
using

getchar()
and atoi()

#include "stdio.h"
#include "stdlib.h"
int main(void)
{

char c;
int a;
int sum = 0;
int k = 1; //counter variable

while (k<=3)
{

c = getchar();
if (c != '\n')
{

a = atoi(&c);
sum = sum + a;
k++;

}
}
printf("The sum is: %d\n", sum);
return 0;

}

Dr. Xing 32

Summary of Lectures #20

• Use fscanf() function to read data from a disk
file

• Use fprintf() function to write output to an
external disk file

• getchar() and putchar() read and write the
standard input (keyboard) and output (monitor)
streams

• getc()/fgetc() and putc()/fputc() read and write
a file stream specified by the file_pointer

Dr. Xing 33

Things To Do

• Review lecture notes
• Run the programs on Slides #14, 17, 18, 29-31 and

check contents of related files in your disk (refer to
the solution file if necessary)

Next Topics
• Arrays

	ECE160: Foundations of Computer Engineering I� �Lecture #20 – Files (II)
	Administrative Issues (3/29)
	Review of Lectures #18
	Outline
	How to Read data from a File?
	An Example
	Exercise (1)
	Example Program
	Note!
	Outline
	How to Write output to a File
	Function fprintf()
	Exercise (2)
	Example Program
	Note!
	Summary
	A Complete Example
	Exercise (3)
	Outline
	Review (from Lecture#4)
	Character Input/Output Functions
	getchar(), putchar()
	Examples
	Examples
	Note!
	Character I/O Functions (Cont’d)
	Slide Number 27
	An Interesting Problem
	Solution 1: using scanf()
	Solution 2: �using scanf, a function, and pass by reference
	Solution 3: � using getchar() and atoi()
	Summary of Lectures #20
	Things To Do

