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means Clustering
Student Name: Kirti Bendigeri Student ID: 01967822

2. Abstract
This project report describes a Comma Separated Values (CSV) dataset consisting of 7050
Facebook posts of various types (text, deferred and live videos, images). These posts were
extracted from the Facebook pages of 10 Thai fashion and cosmetics retail sellers from
March 2012, to June 2018. For each Facebook post, the dataset records the resulting
engagement metrics comprising shares, comments, and emoji reactions within which we
distinguish traditional “likes” from recently introduced emoji reactions, that are “love”,
“wow”, “haha”, “sad” and “angry”.This dataset could serve as a basis for research on
customer engagement with the novel sales channel that is Facebook Live, through
comparative studies with other forms of content, as well as the statistical analysis of the
seasonality of engagement and outlier posts.We will use k-means clustering algorithm to find
the number of clusters in the data and run the algorithm for different values of K and try to
find the best higher classification accuracy of the model.
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3. Introduction And Background 
Before the advent of live streaming, statistical studies of customer engagement associated
with Facebook posts had a common observation pattern is that photos were the most
commonly used medium and typically generated the most likes and comments, followed by
videos. In addition to traditional types of posts, the dataset we have includes live videos. For
each individual post (rows), the columns of the dataset record the type of posts, their date,
and engagement metrics comprising shares, comments, and emoji reactions within which
we distinguish traditional “likes” from recently introduced emoji reactions, that are “love”,
“wow”, “haha”, “sad” and “angry”, reflecting more varied sentiments than the more neutral
“like”. Descriptive statistics of the engagement metrics per post, for the Facebook pages of
the 10 sellers considered in the dataset. For each seller, this table presents the mean,
standard deviation and maximum value of the considered engagement metrics.

K-Means clustering is one of the methods that can be used when we have unlabelled data
which is data without defined categories or groups. The algorithm follows an easy or simple
way to classify a given data set through a certain number of clusters. It works iteratively to
assign each data point to one of K groups based on the features that are provided. Data
points are clustered based on feature similarity. The K-Means algorithm depends upon
finding the number of clusters and data labels for a pre-defined value of K. To find the
number of clusters in the data, we need to run the K-Means clustering algorithm for different
values of K and compare the results. So, the performance of K-Means algorithm depends
upon the value of K. We should choose the optimal value of K that gives us best
performance. There are different techniques available to find the optimal value of K. The
most common technique is the elbow method. The K-Means clustering algorithm uses an
iterative procedure to deliver a final result. The algorithm requires number of clusters K and
the data set as input. The data set is a collection of features for each data point.
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4.Methods 
I am using python programming language to perform all the operations in this project. I am
using python because it has lot of modules that can be used to perform statistical operations
and data manipulation. We will be using k-means clustering, a method of vector
quantization, originally from signal processing, that aims to partition n observations into k
clusters in which each observation belongs to the cluster with the nearest mean, serving as a
prototype of the cluster.

The following are the steps used to do this project: i. Import the libraries ii. Load the data
sets iii. Data cleaning iv. Data Analysis v. Produce plots and Graphs vi. Model fitting vii. K
means clustering viii. Predict the outcomes

In [11]:

In [12]:

In [13]:

In [27]:

Out[27]: (7050, 12)

#import libraries
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt # for data visualization
import seaborn as sns # for statistical data visualization
%matplotlib inline
import os
for dirname, _, filenames in os.walk('/Users/mad_over_minions/Desktop/untitled folder/'
    for filename in filenames:
        print(os.path.join(dirname, filename))

#ignore warnings
import warnings
warnings.filterwarnings('ignore')

#Import dataset
data = '/Users/sriramj98/Desktop/kmeans/Live_20210128.csv'

df = pd.read_csv(data)

#check the shape of dataset
df.shape



12/14/22, 11:27 PMkmeans - Jupyter Notebook

Page 4 of 16http://localhost:8888/notebooks/kmeans.ipynb#

We can see that there are 7050 instances and 16 attributes in the dataset. In the dataset
description, it is given that there are 7051 instances and 12 attributes in the dataset.So, we
can infer that the first instance is the row header and there are 4 extra attributes in the
dataset.

In [28]:

In [29]:

Out[28]:
status_id status_type status_published num_reactions num_comments num_shares num_likes

0 1 video 4/22/2018 6:00 529 512 262

1 2 photo 4/21/2018 22:45 150 0 0

2 3 video 4/21/2018 6:17 227 236 57

3 4 photo 4/21/2018 2:29 111 0 0

4 5 photo 4/18/2018 3:22 213 0 0

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7050 entries, 0 to 7049
Data columns (total 12 columns):
 #   Column            Non-Null Count  Dtype 
---  ------            --------------  ----- 
 0   status_id         7050 non-null   int64 
 1   status_type       7050 non-null   object
 2   status_published  7050 non-null   object
 3   num_reactions     7050 non-null   int64 
 4   num_comments      7050 non-null   int64 
 5   num_shares        7050 non-null   int64 
 6   num_likes         7050 non-null   int64 
 7   num_loves         7050 non-null   int64 
 8   num_wows          7050 non-null   int64 
 9   num_hahas         7050 non-null   int64 
 10  num_sads          7050 non-null   int64 
 11  num_angrys        7050 non-null   int64 
dtypes: int64(10), object(2)
memory usage: 661.1+ KB

df.head() #preview the data set

df.info() #summary of dataset
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In [30]:

We can see that there are 4 redundant columns in the dataset. We should drop them before
proceeding further.

In [32]:

In [33]:

We can see that, there are 3 character variables (data type = object) and remaining 9
numerical variables (data type = int64).

Out[30]: status_id           0
status_type         0
status_published    0
num_reactions       0
num_comments        0
num_shares          0
num_likes           0
num_loves           0
num_wows            0
num_hahas           0
num_sads            0
num_angrys          0
dtype: int64

. . .

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7050 entries, 0 to 7049
Data columns (total 12 columns):
 #   Column            Non-Null Count  Dtype 
---  ------            --------------  ----- 
 0   status_id         7050 non-null   int64 
 1   status_type       7050 non-null   object
 2   status_published  7050 non-null   object
 3   num_reactions     7050 non-null   int64 
 4   num_comments      7050 non-null   int64 
 5   num_shares        7050 non-null   int64 
 6   num_likes         7050 non-null   int64 
 7   num_loves         7050 non-null   int64 
 8   num_wows          7050 non-null   int64 
 9   num_hahas         7050 non-null   int64 
 10  num_sads          7050 non-null   int64 
 11  num_angrys        7050 non-null   int64 
dtypes: int64(10), object(2)
memory usage: 661.1+ KB

df.isnull().sum() #checking for missing values in dataset

df.drop(['Column1', 'Column2', 'Column3', 'Column4'], axis=1, inplace=

df.info() #summary of dataset
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In [34]:

There are 3 categorical variables in the dataset. I will explore them one by one.

Explore all 3 categorical variables

In [35]:

In [36]:

We can see that there are 6997 unique labels in the status_id  variable. The total number
of instances in the dataset is 7050. So, it is approximately a unique identifier for each of the
instances. Thus this is not a variable that we can use. Hence, I will drop it.

In [37]:

Out[34]:
status_id num_reactions num_comments num_shares num_likes num_loves num_wows

count 7050.000000 7050.000000 7050.000000 7050.000000 7050.000000 7050.000000 7050.000000

mean 3525.500000 230.117163 224.356028 40.022553 215.043121 12.728652

std 2035.304031 462.625309 889.636820 131.599965 449.472357 39.972930

min 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000

25% 1763.250000 17.000000 0.000000 0.000000 17.000000 0.000000

50% 3525.500000 59.500000 4.000000 0.000000 58.000000 0.000000

75% 5287.750000 219.000000 23.000000 4.000000 184.750000 3.000000

max 7050.000000 4710.000000 20990.000000 3424.000000 4710.000000 657.000000 278.000000

Out[35]: array([   1,    2,    3, ..., 7048, 7049, 7050])

Out[36]: 7050

Out[37]: array(['4/22/2018 6:00', '4/21/2018 22:45', '4/21/2018 6:17', ...,
       '9/21/2016 23:03', '9/20/2016 0:43', '9/10/2016 10:30'],
      dtype=object)

df.describe() #view statistical summary of data

# view the labels in the variable

df['status_id'].unique()

# view how many different types of variables are there

len(df['status_id'].unique())

# view the labels in the variable

df['status_published'].unique()
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In [38]:

Again, we can see that there are 6913 unique labels in the status_published  variable.
The total number of instances in the dataset is 7050. So, it is also a approximately a unique
identifier for each of the instances. Thus this is not a variable that we can use. Hence, I will
drop it also.

In [39]:

In [40]:

We can see that there are 4 categories of labels in the status_type  variable.

Drop status_id  and status_published  variable from the
dataset

In [41]:

View the summary of dataset again

Out[38]: 6913

Out[39]: array(['video', 'photo', 'link', 'status'], dtype=object)

Out[40]: 4

# view how many different types of variables are there

len(df['status_published'].unique())

# view the labels in the variable

df['status_type'].unique()

# view how many different types of variables are there

len(df['status_type'].unique())

df.drop(['status_id', 'status_published'], axis=1, inplace=True)
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In [42]:

Preview the dataset again

In [43]:

We can see that there is 1 non-numeric column status_type  in the dataset. I will convert
it into integer equivalents.

Declare feature vector and target variable 
In [44]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7050 entries, 0 to 7049
Data columns (total 10 columns):
 #   Column         Non-Null Count  Dtype 
---  ------         --------------  ----- 
 0   status_type    7050 non-null   object
 1   num_reactions  7050 non-null   int64 
 2   num_comments   7050 non-null   int64 
 3   num_shares     7050 non-null   int64 
 4   num_likes      7050 non-null   int64 
 5   num_loves      7050 non-null   int64 
 6   num_wows       7050 non-null   int64 
 7   num_hahas      7050 non-null   int64 
 8   num_sads       7050 non-null   int64 
 9   num_angrys     7050 non-null   int64 
dtypes: int64(9), object(1)
memory usage: 550.9+ KB

Out[43]:
status_type num_reactions num_comments num_shares num_likes num_loves num_wows

0 video 529 512 262 432 92 3

1 photo 150 0 0 150 0 0

2 video 227 236 57 204 21 1

3 photo 111 0 0 111 0 0

4 photo 213 0 0 204 9 0

df.info() ##summary

df.head()

##Declare feature vector and target variable
X = df

y = df['status_type']
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Convert categorical variable into integers 
In [45]:

View the summary of X

In [46]:

Preview the dataset X

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7050 entries, 0 to 7049
Data columns (total 10 columns):
 #   Column         Non-Null Count  Dtype
---  ------         --------------  -----
 0   status_type    7050 non-null   int64
 1   num_reactions  7050 non-null   int64
 2   num_comments   7050 non-null   int64
 3   num_shares     7050 non-null   int64
 4   num_likes      7050 non-null   int64
 5   num_loves      7050 non-null   int64
 6   num_wows       7050 non-null   int64
 7   num_hahas      7050 non-null   int64
 8   num_sads       7050 non-null   int64
 9   num_angrys     7050 non-null   int64
dtypes: int64(10)
memory usage: 550.9 KB

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

X['status_type'] = le.fit_transform(X['status_type'])

y = le.transform(y)

X.info()
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In [47]:

Feature Scaling 
In [48]:

In [49]:

In [50]:

In [51]:

K-Means model with two clusters 

Out[47]:
status_type num_reactions num_comments num_shares num_likes num_loves num_wows

0 3 529 512 262 432 92 3

1 1 150 0 0 150 0 0

2 3 227 236 57 204 21 1

3 1 111 0 0 111 0 0

4 1 213 0 0 204 9 0

Out[51]:
status_type num_reactions num_comments num_shares num_likes num_loves num_wows

0 1.000000 0.112314 0.024393 0.076519 0.091720 0.140030 0.010791

1 0.333333 0.031847 0.000000 0.000000 0.031847 0.000000 0.000000

2 1.000000 0.048195 0.011243 0.016647 0.043312 0.031963 0.003597

3 0.333333 0.023567 0.000000 0.000000 0.023567 0.000000 0.000000

4 0.333333 0.045223 0.000000 0.000000 0.043312 0.013699 0.000000

X.head()

cols = X.columns

from sklearn.preprocessing import MinMaxScaler

ms = MinMaxScaler()

X = ms.fit_transform(X)

X = pd.DataFrame(X, columns=[cols])

X.head()
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In [52]:

K-Means model parameters study 
In [53]:

The KMeans algorithm clusters data by trying to separate samples in n groups of equal
variances, minimizing a criterion known as inertia, can be recognized as a measure of
how internally coherent clusters are.

The k-means algorithm divides a set of N samples X into K disjoint clusters C, each
described by the mean j of the samples in the cluster. The means are commonly called
the cluster centroids.

The K-means algorithm aims to choose centroids that minimize the inertia, or within-
cluster sum of squared criterion.

In [54]:

The lesser the model inertia, the better the model fit.
We can see that the model has very high inertia. So, this is not a good model fit to the
data.

Out[52]: KMeans(n_clusters=2, random_state=0)

Out[53]: array([[3.28506857e-01, 3.90710874e-02, 7.54854864e-04, 7.53667113e-0
4,
        3.85438884e-02, 2.17448568e-03, 2.43721364e-03, 1.20039760e-0
3,
        2.75348016e-03, 1.45313276e-03],
       [9.54921576e-01, 6.46330441e-02, 2.67028654e-02, 2.93171709e-0
2,
        5.71231462e-02, 4.71007076e-02, 8.18581889e-03, 9.65207685e-0
3,
        8.04219428e-03, 7.19501847e-03]])

Out[54]: 237.7572640441955

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=2, random_state=0) 

kmeans.fit(X)

kmeans.cluster_centers_

kmeans.inertia_
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Check quality of weak classification by the
model 

In [55]:

In [56]:

We have achieved a weak classification accuracy of 1% by our unsupervised model.

Using elbow method to find optimal number of
clusters 

Result: 63 out of 7050 samples were correctly labeled.

Accuracy score: 0.01

labels = kmeans.labels_

# check how many of the samples were correctly labeled
correct_labels = sum(y == labels)

print("Result: %d out of %d samples were correctly labeled." % (correct_labels

print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))
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In [57]:

By the above plot, we can see that there is a kink at k=2.
Hence k=2 can be considered a good number of the cluster to cluster this data.
But, we have seen that I have achieved a weak classification accuracy of 1% with k=2.
I will check the model accuracy with different number of clusters.

5. Results 

K-Means model with different clusters 

from sklearn.cluster import KMeans
cs = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300
    kmeans.fit(X)
    cs.append(kmeans.inertia_)
plt.plot(range(1, 11), cs)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('CS')
plt.show()
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In [58]:

In [59]:

We have achieved a relatively high accuracy of 62% with k=4.

Result: 138 out of 7050 samples were correctly labeled.
Accuracy score: 0.02

Result: 4340 out of 7050 samples were correctly labeled.
Accuracy score: 0.62

##K-Means model with 3 clusters
kmeans = KMeans(n_clusters=3, random_state=0)

kmeans.fit(X)

# check how many of the samples were correctly labeled
labels = kmeans.labels_

correct_labels = sum(y == labels)
print("Result: %d out of %d samples were correctly labeled." % (correct_labels
print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))

##K-Means model with 4 clusters
kmeans = KMeans(n_clusters=4, random_state=0)

kmeans.fit(X)

# check how many of the samples were correctly labeled
labels = kmeans.labels_

correct_labels = sum(y == labels)
print("Result: %d out of %d samples were correctly labeled." % (correct_labels
print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))
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6. Discussion and Conclusion 
1. One of the central aims of this analysis was to use machine learning models to better

understand the underlying patterns of facebook posts,comments and reactions.
2. I was able to load data, preprocess it accordingly, do a little bit of feature engineering

and finally were able to make a K-Means model and see it in action.
3. I have applied the elbow method and find that k=2 can be considered a good number of

cluster to cluster this data.
4. I have find that the model has very high inertia of 237.7572. So, this is not a good model

fit to the data.
5. I have achieved a weak classification accuracy of 1% with k=2 by our unsupervised

model.
6. So, I have changed the value of k and find relatively higher classification accuracy of

62% with k=4.
7. Hence, we can conclude that k=4 being the optimal number of clusters.

Limitations 
K-means clustering is a very simple and fast algorithm. Furthermore, it can efficiently
deal with very large data sets. However, there are some weaknesses of the k-means
approach.
One potential disadvantage of K-means clustering is that it requires us to pre-specify
the number of clusters. Hierarchical clustering is an alternative approach which does not
require that we commit to a particular choice of clusters.
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