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1 Introduction
These notes are intended to provide an introduction to various techniques for representing sta-
tistical findings, answers to statistical questions, using a variety of software applications: JASP,
Mathematica, PSPP, Python, and R.

The notes are in an ongoing state of extension, refinement, and revision. The current version
data is listed on the title page.
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2 Histograms & descriptive statistics
For the sake of concreteness, illustration, and relevance we look at representing the “Age” variable
from the Washington Post police shootings data.

2.1 Histograms
From Wikipedia:

“A histogram is a visual representation of the distribution of quantitative data. To
construct a histogram, the first step is to ‘bin’ (or ‘bucket’) the range of values— divide
the entire range of values into a series of intervals—and then count how many values
fall into each interval. The bins are usually specified as consecutive, non-overlapping
intervals of a variable. The bins (intervals) are adjacent and are typically (but not
required to be) of equal size.”

We will construct histograms for the “Age” variable. To do a side by side comparison of his-
tograms we will extract only the age data for Black or White people, keeping the race, with age,
as part of an individual’s data. We will also detail descriptive statistics for these two latter data sets.

Data:

• Age-race data set (.csv file) for all Black and White people.

• Age data set (.csv file) for Black people.

• Age data set (.csv file) for White people.
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2.1.1 JASP

Introduction to JASP: Discover Statistics with JASP for Beginners

The age-race data is stored here: age-race data, as a comma separated (.csv) file, which, after
downloading and saving to your computer, JASP can read, as described in the second of the videos
listed above.
When the WaPo-age race.csv file is read into JASP we select the variable “age” and check the
“Distribution plot” option to get the following age distribution histogram:

We can also produce a smooth approximation to the histogram which is very useful when compar-
ing histograms:
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It is possible to filter variables in JASP so we could, for example, filter out ages of just Black
people and ages of just White people. However, since we have the age data for Black people and
for White people separately we can just produce histograms directly from those two data sets.
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2.1.2 Mathematica

Introductions to Mathematica:

• A very basic introduction to Mathematica

• Hands-on Start to Mathematica

• Introduction to Statistics

• Visual Explorations in Data Science

The age-race data was imported into Mathematica from an Excel spreadsheet using Mathematica’s
Import function:

Check the current working directory:

In: Directory[]
Out: “/Users/garydavis”

Set the working directory to the directory containing the data file:

In: SetDirectory[“/Users/garydavis/Documents”]
Out: “/Users/garydavis/Documents”

Import and name the data file:

In: AgeRaceData = Import[“WaPo-age race.xlsx”];

Because Mathematica wraps the data file in one large set of parentheses, we need to flatten the
imported file one level:

In: AgeRaceData = Flatten[AgeRaceData, 1];

We examine the first 5 entries of the imported data:

In: AgeRaceData[[1 ;; 5]]
Out: {{“age”, “race”}, {2., “W”}, {4., “B”}, {6., “W”}, {6., “W”}}

We delete the column headers (“age” and “race”):

In: AgeRaceData = Delete[AgeRaceData, 1];
AgeRaceData[[1 ;; 5]]
Out: {{2., “W”}, {4., “B”}, {6.,“W”}, {6.,“W”}, 8., “B”}}
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We examine the last 10 data entries for any unusual data imports:

In: AgeRaceData[[-50 ;; -1]]
Out: {{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}}

We see many blank entries. We delete these from the age-race data:

In: AgeRaceData = DeleteCases[AgeRaceData, x /; x == AgeRaceData[[-1]]];
Out: {91., “W”}

We extract just the ages (the 1st column) to make a histogram:

In: Ages = AgeRaceData[[All, 1]];
Ages[[1 ;; 20]]
Out: {2., 4., 6., 6., 8., 12., 12., 13., 14., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15.}
In: Histogram[Ages]
Out:

We see Mathematica records a count of how many age values fall into each bin.
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When we later compare histograms it will be useful to scale the bin counts so that the histogram is
a probability density function - that is, the area of the histogram is 1:

In: Histogram[Ages, Automatic, “PDF”]
Out:

We can also produce a smooth approximation to the histogram which is very useful when compar-
ing histograms :

In: SmoothHistogram[Ages, Automatic, “PDF”]
Out:
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Even more useful is a filled smooth approximation to the histogram,in your favorite color:

In: SmoothHistogram[Ages, Automatic, “PDF”, Filling→ Axis, PlotStyle→Magenta]
Out:
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We extract the ages of Black people, and of White people, from the age-race data as two separate
data sets:

In: AgesBlack = Cases[AgeRaceData, x /; x[[2]] == “B”][[All, 1]];
AgesBlack[[1 ;; 20]]
Out: {4., 8., 13., 14., 15., 15., 15., 15., 15., 15., 15., 15., 15., 15., 16., 16., 16., 16., 16., 16.}

In: AgesWhite = Cases[AgeRaceData, x /; x[[2]] ==“W”][[All, 1]];
AgesWhite[[1 ;; 20]]
Out: {2., 6., 6., 12., 12., 15., 15., 15., 15., 15., 15., 15., 16., 16., 16., 16., 16., 16., 16., 16.}

In:
pB = SmoothHistogram[AgesBlack, Automatic, “PDF”, Filling→ Axis, PlotStyle→ Blue];
pW = SmoothHistogram[AgesWhite, Automatic, “PD”, Filling→ Axis, PlotStyle→ Red];
Show[pB, pW]
Out:
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Descriptive statistics of age data

We record the descriptive statistics of the age-race data for Black people, and for White people, as
two separate data sets.

In:
Print[“Minimum AgesBlack = ”, Min[AgesBlack]]
Print[“Maximum AgesBlack = ”, Max[AgesBlack]]
Print[“Median AgesBlack = ”, Median[AgesBlack]]
Print[“Mean AgesBlack = ”, Mean[AgesBlack]]
Print[“Standard deviation AgesBlack = ”, StandardDeviation[AgesBlack]]
Print[“Skewness AgesBlack = ”, Skewness[AgesBlack]]
Print[“Kurtosis AgesBlack = ”, Kurtosis[AgesBlack]]
QuantilePlot[AgesBlack]
Out:
Minimum AgesBlack = 4.
Maximum AgesBlack = 88.
Median AgesBlack = 31.
Mean AgesBlack = 33.1737
Standard deviation AgesBlack = 11.4228
Skewness AgesBlack = 0.893635
Kurtosis AgesBlack = 3.69911
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In:
Print[“Minimum AgesWhite = ”, Min[AgesWhite]]
Print[“Maximum AgesWhite = ”, Max[AgesWhite]]
Print[“Median AgesWhite = ”, Median[AgesWhite]]
Print[“Mean AgesWhite = ”, Mean[AgesWhite]]
Print[“Standard deviation AgesWhite = ”, StandardDeviation[AgesWhite]]
Print[“Skewness AgesWhite = ”, Skewness[AgesWhite]]
Print[“Kurtosis AgesWhite = ”, Kurtosis[AgesWhite]]
QuantilePlot[AgesWhite]
Out:
Minimum AgesWhite = 2.
Maximum AgesWhite = 91.
Median AgesWhite = 39.
Mean AgesWhite = 40.5349
Standard deviation AgesWhite = 13.1146
Skewness AgesWhite = 0.546181
Kurtosis AgesWhite = 2.98097
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2.1.3 PSPP

PSPP for Beginners: This web site is a tutorial to help new statisticians get started with using PSPP
for statistical analyses.

Video introductions to PSPP:

• Learning PSPP Guide 1, Jennifer Moses

• PSPP Tutorial Series

The 2023 PSPP Users’ Guide is available here.

The age-race data is stored here: age-race data, as a comma separated (.csv) file, which, after
downloading and saving to your computer, PSPP can read, as described in the first of the videos in
the PSPP Tutorial Series.

The video Making a simple frequency table and histogram on PSPP SPSS illustrates how to obtain
a histogram for numeric data.

Episode 4: Descriptive Stats of the video series above details how to obtain the descriptive statis-
tics for a data set.

On the next page is a graphic illustration, from PSPP for Beginners, explaining how to produce a
histogram in PSPP:
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2.1.4 Python

Introduction to Python:

• Python Tutorial for Absolute Beginners (video series)

• Automate the Boring Stuff with Python (freely available book in html format; there is also a
freely available video course on YouTube)

• Beginners Guide to Downloading Python

• Integrated Development Environments (IDEs) for Python (Yes, you will need one!).

Histograms in Python:

• Histogram in Python - Matplotlib Tutorial - Pandas Tutorial (video)

• How to make a distribution plot in seaborn (video)

• Matplotlib Histograms (html file)

• Histograms in Python. How to make Histograms in Python with Plotly (html file)
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2.1.5 R & RStudio

The notes included below were written in 2016 and have not been updated since then. Some addi-
tional material and updating will happen soon.

Additional resources for learning R:

• A very basic Introduction to R

• Exploratory Data Analysis with R, Roger Peng.

• R for Data Science
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Chapter 1

Getting R

Our aim is to help you become awesome at using R for
data analysis. Whether you are coming to R from Excel, or
statistical software such as SPSS, or you are a novice at data
analysis, our aim is to guide you in simple, clear steps though
the process of learning to use R to analyze data, in a way that
will blow the socks off your colleagues.

At the end of this book we give you some background on R, its development,
and the wider R community. For now, let’s get R loaded on your computer so
you can be up and running.

1.1 Obtaining R
When you are connected to the internet, go to the R project site: http://www.r-

project.org/.
There you will see a page that, toward the bottom, contains the following

instructions:

Click on the download R link to see a list of Web addresses (URLs) of
sites from which you can download R to your computer.

These sites are all part of the The Comprehensive R Archive Network
(CRAN).
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8 CHAPTER 1. GETTING R

It does not matter much which site you choose: the major difference will
be availability and speed of download. Try a site close to you geographically
(although that may not always be the site that will download R fastest. Live
on the wild side: try an exotic location!)

When you are connected to your choice of CRAN mirror site you will see
a choice of download options for R dependent on your operating system (one
each for Linux, Mac OS and Windows):

Select the choice appropriate for your operating system, download the ap-
plication to your computer, and install.
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1.2 Running R

1.2.1 RStudio - an integrated development environment
for R

To begin running R you simply have to open the appli-
cation by double clicking on it.

However, to learn simple, clean and productive habits
right from the beginning, install RStudio - an integrated de-
velopment environment (= IDE) for R.

Click on the active RStudio link to go to the RStudio site.
Click on the download link to install RStudio on your

computer.
To activate an R session simply open the RStudio application.

1.2.2 Welcome to the world of the experts

Open the RStudio application and you will see the R Console, on the bottom
left, that looks like the following:
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with a blinking cursor following the > sign. That blinking cursor looks like it
wants you to do something, but what?

Perhaps the advice: “Type ‘demo()’ for some demos” will be helpful?
Typing demo() after the > prompt, as shown below:

> demo()

yields a window, labelled ‘R demos’, containing the following information:
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This window may already be open, above the R console, when you open
RStudio.

To see it more fully, as follows:
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simply click on the larger of the two folder images at the top right of the R
demos window.

To a beginner this all looks overwhelming - particularly the ominous “Not
for newbies!”

What can we make of this esoteric gibberish?
Is this how we have to interact with R, struggling in confusion to understand

even how to proceed? Worse, if you try running some of these demos you will,
in all likelihood, become even more muddled: the level of gibberish increases
massively!

The outlook, fortunately, is much brighter - very
much brighter. It is simply that the smart people who
wrote R, and R packages, are not using Beginner’s Mind.
They cannot escape the use of Expert’s Mind, and their
words seem unnecessarily complicated to Beginners. Ex-
perts are scared of looking stupid, so they write compli-
cated examples first, in order to appear smart. Experts
find it hard to recall, or empathize with, the mind of a

Beginner, full of openness, eagerness, and lacking preconceptions, a clear mind
in which many things are possible.
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Chapter 2

Using R

2.1 Thinking like a beginner

Let us start again, this time gently.
What is it we are trying to do? Because R is a data analysis program (and

programming language) you probably came to R with data analysis in mind.
To this end, let us import some data from a website into R.

The data we choose is from the STAT LABS Data site:
http://www.stat.berkeley.edu/users/statlabs/labs.html.

Go to that site from within this document by clicking on the previous blue
text “STAT LABS Data” and choose the Birth weight I link, under “Maternal
Smoking and Infant Health I”. [In case that link is broken at the time you are
reading this book, you can also find the data here.]

On that data site you will see two columns of data that begin as follows:
bwt smoke
120 0
113 0
128 1
123 0
108 1
136 0
138 0
132 0
120 0
143 1
140 0
144 1
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16 CHAPTER 2. USING R

141 1
110 1
114 0
115 0
92 1

The left hand column, labelled “bwt” gives a baby’s birth weight in ounces.
The right hand column, labelled “smoke” contains a “0” if the mother of the
baby, whose weight is recorded in the left hand column, did not smoke during
pregnancy, and a “1” if she did smoke. Some of the right hand column entries
are “9” and that indicates the data entry team could not determine if the mother
did or did not smoke.

So, how to get this data into R, short of copying and pasting it?
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2.2 The read.table function
We will use an importing function called read.table.
Because read.table is a function, it takes arguments as input in order to

produce an output. That is what functions do: they produce a definite outp-
tut from an appropriate input. The three arguments we will need to give to
read.table are:

1. The Web address of the data:
http://www.stat.berkeley.edu/users/statlabs/data/babiesI.data

2. An indication of whether or not the data contains a header row (it
does): header = TRUE

3. What we want to use to separate entries in a row (we will use blank
space): sep = “ ”

This means our read.table function command will look as follows:

read.table(“http://www.stat.berkeley.edu/users/statlabs/data/babiesI.data” , header
= TRUE, sep = “ ”)

Enter this into R, following the > sign (where you see the flashing cursor):

> read.table("http://www.stat.berkeley.edu/users/
statlabs/data/babiesI.data",header = TRUE,sep="")
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Press ENTER, or RETURN, and you will see all 1236 rows of data (exclud-
ing the header) laid out in columns. To get a summary of the structure of this
data, use the structure function, str, as follows:

> str(data)

which produces the following output:

‘data.frame’: 1236 obs. of 2 variables:
$ bwt : int 120 113 128 123 108 136 138 132 120 143 ...
$ smoke: int 0 0 1 0 1 0 0 0 0 1 ...

This tells us the data frame ‘data’ consists of 1236 observations of two
variables: ‘bwt’ and ‘smoke’, each of which is an integer value (= whole number),
and then lists the first 10 of the numeric values for each of these variables, in
order.
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2.3 Doing things with data

What might we want to do with this data?
Let’s say we want a histogram of the babies weight for the non-smoking

mothers. A histogram gives us a visual estimate of the probability distribution
of the birth weights by showing the frequencies of birth weights occurring in
different ranges.

To do this we need to refer to the data in R, and to do that we need to
assign a name to the data. Here is how we do that:

> data<-read.table("http://www.stat.berkeley.edu/users/
statlabs/data/babiesI.data",header = TRUE,sep="")

Here is a hint to save re-typing the read.table function information again:
simply hit the UP arrow on your keyboard until you see:

> read.table("http://www.stat.berkeley.edu/users/statlabs/data/ ba-
biesI.data", header = TRUE, sep = "")

appear again at the active line of R (where the cursor is blinking). Place
your cursor just after the > sign and type "data < −". Then hit ENTER
or RETURN.

The expression "data"is just our chosen name for the data imported into
R.

What does the sign "< −"mean? It means that the data, as we have
imported it into R, has been assigned a name "data", and a location in memory.
We can recall the data from memory by typing:

> data

Try it, and you will see the data re-appear. Anytime we want to see our
data, or do something to it, we can refer to it by it’s given name: "data". [Note
we can use any name at all for the data - we could have called it "Rodney"if
we wished.]
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Through using the read.table function we have read the data into R in a
format that is called a data frame. You can think of a data frame as consisting
of a collection of columns, where each column contains the values of a variable
(in our case, baby weights in the first column, and a "0"or ""depending on
whether or not the mother smoked during pregnancy, in the second column.)
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2.4 Extracting a subset of a data frame
Let us extract the list of birth weights of babies of non-smoking mothers

from the data frame and then produce a histogram of that non-smoking data.
First, we form a subset of the data frame consisting of only those rows

containing "0"under the header "smoke":

> nosmoke< −subset(data, smoke == 0)

When you do this R seems to have done nothing, yet, in fact, it has: it has
formed the subset of birth weights of babies of non-smoking mothers, and has
assigned it, in memory, to a variable called "nosmoke". [Of course, you can use
any name you want for this variable].

To see this subset of the original data frame, we type:

> nosmoke

and, lo and behold, we see a subset of our original data frame that begins:
bwt smoke

1 120 0
2 110 0
4 123 0
6 136 0
7 138 0
8 132 0
9 120 0
11 140 0
15 114 0
16 115 0
19 144 0
21 105 0
23 137 0
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24 122 0
25 131 0
27 146 0
29 125 0
31 122 0

Again we can see the structure of this data frame by using the structure
function str :

> str(nosmoke)

which has the output:

'data.frame': 742 obs. of 2 variables:
bwt : int 120 113 123 136 138 132 120 140 114 115...
smoke : int 0 0 0 0 0 0 0 0 0 0...

What do you notice about this output? Yes, you’re right: only some of the
original rows are included - those for which the "smoke"entry was 0. So we
have the original rows numbered 1, 2, 4, 6, 7, 8, 9, 11, 15, 16, 19, 21, 23, 24,
25, 27, 29, 31, ... but not 3, 5, 10, 12, 13, 14, 17, 18, 20, 22, 26, 28, 30, ...
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2.5 Creating a histogram
The 'nosmoke'data is still a data frame, and to plot a histogram of the birth

weights of babies born to non-smoking mothers, we need to extract the birth
weights as a vector of numeric values (and not as a whole data frame, because
the histogram function in R only takes column vectors of numeric values as
arguments). Think of a vector as an ordered list of things - in our case numeric
values.

To create a vector of the birth weights of the babies of non-smoking mothers
we type:

> nosmokedata< −nosmoke[[‘bwt’]]

Note the double brackets (double square brackets for non-U.S. readers) that
tell R to take the data in the 'bwt'column of the data frame 'nosmoke'and
convert it to a column vector which we have called 'nosmokedata'. To see this
data, type:

> nosmokedata

You will see a vector of numeric values - the birth weights of babies born
to non-smoking mothers.

The structure of 'nosmokedata'shows us that this is simply a vector of
numeric values:

> str(nosmokedata)

with output:

int [1:742] 120 113 123 136 138 132 120 140 114 115 ...

which tells us that 'nosmokedata'is a vector - an ordered list - of numeric values
that are, in fact, integers (= whole numbers).
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To see a histogram of this data, type:

> hist(nosmokedata)

A new window appears with a histogram of the birth weights:

A histogram gives a pictorial representation of the distribution of the data.
If you are a little shaky on what a histogram does, or how one is constructed,
see Chapter 2 on histograms.
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2.6 Summary

2.6.1 What we did
How cool, and how easy was this! Starting from real data, situated on the

web, we have:

1. Imported the data into R as a data frame, using the read.table function.

2. Created a new data frame consisting only of the weights of babies of
mothers who did not smoke during pregnancy, using the subset function.

3. From that data frame, created a vector - an ordered list - of the numerical
birth weights of the babies born to non-smoking mothers.

4. Used that vector to produce a histogram of the birth weights of babies
of non-smoking mothers, using the hist function.

This is seeing R as a useful tool, and getting you rapidly and joyfully to a
point where, with little effort, you can see R as a useful data analysis tool.

True, we are yet only taking first steps. However we avoided such silly
exercises as:

> 1+1
[1] 2

Why would we want to use a program as sophisticated as R to tell us that
1 + 1 = 2? And this sort of childish exercise is not somehow getting us used to
how R works. Let’s face it: you came to this book because you have data to
analyze and you want to take your first steps in using R to do that, and then
rapidly become awesome at using R. Let’s START with becoming awesome,
and build on that!

In following chapters we will see how to produce spectacularly beautiful and
informative histograms with ease and how to compare them on the same chart.

Before we do that we will look at other ways of getting data into R.
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2.6.2 R functions and assignments
• The read.table function. This function reads data from a file and stores

it in R as a data frame. In the example of this chapter we read the data
from an internet file, and we used 3 arguments as input for this function:

1. The URL of the data file.

2. A logical value - TRUE or FALSE - for the header statement. In
our case the data did have a header row, so we set header=TRUE.

3. A field separator character that separates the entries in different
columns, along a single row. The default is a blank space, and we
explicitly specified this as sep =""

• Assigning a name to data read into R. Typically this goes like name -
read.table(....). Here "name"is the name we choose for the imported data
(read into R by the read.table function). We can see this data by typing
name in the command line.
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2.7 More ways of getting data into R

2.7.1 Files stored on your computer

Text files

Often you will want to import a text file stored on your computer into R.
The procedure is almost identical to that for importing from a website - instead
of specifying a Web URL, you simply have to tell R where the file is located on
your computer.

To see what is the current directory R is using type the following command
into the R console:

> getwd()

R responds with the current working directory.
The function list.files() will list all top level files in the working directory.

These "files"may be folders - most likely, in fact, that’s what they will be:

> list.files(" DIR")

provides a list of the top level "files"in the working directory. Here "DIR"is
your working directory, which you know from using the function getwd().

Suppose, as is often the case, that one of these "files"is the folder "Docu-
ments". To see the files in this folder, just tack /Documents to the end of the
working directory information:

> list.files(" DIR/Documents")

This will provide a list of the files in the "Documents"folder. Suppose one
of those documents is the text file "data.txt", which we want to read into R.
We simply tell R the path to find this document, and specify, as in the previous
chapter, whether or not there is a header, and what we want to have as column
separators:

> read.table(" DIR/Documents/data.text", header=TRUE,
sep = " ")

Spreadsheet files
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2.8 Basic data cleaning
Commonly, government agencies put data on the web in - let’s be honest

- somewhat unusual formats. Reading oddly formatted data into R creates its
own challenges. Let’s look at an example.

At the U. S. Bureau of Labor Statistics there is a page giving unemployment
rates for all major metropolitan areas for each month, over a range of years.
The beginning of the data is laid out as follows:

Let’s try to import this data into R so we can analyze it in several ways.
We presume that is why the Bureau of Labor Statistics made the data available.

R has difficulty importing this data for a number of reasons.

First, the descriptive explanation "Table 1. Civilian labor force and unem-
ployment by metropolitan area, seasonally adjusted"at the top of the file, and
a similar note:

: BLS, LAUS
March 22, 2013"
at the bottom, are not part of the data.

Second, the intended header "LAUS code"is spread out over 2 lines, ap-
parently to be convenient for a human reader (otherwise the file would be too
wide). As an aside, the word "code"is redundant for this header because ALL
the headers are codes: the phrase "LAUS"would have sufficed.

These are relatively minor typographic matters that can be fixed by hand.
If we fix them, for example by replacing all headers as single words on a single
line, with the same spacing as the first row of the data, we will get the following
error message in trying to load the data into R:
Error in read.table("/Users.....txt", : more columns than column names

There are serious issues with the layout of column 4, labelled "Area", and
the separation of the columns. The columns have been separated by someone
hitting the space bar several times, and not always the same number of times,
even for a particular column. The reason someone does this is to align the data
on a page so it looks readable to a person. We can see this in the separation
between the "Area"column and the "Year"column: spaces have been inserted
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so as to have all the years line up vertically on the page, for ease of human
readability.

Column 4, "Area"introduces special problems. Because someone entering
the text wanted it to look nice, they have inserted spaces between words. For
example, in the first data row the "Area"column entry is:

Anninston-Oxford, AL MSA
with a space between ","and "AL"and a space between "AL"and "MSA".
Because R is interpreting spaces as column separators, it interprets the first

row as having 12 columns, instead of 10. If that were consistent across all rows
we could handle it, but that’s not what happens - the spacing is not consistent
throughout the "Area"column. And if we try to fix it by hand we get into the
headache-inducing situation of having to format 59,660 rows! There has to be
a better way, and there is.

We can easily fix this problem by first saving the Web data as a text file
and then importing it into Excel as a text file. Once in Excel we can clean up
the headers and the message at the bottom of the file, and save as a .csv (=
comma separated values) file. This we can import into R using the read.table
function.

Here’s how:

• Under "File"in your browser choose "Save Page As..."or "Save As...".
You get a suggested name with the extension .txt, or you have the option
of saving as "Page Source". Both of these options will save the data as a
text file.

• Open a blank document in Excel and under "File"choose "Import". You
will see a set of choices that inlcudes importing as a text file. Check that
option, locate the file and open it in Excel.

• Clean up your headers and the bottom message in the file and you are
almost done.

• You have the choice of saving the file as a Comma Separated Values (.csv)
file or as a Tab Delimited Text (.txt) file. Either choice will work.

• Now all that’s left to do is to import the file into R.
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Part II

Descriptive statistics

31





Chapter 3

The purpose of descriptive
statistics

3.1 Why we do descriptive statistics
The point of descriptive statistics is to describe data sets in a variety of

useful ways that add to our undertstanding of how the data is distributed.

Techniques of descriptive statistics should be the first things that are used
on any and every data set, to get a feel for what the data looks like:

• Is the data highly skewed or not?

• Is the data distribution very peaky around the mean?

• Are there long tails, with many data points a long way from the mean?

• Is the data distribution unimodal, bimodal or multimodal, or something
else altogether?

• Is the data approximately normally distributed?

• Do two - or more - related data sets have approximately the same distri-
bution?
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3.2 The normal distribution

3.2.1 Testing for normality
Quantile plots

Anderson-Darling test for normality
Pre-trest & post-test: the differences between the "before" and "after" data
have to be normal.
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Histograms

4.1 The basics
A histogram graphically represents data: we have seen an example of this

in 1.3.2, where we used R to create a histogram of the birthweight data for
babies of non-smoking mothers. In that section we assumed you already knew
about histograms. Here, for the record, we will go into histogram construction
in a little more detail.

Histograms were introduced by the statistician Karl Pearson in 1895, in a
paper on the mathematical theory of evolution:

Pearson, K. (1895). Contributions to the mathematical theory of evolution.
II. Skew variation in homogeneous material. Philosophical Transactions of
the Royal Society of London. A, 343-414.

The idea of a histogram is to show the frequency of occurrence of data points in
specified “data bins”. For example, for the birthweight data for babies of non-
smoking mothers, we know that data ranges from 55 ounces through 176 ounces.
If we divide that range of 176-55=121 ounces into 13 bins: [50,59], [60,69],
[70,79], [80,89], [90,99], [100,109], [110,119], [120,129], [130,139], [140,149], [150,159],
[160,169], [170,179], then each data point lies in exactly one of these bins.
Counting the frequency of data in each bin gives us a histogram:
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The bins are made so as to be non-overlapping at the end points: this means
there is no ambiguity as to which bin a data point belongs.

The bins are also chosen to be all the same size - that is, width. But why
this number of bins? Would the histogram look much different if we chose a
different number of bins? The idea of the histogram is to give a visual repre-
sentation of the distribution of the data. This means that we are attempting
to visually approximate the empirical probability density function for the data.
We will come back to the question of the number of bins shortly and, for now,
leave it to R to determine the number of bins: we just note that histograms can
be poor visual representations of the empirical probability distribution because
their shape depends critically on the number of bins used.

What we notice about the vertical axis of the histogram is that it records
the total number of data points in each bin. This means that the histogram,
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as drawn, is not a representation of the empirical probability density function,
because the total area under the bars of the histogram is not 1. We can rectify
this by using the following R command:

> hist(nosmokedata, probability=TRUE)

which outputs the following graphic:

Notice the change in the vertical axis: we now have the relative frequency
of occurrence, or density, of data points in the bins, so we can interpret the
vertical axis as the probability that a data point will lie in that bin.

Why do we care whether the vertical axis of our histogram shows frequen-
cies or densities? Under what circumstances would it matter? The shape is
still the same after all.

We answer this question in the next section when we look at how R can ap-
proximate the probability density function by a smooth curve: this is especially
helpful in:
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• remedying to a considerable extent the issue of choosing a bin size for
the histogram;

• assisting in comparison of one histogram with another.



4.2. COMPARING TWO, OR MORE, HISTOGRAMS 39

4.2 Comparing two, or more, histograms

4.2.1 Overlaying histograms
Often we want to look at the distributions of two sets of data to see how

they might differ. For example, we might want to compare the distributions of
birthweights of babies for smoking and non-smoking mothers. So what is useful
is to get R to plot both histograms on the one plot, so that we can compare
their shapes and differences.

To do this for the data for birthweights of non-smoking and smoking moth-
ers we first extract the birthweight data for the smoking mothers as we did for
the non-smoking mothers:

> smoke< −subset(data,smoke==0)
> smokedata< −smoke[['bwt']]

We then name the histogram plots of both data (because we will, in a
moment, call these names in a new plot command):

> p1< −hist(nosmokedata)
> p2< −hist(smokedata)

Now we will plot both histograms together, on the one plot. But in order
to do that we will:

• ensure that both histograms are plotted over the same range

• color the histograms in different colors

• make one of the histograms transparent, so we can see both histograms
on the same plot.

• remove all labels from the histogram plots

• add in a new set of lables at the end.

One of the options of the plot command is xlim=c(a,b), where “a” and “b” are
limits on the data ranges that includes the min and max of both data sets (so
we can see all of both histograms on the same scale). We make “a” the smaller
of the minimum of the nosmoke data and the smoke data, and similarly we
make “b” the larger of the maximum of the nosmoke data and the smoke data:
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> a< −min(min(nosmokedata),min(smokedata))
> b< −max(max(nosmokedata),max(smokedata))

Now we can plot the two histograms one over the other, with the first light
blue, and the second light red and transparent - the "add=T"option - to allow
the first histogram to show through:

>plot( p1, col=rgb(0,0,1,1/4), main="", sub = "", xlab="",
xlim=c(a,b)) # first histogram

>plot( p2, col=rgb(1,0,0,1/4), main="", sub="", xlab="",
xlim=c(a,b), add=T) # second histogram

< −title(main= "Histograms of nonsmoke and smoke data",
xlab= "nosmoke and smoke data", ylab="Frequency")

The "main","sub"and "xlab"are set to empty in the two histogram plots
so that there is no main title, sub-title, or x-axis label on either of those plots.
Then the "label"command adds in the labels we want on the joint plots.

The # first histogram, # second histogram statements are just non-functional
comments to remind us which histogram is which.

This gives the following output, with the overlap colored light purple:
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4.3 Smooth histograms
The term “smooth histogram” is something of a misnomer: what we are

really going to do is to find a smooth approximation to the histogram of a given
data set. The background to constructing a smooth histogram is a little com-
plicated: it involves critters known as kernel density estimations. However, the
implementation in R is very simple.

The command “density()” will construct a kernel density apporxiamtion to a
set of data, and then the “plot()” command will plot a smooth approximation
to the hisotgram of the data:

> plot(density(“data”))

We can compare two, or more, smooth approximations to histograms on the
one plot - which is viusally very useful - by using the “sm.density.compare()”
function. This is part of the “sm” package, so you will need to install the pack-
age and call it into the active library.

See: How to Compare Distribution by Using Density Plots in R for more details.
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Summary statistics

5.1 Five-number summary

5.1.1 A single numeric data set
A five-number summary of a list of numeric data values gives:

• The median of the data

• The upper and lower quartiles of the data

• The minimum value of the data

• The maximum value of the data

The median of a numerical data set is a number m such that the number of
data points less thanm is the same as the number of data points greater thanm.

For an odd number of data points, the median is chosen to be the middle
data point, while for an even number of data points, the median is chosen to
be the average of the two data points nearest the middle of the data.

The lower quartile splits the data below the median in the same way as the
median splits the whole data set, and the upper quartile splits the data above
the median in the same way.
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Amore formal definition of the median of a set of numerical data (x1, . . . , xn)
is that it is the number x̃ that minimizes

|x1 − c|+ . . .+ |xn − c|

as a function of c. In other words, for all c we have:

|x1 − x̃|+ . . .+ |xn − x̃| ≤ |x1 − c|+ . . .+ |xn − c|

The five-number summary is implemented in R as follows:

> summary(data)

where “data” is the data of numerical values. For example, for the birth-
weight data for the non-smoking mothers we have:

> summary(nosmokedata)

with output:

Min. 1st Qu. Median Mean 3rd Qu. Max.
55 113 123 123 134 176

Note that the “five-number summary” contains the mean as well as the other
information (so it’s really a six-number summary!)

5.1.2 Two - or more - numeric data sets
When we have two data vectors - such as the baby birthweights for non-

smoking and smoking mothers - it is hepful to see their five-number summaries
side by side. To achieve this we can make a data frame by combining the two
data vectors.

However ... when the data vectors are of different lengths - as they are in
the case of the baby birthweights for non-smoking and smoking mothers - we
need something extra to combine these data vectors. That something extra
is the rbind.fill() command from Hadley Wickham’s plyer package. The name
“plyer” is pronounced “PLIER” as in the following tool (a pair of pliers):
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That is because, as Hadley Wickham writes:

“plyr is a set of tools for a common set of problems: you need to split
up a big data structure into homogeneous pieces, apply a function
to each piece and then combine all the results back together.”

So we need some “pliers” to join data vectors of different lengths!

To get these tools we need to install the plyr package:

> install.packages('plyr')

Now we can load the plyr package using the library() command, and join the
non-smoking and smoking data vectors in a single data frame by using the
rbind.fill() command:

> library(plyr)
> combined<-rbind.fill(nosmokedata,smokedata)

This has the effect of creating a data frame with two columns, each of which
is as long as both data vectors combined. The first column contains all the
non-smoking data, followed by a string of NA. The second column contains a
string of NA as long as the non-smoking data, followed by the smoking data.
We can see the beginning of this by looking at the structure of the data frame:

> str(combined)

with output:
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'data.frame': 1226 obs. of 2 variables:
$ nosmokedata: int 120 113 123 136 138 132 120 140 114 115 ...
$ smokedata : int NA NA NA NA NA NA NA NA NA NA ...

Now we can apply the summary() command to this data frame to get a side by
side summary of the non-smoking and smoking data:

> summary(combined)

nosmokedata smokedata
Min.: 55 Min.: 58.0
1st Qu.: 113 1st Qu.: 102.0
Median: 123 Median: 115.0
Mean: 123 Mean: 114.1
3rd Qu.: 134 3rd Qu.: 126.0
Max.: 176 Max.: 163.0
NA’s: 484 NA’s: 742
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5.1.3 The fivenum() command
A five-number summary can also be calculated using the following R com-

mand:

> fivenum(data)

with output:

[1] 55 113 123 134 176

Note that this is indeed a five-number summary, but unlike the summary()
command fivenum() does not include headers for the numbers.

Occasionally, these two different commands for calculating five-number sum-
maries will give slighlty different results. The reason is the different ways that
the two commands calculate the 1st and 3rd quartiles (for which there is no
entirely agreed-upon definition by data analysts). For a fuller discussion of this
issue see:

Exploratory Data Analysis: The 5-Number Summary - Two Different
Methods in R by Eric Cai.

The five-number summary was first used by John Wilder Tukey:

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA.

so it is often called Tukey’s five-number summary.

Prior to Tukey, Arthur Lyon Bowley used a seven number summary, consisting
of the deciles in addition to the median, upper and lower quartiles, and the
minimum and maximum:

Bowley, A. L. (1915). An elementary manual of statistics. PS King son,
Limited.

5.2 Box plots
Box plots give more information than a five-number summary, but less in-

formation than a histogram. In a box plot, the bottom of the box indicates the
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lower quartile, the top of the box indicates the upper quartile, and the median
is shown by a line drawn through the box;

The R command boxplot() will create a simple boxplot graphic from a data
vector or a data frame. We apply it to the combined non-smoking/smoking
data frame:

> boxplot(combined)

to get the output:

This is as fine as a simple black and white box plot with no labeling on the
vertical axis. To include a label simply use the "ylab"option in boxplot():

> boxplot(combined,ylab="Birthweight (ounces) ")

to get the following output with the label on the vertical axis:
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We can add color to our boxplots by using the "col"option in boxplot():

> boxplot(combined, ylab="Birthweight(ounces)",
col=c("royalblue2","red"))

which gives us the colored boxplots below:

Earl F. Glynn of the Stowers Institute for Medical Research posted a PDF
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of color names and RGB values for colors in R (24 May 2005). It’s a very useful
tool to use when experimenting with color in plots.

You can find more information on creating differing styles of box plots at Quick
R and R-bloggers.
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5.3 Violin plots
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Chapter 6

Standard scores & their
applications

6.1 Mean & standard deviation

6.1.1 Mean

6.1.2 Standard deviation

The standard deviation σ of a data set X:={x1, . . . , xn} is the square root
of the average value of (X − µ)2:

σ =
√
E((X − µ)2) =

√√√√ 1

n

n∑

i=1

(xi − µ)2

Note: many statisticians will make a distinction between a sample, X, from
a larger population, and the case when the data X is the entire population. In
the former case they will replace the factor 1

n with 1
n−1 . This has to do with

the somewhat esoteric notion of degreees of freedom.
For a data analyst, particularly those for whom the data sets are large (i.e. n
is a large number), the difference is not particularly important.
This issue has been discussed by some of the best applied statisticians on the
planet (see, for example, Terence Speed, IMS Bulletin) and the sensible ap-
proach seems to be: it doesn’t much matter! As a result we will always calcualte
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the standard deviation (sample or whole population) from the definition in the
highlighted box above.
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6.2 Standard scores
The standard score (also known as the z-score) of a data point xi from a

data set X:={x1, . . . ,n } is z := xi−µ
σ .

Standard scores are a useful way to rank data when it is important for us
to see how far individual data points are from the mean (as measured in units
of standard deviation). For example,...

We can calculate the standard scores for each of the points in this data set
using the scale() function:

6.2.1 The average value of z & z2

Given a data set X = {x1, . . . , xn}, the average value E(z) of the standard
scores xi−µ

σ is 0:

E(z) = E(
X − µ
σ

) =
E(X)− µ

σ
=
µ− µ
σ

= 0

and, similarly, the average value of z2 is 1:

E(z2) = E(
(X − µ)2

σ2
) =

E((X − µ)2)

σ2
=
σ2

σ2
= 1

We might expect that the average values of z3, z4, . . . are equally uninspiring.
However, as we shall see in the next two sections, E(z3) and E(z4) tell us a lot
about the shape of the distribution of a data set.
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6.3 Skewness
The average value E(z3) of the cube z3 of the standard scores z = xi−µ

σ is
called the skewness of the data set X = {x1, . . . , xn}.

The skewness, as we shall see, is a measure of the symmetry, or lack of it,
of the distribution of the data. It is not the only such measure of symmetry,
but it is used widely.

To get R to calculate the skewness of a data vector we need to install the
"moments"package:

> install.packages('moments')

With the moments package loaded, we can calculate the skewness of our non-
smoking data, for example:

> library(moments)
> skewness(nosmokedata)

with output:

nosmokedata
-0.1869841

6.3.1 What is skewness telling us?
How can we see that skewness is related to the symmetry of data?

The skewness of a data set X = {x1, . . . , xn} is the average value E(z3) of
the cube z3 of the standard scores z = xi−µ

σ . What do the values of z3 have to
do with symmetry?

The standard score (= z-score), z = xi−µ
σ , of a data point xi tells us how

far away xi is from the mean, µ, of the data, as measured in units of standard
deviation, σ.

In the table below the negative z-scores are colored yellow and the positive
z-scores are colored blue.
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z z3 Relation of z3 to z
-2 -8 ← z3 more negative than z

-1.75 -5.35938 ← z3 more negative than z
-1.5 -3.375 ← z3 more negative than z
-1.25 -1.95313 ← z3 more negative than z
-1 -1 ← z3 = z

-0.75 -0.421875 ← z3 less negative than z
-0.5 -0.125 ← z3 less negative than z
-0.25 -0.015625 ← z3 less negative than z
0 0 ← z3 = z

0.25 0.015625 ← z3 less positive than z
0.5 0.125 ← z3 less positive than z
0.75 0.421875 ← z3 less positive than z
1 1 ← z3 = z

1.25 1.95313 ← z3 more positive than z
1.5 3.375 ← z3 more positive than z
1.75 5.35938 ← z3 more positive than z
2 8 ← z3 more positive than z

Note that the z-scores that lie between -1 and -1 give rise to cubes that are
much smaller in size.

As the z-score gets much bigger than 1, or much less than -1, so the cube
gets very much more positive or negative respectively.

So, if the data is distributed asymmetrically about the mean then the skew-
ness, as the average of the z3 values, will be either positive or negative, the
more so as the distribution is more skewed one way or the other.
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6.4 Kurtosis
The average value E(z4) of the 4th power z4 of the standard scores z = xi−µ

σ
is called the kurtosis of the data set X = {x1, . . . , xn}.

With the moments package loaded, we can calculate the kurtosis of our non-
smoking data, for example:

> library(moments)
> kurtosis(nosmokedata)

with output:

nosmokedata
4.03706

6.4.1 Kurtosis of normally distributed data

6.4.2 What is kurtosis telling us?
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Distance from the mean

7.1 Empirical estimates

7.1.1 The standard score function

For a given data set X = {x1, . . . , xn}, with mean µ and standard deviation
σ, we can compute and tabulate, or plot, what fraction of the data lies within
k standard deviations from the mean. we do this by utilzing the following
function of k:

Φ(k) :=
#{xi : |xi − µ| ≤ kσ}

n

We call Φ the standard-score function (also referred to as the z-score func-
tion). This is because, for each k ≥ 0,Φ(k) tells us what proportion of data
points have the size of their standard-score (= z-score) ≤ k.

7.1.2 Implementation in R

We will see how to implement the standard score function Φ in R.

To compute Φ(k) we need to know both the data and k. So, strictly speaking,
Φ is a function of two variables: the data and k.

Φ<-function(data,k)

59
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7.1.3 Examples
Here are some examples of what the standard score function looks like for

different data sets:

7.2 Theoretical inequalities & their application
We discuss Chebyshev’s inequality, and the Vysochanskij-Petunin inequality

which is a refinement of Chebyshev’s inequality for data with only one mode
(otherwise known as unimodal data). It is more or less obligatory to mention
these inequalities when discussing exploratory data analysis, because they they
give some broad estimates of the proportion of the data within a given number of
standard deviations from the mean. However these inequalities are probably of
more theoretical than practical usefulness: we discuss them here in the context
of actual data sets so you can get a feel for what the inequalities say in practice.

7.2.1 Chebyshev’s inequality
We will phrase Chebyshev’s inequality for the distribution of a data set

X = {x1, . . . , xn} (although it can, and probably should, be stated as a more
general probability statement about random variables)

Let µ and σ denote the mean and standard deviation of the data set X =
{x1, . . . , xn}. Then, for all real numbers k ≥ 1:

#{xi : |xi − µ| ≥ kσ}
n

≤ 1

k2

When k =
√

2, for example, Chebyshev’s inequality states that

#{xi : |xi − µ| ≥
√

2σ}
n

≤ 1

2

That is, no more than half the data points can be more than
√

2 ≈ 1.414 stan-
dard deviations from the mean.

When k = 4.5, Chebyshev’s inequality states that
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#{xi : |xi − µ| < 4.5σ}
n

≥ 1− 1

4.52
≈ 0.95

which says that approximately 95% of the data points are within 4.5 standard
deviations of the mean, no matter what the distribution of the data.

Chebyshev’s inequality applies to any data set whatsoever, but is generally more
informative for highly skewed data. An example of a highly skewed data set
is the collection of large Danish fire insurance claims, January 3, 1980 through
December 31, 1990. This data is available - as a data vector - in the R package
evir.

We install 'evir', load the library, and examine the structure of the data
named 'danish':

> install.packages('evir')
> library(evir)
> str(danish)

with output:

atomic [1:2167] 1.68 2.09 1.73 1.78 4.61 ...
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- attr(*, "times")= POSIXt[1:2167], format: "1980-01-02 19:00:00" "1980-
01-03 19:00:00" "1980-01-04 19:00:00" ...

The phrase “atomic [1:2167]” means simply that the this is a data vector (oth-
erwise known as an atomic vector, as distinct from a data-frame). The second
line refers to the fact that the data was collected in time and that those times
are also recorded, along with the data. This does not mean that the data isn’t
a simple data vector whose descriptive statistics we can compute:

> summary(danish)

with output:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.321 1.778 3.385 2.967 263.300

and

> mean(danish); sd(danish); skewness(danish); kurtosis(danish)

with output:

[1] 3.385088
[1] 8.507452
[1] 18.73685
[1] 482.198
attr(,"method")
[1] "excess"

This gives a mean µ = 3.385088, a standard deviation σ = 8.507452, a very
high skewness of 18.73685, and a whopping kurtosis of 482.198 + 3 = 485.198.
The reason for the “+3” in the kurtosis calculation is that R is telling us it has
a used a method that calculates the excess kurtosis: this is the kurtosis above
and beyond the value of 3 for the normal distribution. This extraordinarily
high value for the kurtosis is not entirely unexpected, because the maximum
data point is over 30 standard deviations from the mean, as a histogram of the
data indicates visually. The histogram also shows clearly the high skewness of
the data distribution.
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What does Chebyshev’s inequality tell us about this data?

We know, from above, that approximately 95% of the data points lie within
4.5 standard deviations of the mean. This tells us in particular , that approx-
mately 95% of the data points are less than

µ+ 4.5σ = 3.385088 + 4.5× 8.507452 = 41.6686 < 42

which is substantially less than the maximum value of the data at 482.198.
Chebyshev’s inequality tells us that even though there are quite high values
for the data, because of the high skewness of the distribution, 95% of the data
points are less than 42.

A similar calculation tells us that 99% of the data points are within 10 standard
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deviations from the mean, and so are less than 89:

µ+ 10σ = 3.385088 + 10× 8.507452 = 88.4596 < 89

7.2.2 Graphical interpretation of Chebyshev’s inequality
We can graphically interpret Chebyshev’s inequality in terms of the function

Φ(k) :=
#{xi : |xi − µ| ≤ kσ}

n

which returns the proportion of the data set lying within k standard deviations
of the mean. Chebyshev’s inequality says that

Φ(k) ≥ 1− 1

k2

which, of course, is only informative for k ≥ 1.
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7.2.3 The Vysochanskij-Petunin inequality

Application to unimodal data

The Vysochanskij-Petunin inequality is a substantive improvement on the
Chebyshev inequality for data that has a unimodal distribution. “Unimodal”
means that the distribution - the empirical probability function - has only one
local maximum.

The Vysochanskij-Petunin inequality for a unimodal discrete data set X =
{x1, . . . , xn} with mean µ and standard deviation σ, says that, for all real num-
bers k >

√
8/3 ≈ 1.633 :

#{xi : |xi − µ| ≥ kσ}
n

≤ 4

9k2

Equivalently, for all real numbers k >
√

8/3 ≈ 1.633 :

Φ(k) :=
#{xi : |xi − µ| < kσ}

n
> 1− 4

9k2

When k = 3 we have 1 − 4
9k2 ≈ 0.95 so the Vysochanskij-Petunin inequality

tells us that for unimodal data, 95% of the data is within 3 standard deviations
of the mean.

Similarly, when k = 7 we have 1 − 4
9k2 ≈ 0.99 so for unimodal data, 99%

of the data is within 7 standard deviations of the mean.

This is so even if the data is highly skewed, so long as it is unimodal. For
the Danish fire inusurance claim data, which is unimodal, the Vysochanskij-
Petunin inequality assures us that 99% of the data is less than 63:

µ+ 7σ = 3.385088 + 7× 8.507452 = 62.9373 < 63

which is a substantial improvement on the estimate obtained from Chebyshev’s
inequality.

Testing for unimodality

Unimodality is easy to determine for a continuous distribution: the graph of
the probability density function will, for some point x0, be ... for x ≤ x0 and
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... for x ≥ x0:

However, for a discrete data set, which is what we get in practice, the question
of determining unimodality is not so straighforward.

(1) The dip test

The dip test for unimodality of a discrete data set was formulated by J.A.
& P.M. Hartigan in 1985:

Hartigan, J.A. & Hartigan, P.M.. (1985). The dip test for unimodality .
The Annals of Statistics, 13(1), 70-84.

The dip test is implemented in R through the 'diptest'package, which we load
into R:

>install.packages(diptest)

The 'diptest' package utilizes a function dip() that produces a dip statistic:
a number in the range [0, 1]. According to the Wikipedia article on the dip
statistic:

“Values less than 0.05 indicate significant bimodality and values
greater than 0.05 but less than 0.10 suggest bimodality with marginal
significance.”

The dip test is not especially goood at detecting obvious bi-modality when the
modes occur toward the minimum and maximum of the data set.

For example, the function Q(x) := 4x(1 − x) is known to be chaotic on the
interval [0, 1], so if we begin with a point such as 0.1 and apply Q to get
Q(0.1) = 0.36, then take this ouput of 0.36 and applyQ to getQ(0.36) = 0.9216,
and so on, over and over, 10,000 times, we get a set of points in the interval
[0, 1] that bunches up more toward 0 and 1 than it does in the middle:
Technically, these points follow a β(1/2, 1/2) distribution (= arcsine distribu-
tion):

Jakobson, M.V. (1981) Absolutely continuous invariant measures for one
parameter families of one-dimensional map. Communications in Mathe-
matical Physics, 81, 39-88.



7.2. THEORETICAL INEQUALITIES & THEIR APPLICATION 67

The data is clearly bi-modal with distinct modes near 0 and 1, yet the dip test
returns a value of approximately 0.063, which is above the recommended value
of 0.05 at which we convincingly reject unimodality:

>library(diptest)

>diptest(chaosdata)

with output:

[1] 0.06293824

The dip test, in other words, is not telling us to reject unimodality, though it
is a close call and the fact that the dip statistic is below 0.1 gives us reason to
be suspiscious that there is more than one mode. The data, on the other hand,
patently - and provably - has a bi-modal distribution.

(2) Smooth Histograms
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A smooth histogram (= kernel density estimate) of the chaos data indicates
two clear modes, one near 0 and the other near 1:

A technique for using smooth histograms to detect multiple modes in a discrete
data distribution was intoduced by B. W.Silverman in 1980:

Silverman, B. W. (1981). Using kernel density estimates to investigate
multimodality. Journal of the Royal Statistical Society. Series B (Method-
ological), 97-99.
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7.2.4 The Laguerre-Samuelson inequality

The Laguerre-Samuleson inequality applies to the distribution of a data set
X = {x1, . . . , xn} with mean µ and standard deviation σ. It says, simply, that:

|xi − µ| ≤
√
n− 1σ for all 1 ≤ i ≤ n

In other words, all the data points x1, . . . , xn lie within
√
n− 1 standard devi-

ations of the mean.

Let’s examine this inequality for the non-smoking data we have previously
used. Recall from the 5-number summary of that data that the mean is 123
ounces and the standard deviation is 17.4 ounces.There are 742 data points
and

√
742− 1 ≈ 27.2, so the Laguerre-Samuelson inequality says that every

data point lies within 27.2 × 17.4 = 473.6 of the mean 123. In other words,
since we know all the data points are positive - in fact all are 56 ounces or
greater - all the data is no greater than 123 + 473.6 = 596.6. This is a grossly
inaccurate estimate, because the maximum value of the non-smoking data is
176.

So how, you may well ask, is the Laguerre-Samuelson inequality useful?

As for Chebyshev’s inequality, the Laguerre-Samuelson inequality is more use-
ful for highly skewed distributions - those data distributions that are highly
assymetric in relation to the mean of the data.

The Laguerre-Samuelson inequality tells us that for the Danish fire insurance
claim data, all the data lies within

√
2167− 1 ≈ 46.5403 standard deviations

from the mean. In other words the maximum data point, 263.3, has to be less
than

3.385088 + 46.5403× 8.507452 = 399.324

which is not too bad a bound.

The Laguerre-Samuelson inequality can be expressed as saying that if min de-
notes the minimum value of the Danish fire insurance claims, and max denotes
the maximum, then:

µ−
√

2166× σ ≤ min < max ≤ µ+
√

2166× σ
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Substituting values for µ, min and max - but not σ - we see that

3.385088− 46.5403× σ ≤ 1.0 < 263.3 ≤ 3.385088 + 46.5403× σ

and the last inequality says that

σ ≥ (263.3− 3.385088)/46.5403 = 5.58473

which is not a bad lower bound for the actual value σ = 8.507452

The first inequality says that

σ ≥ (3.385088− 1.0)/46.5403 = 0.0512478

which, of course, is a much worse lower bound for the standard deviation.

For a general data set, the Laguerre-Samuelson inequality will always yield
the lower bounds:

σ ≥ (max− µ)/
√
n− 1

and
σ ≥ (µ−min)/

√
n− 1

for the standard deviation, where n is the number of data points. Unless the
data values grow conmmensurate with the number of data points these estimates
rapidly become useless, because the numerator 1/

√
n− 1 will dominate the size

of the data and tend to 0.
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Comparing data sets

8.1 Scatter plots
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8.2 Quantile plots
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Why is it called “R”?
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