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Abstract10

We study the effect of subgrid-scale (SGS) mixing on the evolution of a11

zonal, frontal jet initially in thermal-wind balance with a meridional den-12

sity gradient and forced by downfront surface winds. The horizontal size of13

the model domain (O (100 km)) is large enough to contain mesoscale eddies14

while the horizontal grid resolution (500m) is fine enough to resolve sub-15

mesoscale eddies. We compare the performance of two subgrid-scale (SGS)16

models: (i) constant lateral SGS viscosities (1m2s−1 and 5m2s−1) and an17

analytically prescribed vertical SGS viscosity; and (ii) an existing variant18

of the original Smagorinsky SGS model developed for anisotropic grids with19

large aspect ratios. Our simulations show the subgrid model can influence20

adversely the dynamics at scales of motion far removed from the grid cutoff21

scale. In particular, we find the following are insufficiently robust to changes22

in the subgrid model or the model constant for a given subgrid model: (i) the23
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strength of the inverse and forward cascades; (ii) the efficiency of conversion24

of available potential energy (APE) to eddy kinetic energy (EKE); and (iii)25

the zonally-averaged resolved-scale EKE budgets. Among the different sim-26

ulations, those using a constant lateral SGS viscosity of 5 m2s−1 exhibit the27

weakest inverse and forward cascades, and the most inefficient conversion of28

APE to EKE. Differences in the zonally-averaged resolved-scale EKE budgets29

obtained using the two SGS models are minimal within a near-surface layer30

similar to the traditional Monin-Obukhov (MO) layer. Below this MO-like31

layer, however, the differences are significant as simulations with a constant32

lateral SGS viscosity and a background SGS vertical viscosity fail to repro-33

duce a realistic balance between the various terms in the EKE budget. A34

lateral viscosity of 1 m2s−1 predicts the production of EKE is balanced solely35

by pressure transport with negligible SGS destruction, whereas recent ex-36

perimental studies show enhanced destruction near fronts. For a constant37

lateral viscosity of 5 m2s−1 the magnitude of the dominant production term38

is an order of magnitude smaller than scaling estimates in the literature due39

to the poor conversion of APE to EKE. The EKE budgets obtained using the40

anisotropic Smagorinsky model (ASM) show production of EKE is balanced41

by a combination of pressure transport and SGS destruction. The magnitude42

of the dominant production term is consistent with existing scaling estimates43

in the literature.44

Keywords: Subgrid model, Subgrid viscosity, Submesoscale, Smagorinsky,45

Anisotropic grid46
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1. Introduction47

In the ocean, submesoscales are scales of motion smaller than the Rossby48

radius of deformation but large enough to be influenced by planetary rotation49

(Thomas et al., 2007). Numerical studies show oceanic density-fronts are ac-50

tive sites of submesoscale instabilities (Capet et al., 2008c,a,b; Fox-Kemper51

et al., 2008; Klein et al., 2008; Mahadevan, 2006; Mahadevan and Tandon,52

2006) which occur in strongly frontogenetic regions associated with O(1)53

Rossby number (Ro), thereby creating conditions suitable for departure from54

balanced dynamics (Molemaker et al., 2010; Molemaker and McWilliams,55

2005). The O(1) Ro implies the dynamics at the submesoscales is not56

amenable to classical quasi-geostrophic (QG) analysis which assumes Ro ! 157

(Pedlosky, 1987).58

A case study considered often in the literature and in some of the studies59

cited above is the evolution of a density front forced by downfront surface60

winds, which create loss of balance by destroying potential vorticity (PV)61

near the surface (Thomas, 2005) (Downfront winds are winds aligned with62

the frontal jet in thermal-wind balance with the lateral density gradient). In63

simulations such systems spawn submesoscale motions with O(100 m/day)64

vertical velocities at the frontal edges (Mahadevan, 2006). Such rapid vertical65

motions can accomplish the transport of nutrients from the ocean interior to66

the surface on inertial time-scales and thus, could be an important factor67

governing phytoplankton production in the upper ocean (Lévi et al., 2001;68

Mahadevan and Archer, 2000).69

Submesoscales play a central role in the downscale transfer of energy from70

the O(100 km) mesoscales to scales O(0.1–100 m), associated with three-71
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dimensional isotropic turbulence. The mesoscales exhibit an inverse cascade72

of energy, on average, consistent with the quasi-geostrophic (QG) framework73

(Charney, 1971; McWilliams et al., 1994) while small-scale turbulence ex-74

hibits a forward cascade of energy, on average (Tennekes and Lumley, 1972).75

Submesoscale instabilities, by enabling forward cascades of energy in local-76

ized regions of unbalanced dynamics, create pathways for the local removal77

of mesoscale energy in the ocean interior (Capet et al., 2008b; McWilliams,78

2003), away from the boundaries.79

Theory and numerical experiments (Boccaletti et al., 2007; Fox-Kemper80

et al., 2008; Fox-Kemper and Ferrari, 2008) show submesoscale baroclinic in-81

stabilities significantly enhance the rate of restratification of the mixed layer82

(ML), thereby weakening the basis for one-dimensional mixing parameteriza-83

tions near density fronts. The stratification arising due to these instabilities84

can be an order of magnitude larger than that due to geostrophic adjustment85

alone (Mahadevan et al., 2010; Tandon and Garrett, 1994).86

Past numerical studies of oceanic submesoscales can be divided crudely87

into one of two categories: (i) Simulations in computational domains that88

contain and resolve both mesoscale and submesoscale features, but are too89

coarse to resolve the smaller, turbulent scales; and (ii) Large-eddy simula-90

tions (LES) in smaller domains with grid resolutions fine enough to resolve91

the turbulent scales. The former category is suitable for studying the evo-92

lution and coupling of meso- and submeso-scales whereas the latter is ideal93

for identifying mechanisms that trigger a forward cascade of energy to the94

smaller, isotropic scales associated with three-dimensional turbulent mixing.95

In the first category are studies by Mahadevan (2006), Mahadevan and Tan-96
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don (2006), Thomas et al. (2007), Capet et al. (2008c,a,b), Fox-Kemper et al.97

(2008) and Klein et al. (2008). These authors employed domains that are98

O(100 km) in the horizontal and O(100 m–1 km) in the vertical with corre-99

sponding grid resolutions of O(500 m–1 km), and O(1-10 m)1, respectively.100

Our present study belongs in this category. The second category includes101

LES by Ozgokmen et al. (2011), Skyllingstad and Samelson (2011), Taylor102

and Ferrari (2009) and Taylor and Ferrari (2010) among others. These au-103

thors use domains that are O(1–10 km) in the horizontal and O(100 m) in104

the vertical with isotropic grids having O(1 m) resolution. The LES stud-105

ies have grid resolutions fine enough to resolve three-dimensional turbulent106

motions and some of them (Skyllingstad and Samelson, 2011) use domains107

large enough to contain one O(6 km) baroclinic eddy.108

Both classes of simulations described above are different from the so-called109

MOLES (Fox-Kemper and Menemenlis, 2008), or Mesoscale Ocean Large-110

Eddy Simulations, where the grid resolution is fine enough to resolve the111

mesoscale kinetic energy spectrum but too coarse to resolve submesoscales.112

In MOLES, the grid-scale is associated necessarily with an inverse cascade of113

energy, on average, whereas in submesoscale-resolving simulations the trans-114

fer of energy switches from an inverse to forward cascade (on average) at115

scales larger than the grid-scale (Capet et al., 2008b; Klein et al., 2008).116

This suggests such simulations—unlike MOLES—might be compatible with117

traditional LES subgrid closures which typically (but not always) are de-118

signed to ensure a net forward cascade of energy from the resolved to the119

1This refers to the near-surface vertical resolution as these studies typically use a ver-

tically stretched grid.
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subgrid scales of motion (Fox-Kemper and Menemenlis, 2008).120

Here, we explore the performance of an anisotropic Smagorinsky subgrid-121

scale (SGS) model (Roman et al., 2010) in submesoscale-resolving simulations122

performed with the Process Study Ocean Model (PSOM, Mahadevan (2006)).123

Fox-Kemper et al. (2008) used the Smagorinsky model (Smagorinsky, 1963)124

to parameterize lateral SGS mixing in conjunction with a constant back-125

ground vertical SGS viscosity. The anisotropic variant developed by Roman126

et al. (2010) prescribes both lateral and vertical SGS viscosities (and diffusiv-127

ities). Furthermore, it accommodates anisotropic grids and hence is suitable128

for our simulations where the horizontal grid resolution is much coarser than129

the vertical grid resolution. We simulate a front forced by downfront winds130

and contrast the results obtained using the anisotropic Smagorinsky model131

(ASM) with those obtained using constant lateral SGS viscosities and an132

analytically prescribed vertical SGS viscosity. As part of the comparison,133

we emphasize differences that bear directly on the temporal evolution of the134

large-scale features of the flow. In a recent study, Marchesiello et al. (2011)135

investigated the submesoscale dynamics in tropical instability waves of the136

Pacific ocean using a series of simulations at different resolutions that explic-137

itly set lateral SGS mixing to zero and model vertical SGS mixing using the138

K-Profile Parameterization (Large et al., 1994). They found the effects of139

numerical mixing are significant at wavenumbers well below the grid-cutoff140

wavenumber which implies the effective resolution of the simulation is lesser141

than that allowed by the grid. In this study, we show the effective resolu-142

tion also depends on both the type of SGS model and the choice of model143

constants for a given SGS model.144
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1.1. Outline145

In Sections 2.1 and 2.2 we describe briefly the model equations in PSOM146

and the SGS model, respectively. Section 3 describes the initial conditions147

and the set-up of the numerical simulations. We discuss results in Section 4148

and summarize our conclusions in Section 5.149

2. Modelling150

For notational ease we switch between the indexed and the conventional151

representation of variables when necessary. For instance, the symbols {xi, (i =152

1, 2, 3)} and (x, y, z) are equivalent as are {ui, (i = 1, 2, 3)} and (u, v, w).153

2.1. Model equations154

The Process Study Ocean Model, or PSOM, is a three-dimensional (3D),

non-hydrostatic model (Mahadevan, 2006). In what follows, variables with

the tilde operator represent filtered (resolved-scale) variables and those with-

out the tilde operator represent unfiltered fields. We use the words resolved

(or resolved-scale) and filtered interchangeably in this document. The un-

filtered fields contain information across the entire range of length scales

down to the Kolmogorov microscale (Tennekes and Lumley, 1972). Only the

filtered fields are available because a discrete computational grid cannot re-

solve scales of motion finer than the grid resolution. The nonlinearity of the

Navier-Stokes equations, however, gives rise to subgrid-scale terms that need

to be modeled to close the system of equations for the filtered variables2.

2Except in a Direct Numerical Simulation (DNS) where the grid resolution is fine

enough to resolve the Kolmogorov microscale, obviating the need for an SGS model
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The model equations in non-dimensional form are:

Dtρ̃ = F̃ ρ̃ −
∂τ ρi
∂xi

(1)

Dtũ+Ro−1
(
p̃x + γq̃∗x − fṽ +Ro δ bw̃

)
= F̃ x −

∂τ dij
∂xj

; i = 1 (2)

Dtṽ +Ro−1
(
p̃y + γq̃∗y + fũ

)
= F̃ y −

∂τ dij
∂xj

; i = 2 (3)

Dtw̃ +Ro−2 δ−1
(γ
δ
q̃∗z − bũ

)
= F̃ z −

∂τ dij
∂xj

; i = 3 (4)

ũx + ṽy +Ro w̃z = 0, (5)

where Dt ≡ ∂t + ũ∂x + ṽ∂y +Ro w̃∂z is the non-dimensional material deriva-155

tive operator. The variables ũ, ṽ and w̃ denote the non-dimensional filtered156

velocity components along the eastward (x), northward (y) and upward (z)157

directions, respectively, on the earth’s surface. The variable ρ̃ denotes the158

filtered density perturbation from the background stratification prescribed159

at t = 0. The components of the Coriolis acceleration scaled with the earth’s160

angular velocity, Ω, are denoted by f = 2 sin(φ) and b = 2 cos(φ) where161

φ is the latitude. Defining U , W , L and D to be the relevant scales for162

the horizontal velocity, vertical velocity, the horizontal and vertical length163

scales, respectively, the non-dimensional parameters in the model are: (i)164

the Rossby number, Ro = U/ΩL, where Ω is the angular velocity of rotation165

of the earth; (ii) ratio of the non-hydrostatic (NH) to hydrostatic (HY) pres-166

sure variations, γ = Q/P , where Q and P are the characteristic scales for the167

NH and HY components, respectively; and (iii) the aspect ratio, δ = D/L.168

For the NH runs, it is appropriate to set γ = δ (Mahadevan, 2006). The169

filtered HY component is denoted by p̃ and the filtered, modified NH com-170

ponent (discussed below) by q̃∗. Setting γ = 0 turns off the NH effects. By171
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definition, p̃ satisfies p̃z + ρ̃g = 0, where g is the acceleration due to gravity.172

Scaling the vertical vorticity equation and assuming a balance between the173

advection and divergence terms yields W = Ro δ U (Mahadevan, 1996).174

The filtered forcing terms are shown on the right hand side of (1)—(4)175

as F̃ ρ, F̃ x and so on. We assume implicitly the forcing terms are described176

completely by their filtered parts, i.e., they lack spatial structure finer than177

the grid resolution. The non-dimensional SGS density fluxes are denoted by178

τ ρi = ρ̃ui − ρ̃ũi. We denote the deviatoric non-dimensional SGS momentum179

stress tensor as τ dij = ũiuj − ũiũj − (2/3)δijesgs, where δij is the Kronecker-180

Delta operator and esgs = ũiui − ũiũi is the non-dimensional SGS kinetic181

energy. By construction, τ dij is traceless. The variable q̃∗ is the modified,182

filtered NH component of pressure as it includes a contribution from (2/3)esgs,183

in addition to the true NH pressure component. To solve for the filtered184

fields in (1)—(5), we must parameterize the three SGS fluxes and the six185

independent SGS stresses. Knowledge of the SGS kinetic energy requires an186

additional parameterization for esgs, which we do not undertake in this study.187

2.2. Subgrid model188

Lilly (1967) first tuned the Smagorinsky subgrid model (SM, Smagorin-189

sky (1963)) to dissipate the “correct” amount of energy in homogeneous,190

isotropic, 3D turbulence assuming the grid-cutoff wavenumber lies within191

the inertial subrange. The value of the Smagorinsky model constant Lilly192

derived is not meant to be universal due to the assumptions underlying his193

derivation. For instance, it is not valid for strongly anisotropic turbulence194

or when the grid resolution is too coarse to resolve the inertial subrange.195

Germano et al. (1991) developed the Dynamic Smagorinsky model (DSM)196
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which prescribes the subgrid model constant as a function of space and time197

by relating the resolved-scale fields filtered at two different scales through the198

Germano identity (Germano et al., 1991). This dynamic evaluation of the199

subgrid model constant enables the DSM, in principle, to exhibit negative200

eddy-viscosities and thus, backscatter, or, the transfer of energy from the201

subgrid to the resolved scales. In practice, negative eddy-viscosities give rise202

to numerical instabilities (Lilly, 1992) and are usually clipped, effectively203

eliminating backscatter. Both DNS (Piomelli et al., 1991) and field mea-204

surements (Sullivan et al., 2003) of 3D turbulence show significant amounts205

of backscatter with a slightly stronger forward cascade to yield a net for-206

ward (downscale) cascade of energy at the grid scale (Tennekes and Lumley,207

1972). The SM, by construction, permits only a downscale transfer of energy208

from the resolved to the subgrid scales, at every single grid point. When209

the grid scale lies within the submesoscales, where the flow regime is con-210

siderably different from 3D, isotropic turbulence, it is unclear what are the211

relative fractions of grid-scale forward and inverse cascades, although simu-212

lations show an onset of a forward cascade, on average, at scales O(10km)213

(Capet et al., 2008b). The DSM model has been used successfully in past214

LES studies of oceanic flows (Ozgokmen et al., 2009, 2011; Tejada-Mart́ınez,215

2009) with nearly isotropic grids. Scotti and Meneveau (1993), and Scotti216

et al. (1997) modified the SM and the DSM for anisotropic grids by obtain-217

ing analytical expressions for the subgrid model constant as a function of the218

grid anisotropy, assuming the grid spacings in all three directions lie in the219

inertial subrange.220

Simulations designed to study the simultaneous evolution of both mesoscale221
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meanders and submesoscale features in the ocean typically use anisotropic222

grids, as the vertical resolution, ∆z, is much finer than the horizontal res-223

olution, ∆x (or ∆y), due to the large aspect ratio of the domains, with224

horizontal scales much larger than the vertical scales (Capet et al., 2008c;225

Klein et al., 2008; Mahadevan, 2006). Roman et al. (2010) developed an226

anisotropic Smagorinsky model (ASM) that derives from past work by Ka-227

menkovich (1977), Miles (1994) and Wajsowicz (1993), and is designed for228

grids where ∆x $ ∆z. Owing to the highly anisotropic grids and coarse res-229

olutions3 in our simulations, we use the SGS model designed by Roman et al.230

(2010). ASM does not require the grid resolution to belong in the inertial231

subrange, but this generality comes at a cost, namely, the lack of analytical232

expressions relating the subgrid model constants to the grid anisotropy.233

Let us denote the dimensional eddy-viscosity tensor by Kij, which is

assumed to be symmetric. ASM reduces the six independent components

to three: K11 = K12 = K22, K13 = K23 and K33. In the discussion below,

we use upper-case symbols for dimensional variables. The three independent

components are given by:

K11 = (c1∆x)2|S̃h| ; K13 = (c2∆z)2|S̃v| ; K33 = (c3∆z)2|S̃r|, (6)

where the dimensional, filtered strain rates S̃h, S̃v and S̃r are defined as

3Insufficient to resolve the inertial subrange
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follows:

|S̃h| =
√
2
(
S̃2

11
+ S̃2

22
+ S̃2

12

)
(7)

|S̃v| =
√
4S̃2

13
+ 4S̃2

23
(8)

|S̃r| =
√
2S̃2

33
. (9)

In (7)—(9) the filtered strain-rate tensor S̃ij = 0.5
(
∂Ũi/∂X̃j + ∂Ũj/∂X̃i

)

where Ũi is the dimensional ith component of velocity and X̃i is the di-

mensional ith coordinate. The stress divergence terms in the dimensional

horizontal momentum equations are (Roman et al., 2010),

∂

∂X̃1

(
2KhS̃i1

)
+

∂

∂X̃2

(
2KhS̃i2

)
+

∂

∂X̃3

(
2KvS̃i3

)
; i = 1, 2, (10)

where Kh = K11 and Kv = K13. The stress divergence terms in the dimen-

sional vertical momentum equation are,

∂

∂X̃1

(
2KvS̃i1

)
+

∂

∂X̃2

(
2KvS̃i2

)
+

∂

∂X̃3

(
2KrS̃i3

)
; i = 3, (11)

where Kr = K11− 2K13+2K33 (Roman et al., 2010). The eddy-diffusivities,234

Kρ
i , are computed assuming a constant eddy Prandtl number, Pre, such that235

the horizontal components Kρ
1 = Kρ

2 = Pr−1
e Kh and the vertical component236

Kρ
3 = Pr−1

e Kv. The constant-Pre assumption is one of convenience and lacks237

a rigorous basis (Moeng and Wyngaard, 1988) but is invoked frequently in238

LES studies due to its simplicity (Harcourt and D’Asaro, 2008; Sullivan et al.,239

2007; Taylor and Ferrari, 2010). Roman et al. (2010) use Pre = 0.5, while240

some LES studies use a value of 1 (Harcourt and D’Asaro, 2008; Taylor and241

Ferrari, 2010). We will assume Pre = 1 in all our simulations. For the value242

of Ro used in our simulations (discussed in Section 3) the third term in (11)243
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scales as an order of magnitude smaller than the other two terms in the244

equation. Hence, to simplify our subgrid parameter space, we further impose245

c2 = c3 in all our runs, that leaves two free SGS parameters, c1 and c2246

We now explain a modification to the ASM in our simulations. In the for-

mulation by Roman et al. (2010) there is no dependence on the Richardson

number, Ri, in (6) which implies vertical mixing (of momentum or den-

sity) regardless of the underlying stratification. To suppress such unphysical

mixing Ozgokmen et al. (2007) multiplied the vertical components of the

eddy-viscosity and/or eddy-diffusivity by the following function (Ozgokmen

et al., 2007):

f(Ri) =






1 Ri < 0
√
1− Ri

Ric
0 ≤ Ri ≤ Ric = 0.25

0. Ri > Ric

(12)

The function in (12) turns off the vertical mixing when Ri exceeds a critical247

value, Ric = 0.25, above which the stratification is considered too strong248

to sustain continuous turbulence. The correction factor in (12) is empirical249

and neglects patchy, intermittent mixing for Ric > 0.25 (Ohya et al., 2008).250

Ozgokmen et al. (2007) found the Ri-based correction works best when it is251

applied only to the vertical SGS diffusivity but not to the vertical SGS viscos-252

ity. Thus, we restrict the use of the correction factor in (12) to Kρ. In their253

LES studies of the dam break problem Ozgokmen et al. (2007) found such a254

Ri-based correction with Ric = 0.25 (Miles, 1961) improved the performance255

of the classic Smagorinsky model significantly.256
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3. Numerical Experiments257

In this section, we outline briefly the physical parameters in our numerical258

simulations which follow those in the study by Mahadevan (2006).259

We use the following values for the three non-dimensional parameters in260

(2)–(4): (i) δ = 10−2; (ii) Ro = 0.1; and (iii) γ = δ.261

3.1. Domain, forcing and boundary conditions262

The domain dimensions are Lx = 96 km (zonal), Ly = 192 km (merid-263

ional) and Lz = 500 m (vertical). The computational grid has 192, 384 and264

32 points in the zonal, meridional and vertical directions, respectively, which265

corresponds to a constant horizontal grid spacing of 500 m. A stretched ver-266

tical coordinate yields a resolution of 3.6m at the surface and 35m at the267

bottom, assumed to be a flat surface.268

We impose downfront, westerly (West to East, or W–E) surface-winds269

that vary sinusoidally in the meridional direction (Fig 2, bottom panel). The270

amplitude of the sinusoidally varying, zonal surface wind-stress, τx, increases271

linearly from zero to its maximum value of 0.1 N m−2 over a day. The down-272

front winds attempt to restore the front by advecting heavier over lighter fluid273

due to Ekman transport (Thomas, 2005). The ML eddies tend to restratifiy274

the fluid by converting the APE to kinetic energy (Fox-Kemper et al., 2008).275

The simulation parameters determine whether there is net restratification,276

net destratification or a dynamic equilibrium between the restratifying and277

destratifying mechanisms (Mahadevan et al., 2010).278

The boundary conditions are periodic in the E–W direction. The south279

and the north boundaries are impermeable walls across which we impose zero280
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advective fluxes and zero meridional gradients of the velocity, density and,281

SGS fields. The SGS stresses τ d13 and τ
d
23 at the free-surface satisfy τx/ρ0 = τ d13282

and τy/ρ0 = τ d23, where τy is the meridional surface wind-stress (zero in this283

study) and ρ0 = 1027 kg m−3 is the reference density. The SGS flux τ ρ3 at the284

surface is set equal to the surface density flux, which in this study is zero due285

to the absence of cooling or heating at the surface. We model bottom friction286

using a linear drag, rbot(U, V ), where the constant bottom friction coefficient287

rbot = 5× 10−4 s−1 and (U, V ) are the dimensional horizontal velocities.288

The topmost layer of grid cells follow the free-surface (Mahadevan, 1996).289

The reference Coriolis parameter f0 = 1 × 10−4 s−1. The time step of inte-290

gration is 216 seconds.291

3.2. Initial conditions292

We prescribe a south-to-north (S–N) density gradient confined to the293

mixed layer and in thermal-wind balance with a westerly jet, as shown in294

Fig. 1. The initial mixed layer depth (MLD) is 105 m. The top panel of295

Fig. 2 shows the initial profiles of buoyancy frequency, N2, and the potential296

density, ρ, at the front. The variable N2 assumes a uniform value of 10−6
297

s−2 within the ML, which reaches a maximum ≈ 3 × 10−4 s−2 through the298

pycnocline and is constant at 1.5 × 10−6 s−2 below the pycnocline. The299

middle panel in Fig. 2 shows the free-surface elevation and the meridional300

variation of the meridional buoyancy gradient, ∂b/∂y at a depth of 50 m,301

where b = −(g/ρ0)(ρ̃ − ρ0) is the buoyancy. The peak magnitude of the302

meridional buoyancy gradient is 0.9 × 10−7 s−2. We do not restore the S–N303

density gradient which implies our simulations do not have a fixed reservoir304

of APE. The higher elevation of the free surface on the lighter side ensures305
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Figure 1: The initial potential density field is in thermal-wind balance with a westerly

geostrophic jet confined to the mixed layer. The level of no motion lies at z = −105m,

the bottom of the ML.

the initial barotropic and baroclinic pressure gradients at the bottom of the306

ML are equal and opposite. To nudge the onset of instabilities the density307

front has an initial wiggle in the form of a sinusoidal wave whose amplitude308

is 100 m and wavelength is equal to the zonal extent of the domain.309

3.3. Constant SGS lateral viscosities310

For comparison we also present results obtained using constant lateral311

SGS viscosities (and diffusivities), denoted by Kx and Ky, and a vertical312

SGS viscosity, Kv, prescribed analytically using a hyperbolic tangent profile313

(Mahadevan, 2006). We use two values of Kx (= Ky): 1 m2 s−1 and 5 m2
314

s−1 while Kv, which remains unchanged for both Kx values, varies smoothly315
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Figure 2: Top panel: Initial vertical profiles of N2 (s−2) and ρ (kgm−3) at y = 96km.

Middle panel: Initial meridional variation of the lateral buoyancy gradient, ∂b/∂y (s−2),

at a depth of 50 m and of the free-surface elevation (in metres). Bottom panel: Meridional

variation of zonal wind-stress (after initial ramping up), showing a sinusoidal profile with

an amplitude of 0.1 Nm−2.

from 10−3 m2 s−1 within the Ekman layer (depth = (0.4/f)(τx/ρ0)1/2) to a316
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background value of 10−5 m2 s−1 in the interior.4317

Roman et al. (2010) tuned their SGS constants by examining low-order318

velocity statistics in simulations of plane channel flow. While we show plots319

for a few representative values of the SGS constants, we do not attempt here320

to identify the “optimal” SGS constants. Such an undertaking requires a321

systematic investigation of the interplay between the grid aspect ratio and322

the SGS constants (Brasseur and Wei, 2010), which is beyond the scope of323

this study. Instead, we examine whether there are significant differences in324

the results obtained using the ASM and those obtained using a subgrid model325

with constant lateral subgrid viscosities.326

4. Results327

4.1. Instantaneous fields328

Snapshots of the near-surface density and velocity fields after t = 20Tf329

(Fig. 3 and 4), where Tf = 2π/f0 is one inertial period, show the front330

has undergone baroclinic instability and developed meanders whose edges331

exhibit submesoscale features. There are, however, noticeable differences332

between the run with Kx = 5 m2s−1 and the other two simulations. In the333

former, the submesoscale features and the frontal meanders are weaker than334

in the latter two simulations. In later sections, we show this is related to335

weaker frontogenesis and inefficient conversion of APE to kinetic energy for336

Kx = 5 m2s−1 compared to the other two cases. Snapshots of vertical velocity337

(Fig. 4) show strong vertical motions near the frontal edges with upwelling on338

4This implies Kv assumes the background value everywhere in the domain in the ab-

sence of surface winds.
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Figure 3: Snapshots of the near-surface (z = −10 m) potential density field at t = 20Tf ,

where Tf = 2π/f0 = 17.5 hours is one inertial period, for runs with Kx = 5 m2s−1, Kx = 1

m2s−1 and the Anisotropic Smagorinsky model.

the lighter side of the front and downwelling on the denser side, suggestive339

of a thermally direct circulation induced by the ML eddies. Downwelling340

is stronger than upwelling and occurs in narrower streaks of length O(10341

km) and width O(1 km). For the ASM, the peak negative velocities (≈342

120 m/day) are much larger than the peak positive velocities (≈ 50 m/day).343

This asymmetry is also present in simulations with Kx = 1 m2s−1 and to344

some extent for Kx = 5 m2s−1. The difference in the peak upwelling and345

downwelling velocities was also reported in previous studies (Capet et al.,346

2008c; Klein et al., 2008; Mahadevan, 2006).347

Unlike ASM, the runs with constant Kx exhibit strong wave-like features348

north and south of the front with intense upwelling and downwelling along349
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narrow streaks near the front. The waves disappear for still higher values of350

Kx (≈ 10 m2s−1) (not shown). The runs with the ASM also yield wave-like351

structures to the north and the south of the front but with much lesser am-352

plitudes. One consequence of these waves is the transport of kinetic energy353

generated near the front. At equilibrium, in the absence of significant advec-354

tion, we expect the sum of the energy transported away from the front and355

that dissipated locally equals the total energy input from the surface winds.356

As the imposed surface winds are identical in all our simulations we expect357

lower levels of local dissipation through the SGS model to be compensated358

by larger wave-induced transport of energy. In later sections we analyze the359

eddy kinetic energy budgets and relate the presence of the oscillatory features360

in Fig. 4 to weaker levels of SGS dissipation.361

Snapshots of the near-surface SGS viscosity component, K11, at t =362

(7, 14, 20)Tf (Fig. 5) reveal a horizontal structure evidently related to that of363

the potential density field (Fig. 3). The maximum values of K11 are approxi-364

mately 5 m2s−1 and occur along the meandering edges of the front associated365

with high strain rates. Plots of zonally averaged profiles of K1 and K13 near366

the front show they attain mean values O(1) m2s−1 and O(10−2) m2s−1, re-367

spectively. The high mean values of K13 near the base of the mixed layer are368

associated with local zonal streaks of alternating positive and negative shear369

that approximately cancel each other upon averaging zonally.370

4.2. Spectra and spectral fluxes371

Near-surface zonal spectra of u and ρ for different SGS constants at372

t = 15Tf (Fig. 7, top panel) exhibit a slope of −2 approximately over373

a wavenumber range that varies with the value of the subgrid constant.374
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Figure 4: Snapshots of the near-surface (z = −10 m) vertical velocity field at t = 20Tf ,

where Tf = 2π/f0 = 17.5 hours is one inertial period, for runs with Kx = 5 m2s−1, Kx = 1

m2s−1 and the Anisotropic Smagorinsky model.

For (c1, c2) = (0.25, 0.25), this range exists for 3 × 10−4rad m−1 < κx <375

10−3rad m−1, or length scales 6–20 km (2π/κx). A slope of −2 at inter-376

mediate scales is consistent with previous numerical studies (Capet et al.,377

2008b; Klein et al., 2008). The higher values of the SGS constants lead to378

increasingly steeper slopes at the high wavenumbers and a narrowing of the379

wavenumber range where the spectral slope is −2, a consequence of increased380

SGS dissipation.381

We infer the direction of energy flux from the spectral flux, Π(κx), plotted382

versus the zonal wavenumber (Fig.7, bottom panel). At the large scales, the383

spectral flux is negative implying an inverse cascade of energy. It is positive384

for κx > 6 × 10−4rad m−1 (< 10.5 km), indicative of a downscale transfer385
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Figure 5: Near-surface (z = −10 m) evolution of K11.

of energy at those scales. Capet et al. (2008b) found the transition from an386

inverse to a forward cascade occurs at κx ≈ 3× 10−4rad m−1.387

Unlike the velocity spectra the spectral flux changes appreciably with388

varying SGS constants, exhibiting a spread of nearly 50% at the large scales.389

With increasing SGS dissipation we see a sharp decrease in the peak neg-390

ative magnitude of Π(κx), implying a decrease in the strength of the in-391

verse cascade. For instance, both the inverse and forward spectral fluxes for392

(c1, c2) = (0.25, 0.50) are negligible. The corresponding spectra and spectral393

flux for Kx = 1 m2s−1 (Fig. 8) are qualitatively similar to those for the ASM394

(Fig. 7), showing an inverse cascade at the larger scales and a forward cas-395

cade for κx > 6 × 10−4rad m−1. For Kx = 5 m2s−1 (Fig. 8), however, both396

the inverse and forward cascades are diminished strongly and the spectral397
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Figure 6: Zonally-averaged profiles of K11 and K13 at t = 15Tf , where Tf = 2π/f0 = 17.5

hours is one inertial period. The profiles are averages over one inertial period centered at

t = 15Tf . The three colours represent meridional sections at y = yf and y = yf ± 2.5 km,

where yf = 96 km marks the initial location of the front. The circles on the green curve

denote the vertical grid levels.

flux is nearly coincident with the zero-line (shown in black). As the inverse398

cascade is driven by the onset of baroclinic instability, Fig. 7 and 8 suggest399

a value of Kx = 5 m2s−1 suppresses the conversion of APE to kinetic energy400

(discussed in the next section). They show neither the inverse nor the for-401

ward cascades need be robust to a change in the SGS model or to changes402

in the model constant for a given SGS model. The sensitivity of the spectral403

flux at the largest scales to the SGS model constant shows the influence of404

the SGS model on scales of motion much larger than the grid-cutoff.405
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Figure 7: Top panel: Log-log plot showing near-surface spectra (at z = −4.5 m) plotted

versus zonal wavenumber, κx (rad m−1), at y = 96km and t = 15Tf , where Tf = 2π/f0 =

17.5 hours is one inertial period. The dashed line has a slope of −2. Top left: Zonal

velocity spectra, Top right: Potential density spectra. Bottom panel: Spectral flux, Π(κ)

(m2 s−3) plotted versus zonal wavenumber in a linear-log plot. The different curves denote

different combinations of SGS constants. The spectral flux for c1 = 0.25, c2 = 0.50 (dash-

dot line in blue) has much smaller magnitudes and is nearly coincident with the zero line.

The spectra and spectral fluxes are averages over one inertial period centered at t = 15Tf .

A wavenumber of 10−3 rad m−1 corresponds to a length scale of 2π/10−3 m, or 6.28 km.

4.3. Extraction of APE406

Analytical arguments show maximum extraction of APE occurs when the407

parcels exchange buoyancy along a direction half the isopycnal slope (Haine408
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Figure 8: Similar to Fig. 7 but for an SGS model with constant lateral SGS viscosities

and an analytically prescribed vertical SGS viscosity.

and Marshall, 1998). Vertical profiles of m, the ratio of the zonally and409

temporally averaged isopycnal slope, −〈by〉/〈bz〉, to the slope along which410

fluid parcels exchange buoyancy in the y − z plane, 〈v′b′〉/〈b′w′〉, illustrate411

how efficiently the APE is converted to kinetic energy (Fig. 9). The variables412

by and bz denote the meridional and vertical buoyancy gradients, respectively.413

Maximum extraction of APE occurs whenm = 2 (Haine and Marshall, 1998).414

In unforced simulations of a frontal system, Fox-Kemper et al. (2008) found415
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Figure 9: Vertical profiles of m, the ratio of the zonally averaged isopycnal slope,

−〈by〉/〈bz〉, to 〈b′w′〉/〈b′v′〉, the slope along which fluid parcels exchange buoyancy in

the y–z plane, at t = 11Tf where Tf = 2π/f0 = 17.5 hours is one inertial period. We have

further averaged the profiles over one inertial period centered at t = 11Tf . The different

curves are profiles at different meridional locations. For the most efficient extraction of

APE, m = 2 (Haine and Marshall, 1998). The black, dashed line represents y = 96km, the

initial location of the density front. The blue lines correspond to four meridional locations

starting at y = 97 km and spaced 1 km apart, to the north of y = yf . The red lines

correspond to four similarly spaced locations but to the south of y = yf .

m settles to a value between one and two after six to seven inertial periods416

(assuming a Coriolis parameter of 10−4 rad s−1).417

For the ASM, by t = 11Tf , m is starting to attain values close to 2 at418

depths between 30 m and 80 m near the front, implying the eddies there are419

extracting APE efficiently. For Kx = 1 m2s−1 the extraction of APE has not420
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yet reached peak efficiency over a comparable range of depths but does so421

after a couple more inertial periods (not shown). In contrast, for Kx = 5422

m2s−1 the conversion of APE to kinetic energy is much less efficient. We423

confirmed this is also borne out in horizontal and meridional section plots of424

density that show a delayed onset of ML instabilities and frontal slumping425

when Kx = 5 m2s−1, compared to Kx = 1 m2s−1 and the ASM. The inability426

of the simulation with Kx = 5 m2s−1 to extract APE efficiently is reflected427

in the weakened meandering of the front at later times (Fig. 3).428

We found the efficiency with which the eddies extract APE changes with429

time and the runs withKx = 5 m2s−1 start to yieldm ≈ 2 at later times (after430

18Tf ) but over smaller meridional and vertical distances when compared to431

Kx = 1 m2s−1 and the ASM. We conclude excessively high Kx coupled with432

a background SGS vertical viscosity leads to inefficient conversion of APE to433

kinetic energy.434

4.4. Eddy kinetic energy budget and SGS dissipation435

This section examines the various terms in the eddy kinetic energy (EKE)436

budget and explores the balance between them. We average the terms tem-437

porally (over one inertial period), zonally and meridionally (near the front).438

We also relate, where possible, magnitudes of the dominant production term439

in the EKE budget to scaling estimates derived previously in the literature.440
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The non-dimensional EKE budget is given by,
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, (13)

where the angled brackets denote zonal averaging and the primed variables441

are fluctuations from the corresponding zonal averages. For instance, u′

i is442

the deviation of ũi from its zonal average, 〈ũi〉. The terms in (13) describe the443

different gain and loss terms that produce (or destroy) the kinetic energy of444

eddies spanning the entire range of scales resolved in our simulation. Both the445

resolved-scale and SGS kinetic energy contribute to the advection term but446

our plots do not show the subgrid contribution as we lack a parameterization447

for esgs.448

Anisotropic Smagorinsky Model. The near-surface resolved-scale eddy449

kinetic energy (EKE) budget (Fig. 10, left panel) shows εsgs ∼ O(10−6) m2s−3
450

and is balanced approximately by ageostrophic shear production. The other451

terms in the budget are much smaller in comparison. Monin-Obukhov (MO)452

theory prescribes the relevant scaling parameters within the inertial surface-453

layer, namely, u∗ for velocity and z for the vertical length scale. Thus,454

estimating εsgs ∼ u3
∗
/z, where u∗ = 0.01 ms−1 is the friction velocity (corre-455

sponding to τx = 0.1 Nm−2) and z ∼ O(1) m we obtain εsgs ∼ O(10−6) m2s−3,456

which is in reasonable agreement with the near-surface values. Although we457

have used the MO variables u∗ and z to scale the dominant production terms,458

this near-surface layer is slightly different from the traditional MO layer be-459
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Figure 10: Left: EKE budget with zonal, meridional (near the front) and temporal (over

one inertial period) averaging, obtained using the ASM, for −100m < z < 0m at t = 15Tf ,

where Tf = 2π/f0 = 17.5 hours is one inertial period. Right: the budget terms for

−160m < z < −20m. The zonal averaging is done along an E-W section at y = 96 km.

The meridional averaging is performed near the front, over a distance across which the

magnitude of the zonally-averaged lateral density gradient decreases by less than 10%

(Fox-Kemper et al., 2008). The range on the x-axis is different in the two plots. The

circles on the lateral pressure transport profile indicate the vertical grid levels.

cause the imposed surface buoyancy flux is zero, which should theoretically460

yield an infinitely deep MO layer. The finiteness in depth of this MO-like461

layer, even in the absence of surface buoyancy fluxes is due to Ekman advec-462

tion by downfront winds (discussed later).463

Deeper down in the ML (−100m < z < −20m), the EKE budget exhibits464

a more complex balance involving multiple terms (Fig. 10, right panel). The465

dominant source term is the vertical buoyancy flux, 〈b′w′〉, whose positive sign466
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is consistent with the notion of submesoscale eddies restratifying the flow by467

converting APE to kinetic energy (Fox-Kemper et al., 2008). The vertical468

buoyancy flux is balanced mostly by a combination of pressure transport469

and SGS dissipation. The pressure transport terms are larger in magnitude470

than the SGS dissipation at most depths and change sign within the ML.471

For instance, the sign of the vertical pressure transport implies, in a zonally-472

averaged sense, the transport of EKE generated within −70m < z < −20m473

downwards to −110m < z < −70m. There is some advection of EKE due474

to vertical velocity fluctuations although it plays a relatively minor role.475

In summary, the source terms in the resolved-scale EKE budget are offset476

primarily by a combination of subgrid dissipation, which dissipates the EKE477

locally, and pressure transport, which transfers the EKE to other regions.478

We now attempt to justify the magnitude of the dominant production

term at depths −100m < z < −20m. Mahadevan et al. (2010) introduced

a non-dimensional parameter, r ≡
∣∣ψ/ψe

∣∣ = τx/(0.06ρH2〈by〉)|t=0, where ψ

is the overturning stream function, ψe is the eddy stream function, H is the

MLD and by = ∂b/∂y is the meridional buoyancy gradient. The overturning

stream function is defined as, ψ = −
∫ z

0 〈V 〉 dz =
∫ y

0 〈W 〉 dy, where V and

W denote dimensional meridional and vertical velocities, respectively. The

eddy stream function is defined as follows:

ψe = α

(
α〈v′b′〉〈bz〉 − α−1〈w′b′〉〈by〉

〈by〉2 + α2〈bz〉2

)
, α ! 1. (14)

We choose α = 10−3 following Mahadevan et al. (2010), who found Eq. 14 is

insensitive to α over a range 10−2–10−4. The angled brackets 〈〉 denote zonal

averaging. The parameter r is an indicator of the competition between de-

stratification induced by down-front winds and restratification by the mixed
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layer eddies. High values of r imply the down-front winds are strong enough

to prevent a net relaxation of the front by the mixed layer eddies. Low values

imply downfront winds too weak to prevent net restratification by the ML ed-

dies. For r close to unity, presumably, the two tendencies balance each other

resulting in an equilibrium. Using the initial values of H and by, we estimate

r = 1.6. Comparing the peak magnitudes of ψ and ψe (Fig. 11) shows they

are approximately equal. Under such quasi-equilibrium conditions, theory

predicts the sum of the buoyancy flux and the geostrophic shear scales with

the “Ekman buoyancy flux,” or EBF (Thomas and Taylor, 2010), given by:

EBF =
τx
ρ0f0

〈
∣∣S2

∣∣〉, (15)

where S2 = −by. Thomas and Taylor (2010) held S2 constant in the cross-479

front direction thereby maintaining a reservoir of constant APE. Here, S2
480

and the APE vary with time as we do not restore the buoyancy gradient in481

the S-N direction.482

Substituting τx = 0.1 Nm−2 and 〈
∣∣S2

∣∣〉 = 0.6× 10−7 s−2 (Fig. 12) in (15)483

we obtain EBF = 0.58× 10−7 m2s−3.484

The geostrophic shear production is much smaller than the buoyancy flux485

at mid-ML depths and the latter scales with the EBF for depths between 20486

m, and 70 m (Fig. 10, right panel). Thus, for the present value of r =487

1.6, the magnitude of the dominant production term in the EKE budget488

obtained using the ASM is consistent with the scaling put forth by Thomas489

and Taylor (2010). For values of r significantly greater or smaller than unity,490

such a scaling might not be valid. From the low magnitude of the residual491

(thick dashed line) for −70m < z < −20m we infer the sum of the pressure492

transport terms and the SGS dissipation also scales on the EBF. The relative493
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Figure 11: ASM. Vertical sections of the overturning stream function, ψ, and the eddy

stream function, ψe, after t = 15Tf , where Tf = 2π/f0 = 17.5 hours is one inertial period.

Solid lines are isopycnals.

proportions of EKE destroyed locally by the subgrid model and radiated away494

by pressure transport depend on the subgrid constant. Increasing the subgrid495

constant enhances the fraction of EKE destroyed locally while decreasing the496

same causes more of the EKE to be radiated away.497

Figure 10 suggests there is a depth that separates the ML into two regions,498

one where the EKE balance can be described by MO-scaling (in terms of u∗499

and z) and the other where submesoscale dynamics enters the EKE balance500

directly. To estimate this depth we compute an effective MO length scale,501

LMO,eff , by modifying the definition for the MO length and replacing the502

buoyancy flux in the numerator with the EBF. This length scale is similar to503

the MO length scale to the extent it determines whether the EKE budget is504
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Figure 12: Vertical profiles of zonally averaged 107×〈by〉 (s−2) at y = 96km and t = 15Tf ,

where Tf = 2π/f0 = 17.5 hours is one inertial period. We further average the profiles

over one inertial period centered at t = 15Tf . The profiles are shown at three meridional

locations: (i) y = yf (black); (ii) y = yf − 2.5 (red); and (iii) y = yf + 2.5 (blue), where

y = yf (in km) denotes the initial meridional location of the front. The circles on the

black curve denote the vertical grid levels.

dominated by shear (ageostrophic shear) or buoyancy (due to restratification505

by eddies). For the magnitudes of τx and 〈S2〉 considered here, 〈S2〉—through506

the EBF—sets the depth of the layer in which the dominant terms in the EKE507

budget obey MO scaling; it does not influence explicitly the magnitudes of508

these terms within this layer as they can be explained using the MO variables509

u∗ and z. The situation is different in the region below the MO-like layer510

where the EKE budget is dominated by the buoyancy flux, whose magnitude511

depends explicitly on 〈S2〉, as discussed above. Scaling the ageostrophic512
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Figure 13: Kx = 1m2s−1. Vertical sections of the overturning stream function, ψ, and the

eddy stream function, ψe, after t = 15Tf , where Tf = 2π/f0 = 17.5 hours is one inertial

period. Solid lines are isopycnals.

shear production term near the surface as u3
∗
/z (from MO scaling), we obtain513

LMO,eff ∼ u3
∗
/EBF. Substituting values for u∗ and EBF, LMO,eff = 17.2 m514

which is consistent with our results (Fig. 10, left panel).515

Kx = 1 m2s−1. Plots of ψ and ψe are qualitatively similar to Fig. 11 and516

show the stream functions attain their maximum values near the front. We517

focus on depths greater than 20 m where we found the differences in the EKE518

budget between the constant-Kx and the ASM simulations to be the greatest.519

When Kx = 1 m2s−1 (Figs. 14, left panel) the nature of balance in the EKE520

budget differs considerably from that seen in Fig. 10. While the buoyancy521

flux remains the dominant term and scales with the EBF, it is balanced522
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solely by pressure transport, the other terms playing a negligible role in the523

budget. Unlike ASM, the horizontal pressure transport is significantly larger524

than the vertical pressure transport. The low values of SGS dissipation525

show the background vertical SGS viscosity and the constant lateral SGS526

viscosity together are unable to produce significant local destruction of the527

kinetic energy, whereas recent experimental studies in the Kuroshio (D’Asaro528

et al., 2011) show significantly enhanced levels of dissipation near fronts. Low529

SGS dissipation leaves radiation of EKE as the only available option for the530

removal of kinetic energy, as evidenced by the presence of waves near the531

front (Fig. 4).532

Kx = 5 m2s−1. The peak magnitude of ψe is lesser than that for Kx = 1533

m2s−1 and the ASM, which is consistent with the reduced conversion of APE534

to kinetic energy when Kx = 5m2s−1. The dominant terms in the EKE535

budget (Fig. 14) scale as O(10−8) m3s−2, an order of magnitude smaller536

than what we expect from the arguments outlined before. The drastically537

reduced buoyancy flux implies weaker restratification compared to the ASM538

and Kx = 1 m2s−1. The weaker restratification is a direct consequence of the539

inefficient conversion of APE to kinetic energy (Fig. 9). While the maximum540

zonally-averaged buoyancy flux within the mixed layer increases with time,541

〈b′w′〉 starts to scale on the EBF only after t = 20–21Tf . Even so, the542

maximum 〈b′w′〉 is smaller than the corresponding values for the ASM and543

Kx = 1 m2s−1 by a factor of two or more.544

The above discussion on the EKE budgets for constant Kx assumes a545

background vertical SGS viscosity. For the ASM, we confirmed εsgs is deter-546

mined primarily by vertical gradients of velocity with the lateral gradients547
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Figure 14: EKE budget with zonal, meridional (near the front) and temporal (over one

inertial period) averaging for −160m < z < −20m at t = 15Tf , where Tf = 2π/f0 = 17.5

hours is one inertial period. Left: Kx = 1 m2s−1, Right: Kx = 5 m2s−1. The zonal

averaging is done along an E-W section at y = 96 km. The meridional averaging is

performed near the front, over a distance across which the magnitude of the zonally-

averaged lateral density gradient decreases by less than 10% (Fox-Kemper et al., 2008).

The circles on the black curves denote the vertical grid levels.

of the same playing a secondary role. Thus, we attribute the low levels of548

SGS dissipation in the constant Kx simulations to the use of a background549

vertical SGS viscosity that does not take into account the vertical shear of550

horizontal velocity. It follows increasing the value of Kx (or Ky) while using551

a background SGS viscosity will not lead to enhanced SGS dissipation.552
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Figure 15: Kx = 5m2s−1. Vertical sections of the overturning stream function, ψ, and the

eddy stream function, ψe, after t = 15Tf , where Tf = 2π/f0 = 17.5 hours is one inertial

period. The solid lines are isopycnals.

4.5. Evolution of
∣∣∂b/∂y

∣∣ and εsgs553

To further explore the modification of the buoyancy gradient by the ve-554

locity field we plot the zonally averaged values of
∣∣S2

∣∣ at a depth of 50 m,555

approximately half the depth of the ML. The reduction of
∣∣∂b/∂y

∣∣ in the556

vicinity of the front at t = 15Tf (green curve) and t = 11Tf (blue curve)557

for simulations with Kx = 1 m2s−1 and the ASM, respectively, is due to the558

extraction of APE by the eddies, as discussed in Sec. 4.3. There is intensi-559

fication of 〈
∣∣S2

∣∣〉 at some meridional locations due to frontogenesis by the560

underlying strain field (Capet et al., 2008c). This is more pronounced with561

the ASM than in the other two cases. The amplification of the buoyancy562

gradient is weakest with Kx = 5 m2s−1, as seen in the minimal distortion563

37



 

 

t = 15Tf

t = 11Tf

t = 7Tf

t = 0ASM

∣ ∣

∂
〈b
〉/
∂
y
∣ ∣

(s
−
2
)

S−N(km)

Kx = 5m2s−1

∣ ∣

∂
〈b
〉/
∂
y
∣ ∣

(s
−
2
)

S−N(km)

Kx = 1m2s−1

∣ ∣

∂
〈b
〉/
∂
y
∣ ∣

(s
−
2
)

S−N(km)

50 75 100 125 150

50 75 100 125 15050 75 100 125 150

×10−7

×10−7×10−7

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

Figure 16: Snapshots of zonally-averaged
∣∣∂b/∂y

∣∣ at z = −50 m for t = 0, t = 7Tf ,

t = 11Tf and t = 15Tf , where Tf = 2π/f0 = 17.5 hours is one inertial period. The profiles

are further averaged in time over one inertial period centered at the time of the snapshot.

of the initial 〈
∣∣S2

∣∣〉 profile. A comparison of vertical profiles of Q.∇hρ near564

the front in Fig. 17, where Q = −
(
∂xu∂xρ + ∂xv∂yρ, ∂yu∂xρ + ∂yv∂yρ

)
is565

the “Q-vector” (Sanders and Hoskins, 1990), confirms the frontogenesis is566

weakest for Kx = 5 m2s−1.567

We conclude this section with time-depth plots of εsgs, N2 and
∣∣∂b/∂y

∣∣
568

over the entire course of the simulation (Figs. 18—20) which make evident569

the differences in the temporal evolution of the flow for Kx = 1 m2s−1,570

Kx = 5 m2s−1 and the ASM. We choose vertical profiles at the horizontal571

center of the domain, i.e., midway between the E-W and S-N boundaries, as572
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Figure 17: Vertical profiles of zonally averaged 1014 ×Q.∇ρ (kg2m−8s−1), where Q is the

“Q-vector.” We further average the profiles over one inertial period centered at t = 15Tf ,

where Tf = 2π/f0 = 17.5 hours is one inertial period. The profiles are shown at three

meridional locations: (i) y = yf (black); (ii) y = yf − 2.5 km (red); and (iii) y = yf + 2.5

km (blue), where y = yf = 96 km denotes the initial meridional location of the front. The

circles on the black curve denote the vertical grid levels.

representative for this purpose.573

The development of instabilities is slowest for Kx = 5 m2s−1 (Fig. 18),574

as seen in the evolution of εsgs, for instance, which begins to attain non-575

negligible values only after 9–10 inertial periods. This contrasts the plots for576

Kx = 1 m2s−1 and ASM, where we see the presence of regions within the577

ML with high εSGS after 5—6 inertial periods. The temporal evolution of N2
578

shows restratification is weakest for Kx = 5 m2s−1, which, as we saw earlier,579

is the result of diminished buoyancy fluxes (Fig. 14) and inefficient conversion580
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Figure 18: Kx = 5 m2s−1: A representative vertical section-plot showing the local time

evolution of εsgs, N2 and
∣∣∂b/∂y

∣∣ at a point midway between the E–W and S–N walls.

of APE to kinetic energy (Fig. 9). Relative to the initial peak value of
∣∣S2

∣∣
581

(≈ 10−7 s−2), the amplification of
∣∣S2

∣∣ is lesser for Kx = 5 m2s−1 compared582

to Kx = 1 m2s−1 and ASM. For the latter two cases, the local intensification583

of
∣∣S2

∣∣ occurs at both shallow depths and deeper down in the ML, in some584

cases enhancing
∣∣S2

∣∣ to three times its initial value (0.9× 10−7 s−2).585

5. Summary586

This study contrasts the performance of two subgrid closures in simula-587

tions of an oceanic density front forced by downfront winds. The simulated588

domains are large enough to contain mesoscale eddies and fine enough to re-589
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Figure 19: Kx = 1 m2s−1: A representative vertical section-plot showing the local time

evolution of εsgs, N2 and
∣∣∂b/∂y

∣∣ at a point midway between the E–W and S–N walls.

solve a part of the submesoscale spectrum. The two SGS closures we choose590

are: (i) constant lateral SGS viscosities and an analytically prescribed back-591

ground vertical SGS viscosity; and (ii) an anisotropic version of the classical592

Smagorinsky model, developed specifically for computational grids where the593

horizontal resolution is much coarser than the vertical resolution (Roman594

et al., 2010). The Anisotropic Smagorinsky model (or ASM) prescribes both595

lateral and vertical SGS viscosities as functions of the resolved-scale strain596

rate.597

Our simulations show the temporal and spatial evolution of the subme-598

socale instabilities is sensitive to the underlying subgrid parameterization599
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Figure 20: ASM: A representative vertical section-plot showing the local time evolution

of εsgs, N2 and
∣∣∂b/∂y

∣∣ at a point midway between the E–W and S–N walls. The range

on the εsgs colour bar differs from those in Figs. 18—19.

which, we find, can influence the dynamics at scales far removed from the600

grid cutoff scale. In particular, the following exhibit strong dependence on601

both the choice of the SGS model and the model constant for a given SGS602

model: (i) the strength of the inverse and forward cascades; (ii) the efficiency603

of conversion of APE to kinetic energy; (iii) strength of frontogenesis; and604

(iv) the resolved-scale EKE budgets.605

Both Kx = 1 m2s−1 and the ASM predict an inverse cascade at the large606

scales and the onset of a forward cascade at O(10 km) scales. For the ASM,607

the peak magnitude of the inverse cascade decreases upon increasing the SGS608
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model constants. The simulations for Kx = 5 m2s−1 fare the worst as they609

yield strongly diminished inverse and forward cascades.610

For Kx = 1 m2s−1 and the ASM, the conversion of APE to kinetic energy611

is more efficient than for Kx = 5 m2s−1. In the former two cases, the flow612

is able to extract APE with the maximum theoretical efficiency over a much613

greater range of depths within the ML, when compared to Kx = 5 m2s−1.614

The weaker inverse cascade for Kx = 5 m2s−1 is a direct consequence of the615

inability of the flow to utilize the APE efficiently.616

The simulations with Kx = 5 m2s−1 yield negligible frontogenesis com-617

pared to Kx = 1 m2s−1 and the ASM, as measured by the magnitude of618

Q.∇ρ, which implies lesser intensification of the buoyancy gradient by the619

strain field.620

The resolved-scale EKE budgets in all the simulations are qualitatively621

similar near the surface within a MO-like layer where the balance is primar-622

iliy between ageostrophic shear and SGS dissipation. The lateral buoyancy623

gradient sets the depth of the MO-like layer but does not directly determine624

the magnitudes of the dominant terms in the budget within this layer, which625

are found to scale with the MO variables u∗ and z. Below the MO-like layer626

the EKE budgets obtained using the ASM, Kx = 1 m2s−1 and Kx = 5 m2s−1
627

are all significantly different from each other. The dominant production term628

in all three cases is the buoyancy flux, which is positive, indicating restrati-629

fication by the ML instabilities. The differences arise in: (i) the magnitude630

of the buoyancy flux; and (ii) how the buoyancy flux is balanced in the EKE631

budget.632

For Kx = 1 m2s−1 and the ASM, the magnitude of the buoyancy flux633
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is consistent with existing scaling arguments in the literature (Thomas and634

Taylor, 2010), which is not the case for Kx = 5 m2s−1 where the correspond-635

ing values are an order of magnitude smaller. Indeed, this is true of all the636

terms in the EKE budget for Kx = 5 m2s−1.637

The buoyancy flux, for the ASM, is balanced by a combination of pressure638

transport and SGS destruction implying the EKE can either be destroyed lo-639

cally (through SGS destruction) or transported away (by pressure transport).640

This is consistent with recent experiments which show enhanced destruction641

near fronts (D’Asaro et al., 2011). In the simulations with constant Kx,642

however, the buoyancy flux is balanced entirely by pressure transport with643

negligible SGS destruction, which sugests insufficient dissipation by the SGS644

model.645

We emphasize the weak SGS dissipation in the constant Kx simulations646

is a consequence of using a background SGS vertical viscosity, and not of647

the value of Kx. A better parameterization for the vertical SGS viscosity648

coupled with constant lateral SGS viscosities will likely yield more realisic649

EKE budgets with sufficient SGS dissipation though it is unclear whether650

this will also reduce the sensitivity of the results to Kx.651

We conclude the parameterization of subgrid diffusion can have impor-652

tant consequences for the evolution of submesoscale instabilities in a frontal653

system forced by downfront winds. Using a constant value for the lateral654

SGS viscosity, Kx, is the simplest option but can lead to unreliable results.655

In particular, we find the simulation results can be quite sensitive toKx when656

used in conjunction with an analytically prescribed background vertical SGS657

viscosity, Kv. Too high a value for Kx leads to weak inverse and forward658
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cascades, inefficient extraction of APE, strongly reduced frontogenesis and659

an EKE budget whose dominant production term, the buoyancy flux, scales660

incorrectly. On the other hand, too low a value predicts a quicker evolution661

of the instabilities and more realistic buoyancy fluxes but relies completely662

on pressure transport to remove the EKE, which is inconsistent with recent663

experiments. The EKE budgets predicted by the ASM are closer to reality.664

If, however, one wishes to use a constant lateral SGS viscosity, it might be665

worth exploring the use of more sophisticated one-dimensional SGS vertical666

mixing schemes in lieu of a background SGS vertical viscosity.667
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