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Advanced Statistics: Linear Regression, Part II:
Multiple Linear Regression

Keith A. Marill, MD

Abstract
The applications of simple linear regression in medical
research are limited, because in most situations, there are
multiple relevant predictor variables. Univariate statistical
techniques such as simple linear regression use a single
predictor variable, and they often may be mathematically
correct but clinically misleading. Multiple linear regression
is a mathematical technique used to model the relationship
between multiple independent predictor variables and
a single dependent outcome variable. It is used in medical
research to model observational data, as well as in di-
agnostic and therapeutic studies in which the outcome is
dependent on more than one factor. Although the technique
generally is limited to data that can be expressed with
a linear function, it benefits from a well-developed
mathematical framework that yields unique solutions and
exact confidence intervals for regression coefficients. Build-

ing on Part I of this series, this article acquaints the reader
with some of the important concepts in multiple regression
analysis. These include multicollinearity, interaction effects,
and an expansion of the discussion of inference testing,
leverage, and variable transformations to multivariate
models. Examples from the first article in this series are
expanded on using a primarily graphic, rather than
mathematical, approach. The importance of the relation-
ships among the predictor variables and the dependence of
the multivariate model coefficients on the choice of these
variables are stressed. Finally, concepts in regression model
building are discussed. Key words: regression analysis;
linear models; least-squares analysis; statistics; models,
statistical, epidemiologic methods. ACADEMIC EMER-
GENCY MEDICINE 2004; 11:94–102.

Multiple linear regression is a generalization of simple
linear regression in which there is more than one
predictor variable. If the investigator suspects that
the outcome of interest may be associated with or
depend on more than one predictor variable, then the
approach using simple linear regression may be in-
appropriate. A multiple regression model that acco-
unts for multiple predictor variables simultaneously
may be used. For example, in the first scenario dis-
cussed in Part I of this series, the investigator studied
the relationship between the intensity of insulin thera-
py and the resolution of serum acidosis in patientswith
diabetic ketoacidosis (DKA). The resolution of acidosis
seems to depend on the intensity of insulin therapy, but
there may be other important factors too. These
could include: the initial severity of the DKA episode,
the severity of the patient’s underlying disease, the

administration of other treatments such as intravenous
(IV) fluid, etc. Multiple linear regression allows the
investigator to account for all of these potentially
important factors in one model. The advantages of
this approach are that this may lead to a more accurate
and precise understanding of the association of each
individual factor with the outcome. It also yields an
understanding of the association of all of the factors
as a whole with the outcome, and the associations
between the various predictor variables themselves.

Expanding the schematic approach introduced in
Figure 6 of Part I, the introduction of another pre-
dictor variable to the model is represented by the
addition of another circle that overlaps the outcome
variable circle. This overlap is labeled area C in Part II,
Figures 1A and 1B. In general, the addition of the new
predictor circle and its overlap, area C, with the
outcome circle will increase the total portion of the
outcome explained by the regression, areas A þ C,
and decrease the unknown or residual portion, area B.
The new predictor circle and area C may, to some
degree, overlap the original predictor circle and area
A, depending on the relationship between these two
predictor variables. This represents the variable
amount of redundancy and collinearity existing
between the two predictor variables in the model.

THE MULTIPLE LINEAR REGRESSION MODEL

The multiple linear regression model is built on the
same foundation as simple linear regression, and the
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four fundamental assumptions made with simple
linear regression must also be true for multiple linear
regression. However, in addition to the concepts
discussed thus far for simple linear regression, which
remain applicable, a new set of concepts must be
introduced. This discussion will concentrate on the
situation in which there are two predictor variables
and one outcome variable. With a total of three
variables, a three-dimensional figure can be used to
visualize the data. Models with a larger number of
predictor variables follow the same principles, but are
more difficult to visualize.
The equation for the regression model now repre-

sents a flat plane. Letting z be the outcome variable
and x and y be the predictor variables, we have:

z ¼ k1xþ k2yþ c ðequation 1Þ

where k1 and k2 are the constant coefficients for x and
y, respectively, and c is the z intercept at x ¼ y ¼ 0. k1
and k2 determine the tilt of the plane along the x- and
y-axes, respectively. Note that the outcome variable, z,
is a linear function of each of the predictor variables, x
and y, and this forces the regression model to be a flat
plane with no curves or bending. Figure 2A demon-
strates a regression plane where k1 ¼ k2.
The plane that fits the data best can again be found

using the least-squares technique described in the first
article in this series. This approach finds the plane
that minimizes the sum of the residuals squared. The
residual value for each data point equals the actual
value of z at that point minus the corresponding
predicted value of z on the regression plane (Figure
5A). The optimal coefficients c, k1, and k2 are found
such that the regression plane has the proper

elevation and tilt that minimizes SSres. This approach
leads to three equations and three unknowns, and
there usually is a unique solution. It is still true that
SStot ¼ SSreg þ SSres and R2 ¼ SSreg/SStot, but the
meaning of these equations has changed somewhat.
SSreg includes the contribution of both of the predictor
variables to the regression, not each one individually.
R is now called the multiple correlation coefficient. R2,
which is called the coefficient of determination,
suggests what proportion of the variation in the
outcome variable can be attributed to both of the
predictor variables in the linear model as a whole.
Referring to the schematics in Figures 1A and 1B, R2 ¼
(A þ C)/(A þ B þ C), where the overlap, if any, of
areas A and C would only be counted once.

In simple linear regression, a test for whether the
relationship in the regression model is statistically
significant and unlikely to be due to chance is
equivalent to a t-test in which the ratio of the slope
to its standard error (SE) is computed and checked for
significance. In multiple regression, this test has
a different meaning because there are multiple
predictor variables and multiple slopes. Instead, an
analysis of variance (ANOVA) is used to test for the
significance of the model as a whole. Schematically,
this is equivalent to comparing the size of area A þ C

Figure 2. (A) z ¼ 0.5x þ 0.5y, R 2 ¼ 1.0. (B) y ¼ 1x, Rpred
2 ¼ 1.0.

NS ¼ normal saline; IV ¼ intravenous.

Figure 1. Multivariate schematics.
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versus area B in Figures 1A and 1B after adjusting for
the number of predictor variables and data points. If
the regression area A þ C is relatively large compared
with the residual area B, then it is concluded that the
predictors taken together are associated with the
outcome beyond mere chance. Mathematically, a com-
parison is made between the mean SSreg ¼ MSreg ¼
SSreg/ktot, which includes contributions from all of the
predictor variables, and the mean SSres ¼ MSres ¼
SSres/(n � ktot � 1), where n is the number of data
points and ktot is the number of predictor variables.
F ¼ MSreg/MSres, and if, after accounting for the
appropriate degrees of freedom, F is sufficiently large,
then the null hypothesis is rejected and it is concluded
that the multiple linear model explains some of the
variation in the outcome variable.

RELATIONSHIPS AMONG THE PREDICTORS

Perhaps the most important difference in multiple
versus simple linear regression is that the multiple
regression model includes the linear relationships
among the predictor variables themselves. These
relationships, termed ‘‘multicollinearity,’’ can have
a tremendous effect on the model coefficients and the
precision with which they are known. To illustrate
this, we return to the simple univariate predictor
models in Figures 2 through 5 of Part I of this series,
and now include multivariate data with two predictor
variables. Figures 2A through 5A of this article, Part
II, correspond to Figures 2 through 5 of Part I and
include the same data points; however, a second
predictor variable, y, has been added. How does
inclusion of an additional predictor variable affect the
regression model? The answer is ‘‘It depends’’—it
depends on whether there is a linear relationship
between the new predictor variable and the predictor
variable or variables that already are present in the
model.

COLLINEARITY

In Figure 2 of Part I of this series, the investigator
studied the association of the intensity of intravenous
(IV) insulin therapy with the rate of resolution of DKA
in two diabetic patients. It was found that the
predictor and outcome variables were proportional,
and for every one unit per hour of insulin therapy,
there was an associated 1-mEq/L increase in the
serum bicarbonate level after four hours of therapy.
The researcher now returns to the data and inves-
tigates whether the intensity of IV normal saline (NS)
fluid therapy also is associated with the rate of DKA
resolution.

The outcome variable, the increase in the serum
bicarbonate after four hours of therapy, is graphed as
a function of the intensity of insulin and IV NS
therapy for the two study patients in Figure 2A, Part II.

Notice that the resolution of DKA seems to be
associated with the intensity of both insulin and fluid
therapy. Recall that the original equation for the
relationship between insulin therapy and the im-
provement in serum bicarbonate was z ¼ x. Would
a correct model with two predictor variables now be
z ¼ x þ y? No. If the intensity of insulin therapy is
4-units per hour and IV NS hydration is 4 in 100 mL/
hr units, then the improvement in serum bicarbonate
would be 4 þ 4 ¼ 8 mEq/L after four hours of therapy,
instead of 4 mEq/L as in the figure. This would
overestimate the improvement in outcome. A more
correct model would be z ¼ 1/2x þ 1/2y. By adding
the y variable to the model, the value of the coefficient
in the x-axis has decreased by 50% from 1 to 0.5. Why
is this so? It is because the data displays collinearity in
the x,y plane.

Figures 2B through 5B are two-dimensional graphs
of the same data in Figures 2A through 5A, but only
the x- and y-axes are displayed. This allows a clear
display of the relationship between the predictor
variables x and y in each data set. Notice that the
value of y varies with the value of x in Figure 2B. The
patient who received more insulin therapy also re-
ceived more IV NS hydration. They increase together
linearly, and thus display positive collinearity. In the
simple linear model of Part I Figure 2, the entire
improvement in the serum bicarbonate was associa-
ted only with the insulin therapy, whereas in the
multivariable model in Part II, Figure 2A, we chose to
apportion the improvement in the serum bicarbonate
equally between the insulin and IV NS treatments.
When IV NS treatment is included in the model, the
improvement in serum bicarbonate associated with
treatment must be shared between two therapies,
insulin and NS. When collinearity is present, the
magnitude of the predictor coefficients change de-
pending on which predictor variables are included in
the model. In particular, when an increase in one
predictor variable is associated with an increase in
another predictor, there is positive collinearity. When
there is positive collinearity, the value of positive pre-
dictor coefficientswill tend to decrease asmorepredict-
ors are included in the model. The association with the
outcome must be shared among multiple predictors.

The change in the regression model associated with
the addition of a new predictor variable can be even
more dramatic. Consider the second example in Part I
of this series: the investigator examined the hypoth-
esis that a higher initial respiratory rate may be
associated with a greater improvement in DKA. It was
found in Part I, Figure 3, that patients with higher
initial respiratory rates demonstrated greater im-
provement. The investigator now realizes, however,
that the intensity of insulin therapy should also be
included in the analysis.

Part II, Figure 3A, is a graph of the improvement
in serum bicarbonate as a function of the initial

96 Marill d MULTIPLE LINEAR REGRESSION
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respiratory rate and the intensity of insulin treat-
ment. As expected, the increase in serum bicarbonate
is greater in patients who receive more insulin.
Interestingly, the improvement in serum bicarbonate
is now less in patients with higher initial respiratory
rates. The sign of the x coefficient relating the initial
respiratory rate to the improvement in serum bi-
carbonate has changed from positive to negative.
Once again, this change has occurred because there is
collinearity between the two predictor variables, the
initial respiratory rate and the intensity of insulin
therapy. Patients with higher initial respiratory rates
presumably have more severe disease and are treated
more aggressively with insulin. This association and
positive collinearity are demonstrated in the plot
relating the two predictor variables, x and y (Figure
3B). The greater improvement in serum bicarbonate
originally attributed to a higher initial respiratory
rate in the univariate analysis actually seems to
be due to more aggressive insulin therapy. After
analyzing the same data as in Part I, but with two
predictor variables instead of one, the investigator
finds that there is no longer evidence suggesting that
patients can hyperventilate their way out of DKA.
These examples have demonstrated effects due to

collinearity and confounding between two predictor

variables, and they are represented schematically in
Figure 1B, in which the two predictor areas A and C
overlap. The term ‘‘multicollinearity’’ is used to
describe the same types of collinear effects that can
occur among three or more predictor variables in
a data set. Both of these examples demonstrated
positive collinearity. Sometimes, the value of one
predictor variable may decrease as the other predictor
variable increases. This would be negative colinearity.
Data sets with many predictor variables may contain
complex multicollinearities with both positive and
negative collinear relationships.

NO COLLINEARITY

In Part I, Figure 4B, the investigator determined that
the log of the duration of the intensive care unit (ICU)
stay for patients with DKA varied with the initial
intensity of insulin therapy: log z ¼ kx þ c. Perhaps
there are other factors that might also help explain the
duration of ICU admission, such as the patient’s age,
comorbid illnesses, or secondary infections. In Part II,
Figure 4A, the investigator graphed the log of the ICU
stay as a function of two predictor variables, the initial
intensity of insulin therapy, x, and the patient’s age in
years, y. When comparing the new figure with two

Figure 3. (A) z ¼ �0.1xþ 1.25y� 1, R 2 ¼ 1.0. (B) y¼ 0.2x, Rpred
2 ¼

0.25. IV ¼ intravenous.

Figure 4. (A) q ¼ 0.097x þ 0.074y � 2.37, R 2 ¼ 1.0. (B) y ¼ 0x þ
35, Rpred

2 ¼ 0. ICU ¼ intensive care unit.

ACAD EMERG MED d January 2004, Vol. 11, No. 1 d www.aemj.org 97

 15532712, 2004, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1197/j.aem

.2003.09.006, W
iley O

nline L
ibrary on [15/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



predictor variables, Part II, Figure 4A, to the previous
graph with one predictor variable, Part I, Figure 4b,
note that although a new coefficient in the y-plane
representing patient age has been added, there is no
change in the x-axis coefficient relating insulin
therapy to ICU stay. Inspection of the relationship
between the two predictor variables in Part II, Figure
4B reveals that there is no linear relationship in the x,y
plane between the two predictor variables, because
the slope of the regression line is zero. The intensity of
initial insulin therapy is unrelated to patient age, and
thus there is no collinearity between the two variables.
As a result, each predictor is independently associated
with the outcome, and the inclusion of the age
predictor has no bearing on the association or
coefficient of insulin therapy with ICU stay. This
situation is represented schematically in Figure 1A.
Also notice in Part II, Figure 4A that the regression
plane now fits the data perfectly, and all of the
residuals are zero. Addition of a predictor variable
that demonstrates no collinearity with the other
predictors usually will improve the model by re-
ducing the residuals without altering the coefficients
that already are present.

ASSESSING COLLINEARITY

How is the degree of collinearity among two predictor
variables or multicollinearity among multiple pre-
dictor variables assessed? The degree of collinearity
between two predictor variables is quantified by their
correlation coefficient, Rpred

2. The correlation coeffi-
cient of one predictor variable with another can be
labeled Rpred

2 to distinguish it from the coefficient of
determination of all of the predictors with the
outcome, which remains R2. Returning to Part II,
Figure 2B, it can be observed that there is complete
collinearity in the x,y plane representing the two
predictors, because the data forms a straight line,
(Rpred

2 ¼ 1). In Figure 3B, there is partial collinearity,
(Rpred

2 ¼ 0.25), and in Figure 4B, there is no
collinearity, (Rpred

2 ¼ 0). When there are more than
two predictor variables, multicollinearity can be
assessed by determining the Rpred

2 or coefficient of
determination of the predictor variable of interest
with the other predictor variables. This essentially is
a regression of one predictor variable with all of the
others, and it represents a regression among the
predictors within the larger regression model. Sche-
matically, it represents the total proportion of the
predictor-of-interest circle that is overlapped by other
predictor circles in the model (Figure 1).

QUANTIFYING UNCERTAINTY OF
THE COEFFICIENTS

In the experiment described in Part I, Figure 5, the
investigator administered either placebo, potassium,

bicarbonate, or both agents to each of four groups of
animals with experimental salicylate overdose. Eval-
uating the results with respect to potassium infusion
alone in Part I, Figure 5, it was found that salicylate
clearance was higher in the animals that received
potassium. The investigator now takes a multivariate
approach and analyzes salicylate clearance as a func-
tion of both potassium and bicarbonate treatment in
Part II, Figure 5A. Similar to the potassium predictor
variable, the bicarbonate variable, y, is given dummy
variable values of 0 or 1, corresponding to the absence
or presence of bicarbonate infusion, respectively.
Inspection of Part II, Figure 5B reveals that, by design,

Figure 5. (A) z ¼ 5.5x þ 19.5y � 0.25, R 2 ¼ 0.85. (B) y ¼ 0x þ 0.5,
Rpred

2 ¼ 0. (C) z ¼ �x þ 13y þ 13xy þ 3, R2 ¼ 0.94.

98 Marill d MULTIPLE LINEAR REGRESSION
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there is no linear relationship or collinearity between
the two predictor variables, potassium and bicarbon-
ate infusion, and each data point represents two
animals that received identical treatment. Thus,
addition of the bicarbonate variable to the analysis
in Part II, Figure 5A causes no change in the value of
the potassium coefficient, 5.5, from the original model
in Part I, Figure 5.
In Part I, the investigator also determined the SE of

the potassium coefficient, 8.7, and used this to perform
inference testing and to calculate the 95% confidence
interval (CI) of the coefficient,�15.8 to 26.8. How is the
SE of a predictor coefficient determined in the multiple
regression model, and how is it affected by the
inclusion of other predictor variables?
It was stated in Part I that the SE of a coefficient in

simple linear regression is:

SEðcoefficientÞsimplereg

¼ SSres

ðn� 2Þ+
n

1
ðX� XmeanÞ2

2
64

3
75

1=2

ðequation 2Þ

In multiple linear regression, a similar formula is
used, but a modification must be made to account for
possible multicollinearity. When collinearity is present
among two or more predictor variables, there is
additional uncertainty in the value of their coeffi-
cients.
Returning to Figure 1, whenever there is a linear

relationship between two variables in the experimen-
tal sample, their circles overlap. The degree or
strength of overlap will have some uncertainty when
inferences are made on a different or larger popula-
tion. Specifically, when two predictor variables exhibit
collinearity, their circles overlap, as in Figure 1B. Due
to this overlap, the size of the individual areas A and
C are less certain. The extent of overlap of one
predictor variable with all of the others is quantified
by its multiple correlation coefficient with the other
predictors, Rpred

2.
The increased uncertainty due to collinearity also

can be visualized with inspection of the linear
regression plane. Compare Figures 2 and 4, which
demonstrate the extremes of complete and no
collinearity between the x and y predictor variables.
Imagine that the regression plane is a piece of
cardboard that is balanced on the data points in
space. In Figure 2A, the cardboard easily can be tilted
or rotated around the line connecting the two data
points, whereas in Figure 4A, the cardboard sits on
a stable platform of four points spaced apart. As the
data points become more linearly oriented in the x,y
predictor plane, the cardboard becomes less stable
and more easily tilted over the line that represents the
regression of the x and y predictors. This is analogous
to the simple linear regression model in which the

slope of the regression line becomes less certain as the
spacing of the points along the x-axis is decreased.

The increase in the SE of a predictor coefficient due
to multicollinearity is quantified by the square root of
the variance inflation factor (VIF), where:

VIF ¼ 1

1� R2
pred

ðequation 3Þ

Rpred
2 can have any value from 0 to 1. The greater the

overlap and collinearity of the predictor of interest
with the other predictors, then the greater is Rpred

2

and the VIF. Recall that the SE is the square root of the
variance. To determine the SE of a predictor co-
efficient in multiple linear regression, we multiply the
formula from simple linear regression times the
square root of the VIF to obtain:

SEðcoefficientÞmultreg

¼ SSres

ðn� ktot � 1Þ+
n

1
ðX� XmeanÞ2

� 1

1� R2
pred

2
64

3
75

1=2

ðequation 4Þ

where the denominator of the original formula has
been slightly modified to account for the number of
predictor variables, ktot. What happens to the SE of the
potassium coefficient in the salicylate clearance exper-
iment when the bicarbonate predictor variable is
included in the regression model? We already have
determined from Figure 5B that there is no collinearity
between the potassium and bicarbonate predictor
coefficients. Therefore, Rpred

2 for the potassium co-
efficient is zero, and the VIF¼ 1/(1� 0)¼ 1. So there is
no inflation of the variance or the SE. Does this mean
that the SE remains unchanged?No.A reviewof Figure
1A reveals that when a second predictor variable
represented by areaC is included in themodel, the area
representing the residuals or uncertainty, area B,
becomes smaller. The new information serves to
increase the certainty of the model, and this is
manifested by a decrease in the total error or residuals,
SSres. According to equation 4, if the SSres decreases,
then the SE of the coefficient also decreases. By
including the bicarbonate coefficient, the SE of the
potassium coefficient decreases from 8.7 to 3.8, and the
span of the 95% CI of the coefficient decreases from
�15.8 to 26.8 to the narrower range of �4.3 to 15.3. It
was previously noted that inclusion of a noncollinear
predictor variable in the regressionmodel usually adds
new information and decreases the total uncertainty or
SSres. It is now apparent that this generally leads to
a decrease in the SE of the other predictor coefficients.

INCREASING POWER

The concept in the paragraph above has important
implications for inference testing and univariate

ACAD EMERG MED d January 2004, Vol. 11, No. 1 d www.aemj.org 99
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versus multivariate analysis. In general, the power
to determine a statistically significant effect is based
on the magnitude of the effect and the degree of
uncertainty in the results. If the magnitude of the
effect is relatively large with respect to the uncertainty
of the results, then the null hypothesis is rejected and
statistical significance is concluded. The power of the
test can only be increased by either increasing the
magnitude of the effect or decreasing the uncertainty
in the results. Perhaps the most common approach to
decreasing uncertainty and increasing power is by
collecting more data and increasing the number of
data points, n. Including another noncollinear in-
dependent predictor variable in an analysis is another
technique that can be used to decrease uncertainty
and increase power without increasing n. In essence,
instead of collecting more data points, the investigator
is using more information from each data point that
already is included to improve the precision of the
model. In the example above, a t-test can be used in
the original univariate model in Part I, Figure 5 to
determine the effect of potassium infusion on salicy-
late clearance. In Part II, Figure 5A, the investigator
has moved to a multivariate approach that includes
both the potassium and bicarbonate therapies. The
comparable multivariate statistical test would be
a two-way ANOVA. Although the magnitude of the
potassium therapy effect is the same in both tests, the
power to determine its statistical significance may be
increased using the ANOVA approach.

LEVERAGE REVISITED

The multivariate model depicted in Part II, Figure 5A
is an improvement over the univariate model in Part I,
Figure 5, as evidenced by a decrease in the SSres from
905 to 145 and a corresponding increase in R2 from
0.06 to 0.85. Careful inspection of the graphs,
however, reveals that the two animals that received
both potassium and bicarbonate had a salicylate
clearance that was remarkably higher than the other
three groups. These two data points are exerting
upward leverage in both the univariate and multi-
variate regression models. The evaluation of leverage
in multivariate regression is comparable with that in
simple linear regression. In multivariate regression,
Cook’s distance corresponds to the combined change
in all of the predictor coefficients and the z intercept
when the data point in question is removed. If Cook’s
distance is relatively large for one or more data points
as compared with the others, then those points may
have a disproportionate influence on the regression
model.

INTERACTION EFFECT

Why did the two animals that received both potas-
sium and bicarbonate have such a high salicylate

clearance? It could be because those particular
animals happened to have highly efficient kidneys,
or perhaps there was a dosing or measurement error.
An alternative explanation would be that there is an
interaction between the two treatments. Bicarbonate
infusion alone may alkalanize the urine and increase
salicylate excretion somewhat, and potassium alone
may have little effect. Potassium infusion and the
presence of excess renal potassium combined with
bicarbonate infusion may allow bicarbonate to alka-
lanize the urine to a much greater extent. The effect of
the combined treatment would be greater than the
sum of the individual treatments alone.

To describe the interaction effect in addition to the
individual effects of each of the two treatments, an
interaction term is added to the regression equation to
yield:

z ¼ k1xþ k2yþ k3xyþ c ðequation 5Þ

where k3 is the coefficient of the interaction term, xy.
Part II, Figure 5C demonstrates the new model that
includes the interaction term for the salicylate clear-
ance experiment. The interaction term adds shape to
the previously flat plane. Imagine that the regression
plane is a flat piece of paper instead of cardboard. If
we pick up the corner of the paper farthest from the
origin and allow the paper to curve down to the
origin, then this is the shape associated with inclusion
of a positive interaction term in the regression
equation.

The x variable coefficient representing potassium
infusion has changed from þ5.5 to �1, and the y
coefficient has changed from 19.5 to 13 in the new
model incorporating the interaction effect. The x and
y coefficients have changed as a result of some
expected colinearity of each with the new xy term.
This is depicted schematically in Figure 1C, in which
the new interaction effect is represented by area D,
and it partly overlaps areas A and C. In summary, the
improvement in salicylate clearance attributed to
potassium infusion in Part I, Figure 5 may actually
be the result of both bicarbonate infusion alone and
the combined effects of bicarbonate and potassium
infusion together.

SE OF THE COEFFICIENT: TWO
COMPETING EFFECTS

The multivariate model depicted in Figure 5C
appears to fit the data best, and a small, negative
effect of potassium therapy alone is suggested by the
potassium coefficient of �1. What is the effect of
inclusion of the interaction term on the SE of the
potassium coefficient? In one sense, the new in-
teraction term has improved the fit of the model, as
evidenced by a decrease in the SSres to 60 and
a corresponding increase in R2 to 0.94. This is
represented schematically in Figure 1C by the portion
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of area D that does not overlap the predictor areas A
and C and results in a decrease in the residual area, B.
This decrease in the uncertainty of the model leads to
a decrease in the SE of the other predictors such as the
potassium coefficient.
The interaction term also has some collinearity with

the potassium coefficient, and this is represented by
the overlap of area D with area A in Figure 1C. New
explanatory information is not added in this area,
instead, the collinearity represents redundancy in the
two predictors. This redundancy leads to uncertainty
in the distribution of the association of these pre-
dictors with the outcome variable. The size of area A
becomes less certain. The extent of collinearity bet-
ween the predictor variable x and the other predictors
y and xy is quantified by its coefficient of determina-
tion, Rpred

2, which is now 0.50. Then, according to
equation 3, VIF ¼ (1/1 � 0.50) ¼ 2.0. This means that
the SE of the coefficient relating potassium infusion to
salicylate clearance is increased or inflated by a factor
of [VIF]1/2 ¼ [2.0]1/2 ¼ 1.41, or 41%, when the inter-
action variable is included in the model.
Thus, inclusion of the collinear interaction term has

two competing effects on the SE of the potassium
coefficient. New information is included in the model,
and this is manifested by a decrease in the total error
or residuals, SSres, and a decrease in the SE of the
potassium predictor coefficient. Conversely, the in-
teraction term is partly collinear with the potassium
predictor, and its inclusion increases the uncertainty
and SE of the potassium effect. In this example, the
overall effect is that the SE of the potassium coefficient
increases from 3.8 to 3.9, and the 95% CI of the
potassium coefficient is �11.8 to 9.8 after inclusion of
the interaction term. In general, the SE of existing
predictor coefficients may increase or decrease with
the inclusion of a new colinear predictor in the
regression model. The total effect depends on the
relative amount of new explanatory information
added versus the extent of collinearity and redun-
dancy the new predictor displays with each of the
previously existing predictor variables.

CHOOSING PROPER VARIABLES

The art and science of building the multiple re-
gression model require active collaboration between
the clinical or laboratory scientist and the statistician.
The general goal should be the inclusion of all
predictor variables that add substantial independent
information while avoiding excessive collinearity or
overlap. When multicollinearity exists, which usually
is the case in medical research, the predictor variable
coefficients can be biased or their SEs can be increased
by inclusion of either too few or too many variables in
the regression model.
Consider the following examples. Suppose one is

trying to predict the likelihood of myocardial in-

farction (MI) in patients who present to the emer-
gency department. The researcher may tabulate a list
of the predictor variables, each with its own in-
dividual univariate statistic, such as an odds ratio
(OR) and an associated 95% CI. Let us also assume
that some of the predictors are positively correlated,
such as the degree of elevation of the electrocardio-
gram (ECG) ST segment and the serum troponin level.
Each individual univariate statistic will attribute all
of the overlap in predictive value with the other
predictors to the particular predictor of interest. As
we move down the list of predictors, the entire
overlap with the other variables is attributed to each
individual predictor variable in turn. Consequently,
although each univariate statistic is numerically
correct, it is biased toward a higher value, and the
association of the predictor variables as a whole with
the outcome variable will seem larger than it truly is.
When there is positive collinearity among positive
predictor variables, each predictor coefficient will be
highest when viewed in a univariate model.

Conversely, consider the same situation, but in this
case, an excessive number of collinear variables are
included in a single multivariate logistic model in
which the outcome is the probability of an MI, which
varies between 0 and 1. In addition to a history of
smoking, the investigators alsomeasured the history of
coughing, frequency of visitation to a drinking estab-
lishment, and dental coloration. It is expected that all of
these variables would display positive collinearity
with the smoking history. Based on our experience and
previous science, we know that, fundamentally,
smoking might lead to an increase in the likelihood
of an acuteMI, but the other variables likelywould not.

Inclusion of multiple extraneous collinear variables
that are not associated with the outcome variable in
the multiple regression model would not be expected
to bias the predictor variable of interest, smoking
history. In practice, the situation is often complex and
these variables may actually be associated with the
outcome for a variety of unanticipated reasons. For
example, history of coughing may be a better measure
of cigarette use than the reported smoking history, and
bar patrons may suffer from second-hand smoke. In
this situation, inclusion of these variables in the model
may alter the history of smoking coefficient. Regard-
less of any bias that may occur, inclusion of non-
predictive collinear variables will generally inflate the
variance and uncertainty of the predictor of interest.
Finally, it is interesting to consider the possible con-
sequences of removing the smoking history variable
from the model. The model might still demonstrate an
excellent R2 with the remaining extraneous variables,
which could now be viewed as positively biased.

There are numerous manual and automated meth-
ods for building multiple linear regression models.1,2

As one can appreciate from the examples above,
methods that rely on univariate screening3,4 and
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automated stepwise techniques5 are prone to bias and
scientific error. The use of all automated predictor
variable selection methods is discouraged. Even when
using manual methods to choose predictor variables,
there is active debate regarding whether investigators
should generally use the smallest number of predictor
variables that yield a good fit to the data, or whether
all scientifically credible predictor variables should be
included to maximize the predictive value of the
model.6,7 Perhaps the best and simplest approach is to
design an experiment to collect data on the most
important known and suspected fundamental pre-
dictor variables based on current scientific knowl-
edge. The investigator then can examine the results to
confirm that the data satisfy the assumptions of the
linear model, and that all of the included predictor
variables contribute unique information and do not
demonstrate excessive multicollinearity. Regardless of
the approach used to construct the regression model,
the results should eventually be validated using either
a similar, but separate, set of data, or using another
method such as cross-validation.8,9

MULTICOLLINEARITY: DEALING WITH IT

Sometimes multicollinearity among important predic-
tors is inevitable. How can the investigator deal with
this? One approach would be to collect more data to
decrease collinearity. Sometimes, however, this may be
difficult or impossible. For example, we know that
patients with elevated troponin are more likely to have
an elevated ST segment on ECG, and finding enough
patients with an elevated troponin and normal ST
segment may be difficult. Collinear predictors may be
combined to form a summary variable or score. The
Goldman criteria are an example of a combined score
composed of multiple collinear risk factors for heart
disease used to evaluate cardiac risk in patients under-
going noncardiac surgical procedures.10 Another
approach would be to study different predictors that
may be more fundamental and display less collinear-
ity. Instead of measuring patient age and history of
hypertension and elevated cholesterol as predictors
of an MI or angina, the investigator might instead
measure the degree of luminal narrowing on cardiac
catheterization. This is a variation of the concept used
in the technique of principal component analysis.11

Finally, there are modifications of the least-squares
approach such as ridge regression. This analytic
technique introduces bias in the estimates of highly
collinear variable coefficients in exchange for a de-
crease in their uncertainty.12–14

CONCLUSIONS

Most problems in clinical medicine are multivariate.
Consequently, a univariate approach in research

analysis often is flawed and may produce quantita-
tively or qualitatively incorrect predictor coefficients,
and incorrect conclusions with inference testing. A
multivariate approach often is required. Multiple
linear regression is a useful technique for modeling
many phenomena in medical research. For data sets
that meet the necessary assumptions, it offers a well-
developed model that usually can be solved exactly,
yielding estimates of the predictor variable coeffi-
cients and their SE or uncertainty. This can lead to
a better understanding of the relative effects and
importance of the predictors of interest, and allows
the investigator to prognosticate the outcome of future
data. Applications in clinical medicine include models
to determine diagnosis, prognosis, and therapeutic
outcomes.

The author thanks Doctors Elaine Rabin, Lillian Oshva, Lisa
Campanella, Ellen Weber, Lewis Goldfrank, and the statistical
editors of Academic Emergency Medicine for their thoughtful
encouragement, suggestions, challenges, and support.
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