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0. Qutline

This work investigates difference sets of sets of integers
having a positive upper density. Our primary point of view is
number theoretical, but the problem has also a topological aspect
— thesa are explained in sections 1 and 2, respectively,

Theorems denoted by letters are quotations, numbered ones

are new.

1. Arithmetical introduction

Ve shall be interested in the structure of the difference set

D(A) = A-A = {a-a': a, a'€A)
of large sets A of integers, "large" meaning for most of the
time a positive (upper) asymptotical density. If we use the same
letter A to denote the counting function

Alx) = [{a: a€A, 1<aix)|
(observe that only the positive elements have been taken into
account), then this assumption is

dA) = 1im sup A(x)/x > 0 .,
Froblems concerning the structure of these sets arose in two
different contexts, one number-theoretical and another topological
- group-theoretical, to be detailed in the next section.

It was conjectured by L. Lovdsz (and perhaps earlier by F.

Erd6s), and proved by A. Sirkézy [1978 abc]..that the difference
set A-A of an arbitrary set A of positive upper density always

contains a square, a prime-minus-one and a prime-plus-one



(generally not with the same prime),

1.1 Definition. Ve call a set H of positive integers
intersective, 1f
(A-A) NH# @,

whenaver d(A)>o0 . .

2 .
Thus the seots H1={n”) ' Hzr{p—le p prime) and

H3={p+1: P prime) are examples of intersective sets. Other

examples include: every set H that contains arbitrarily long
intervals; avery set H with the property that for arbitrary k
one can find a set B of k integers such that all the positive
elements of B-B belong to H .

We want to decide which sets are intersective and which are

not; in other terms, we are interested in the filter D generated

by the difference sets of sets of positive upper density:

(1.2) 9 = (D: DCZ, DOD(A) for some A with dA)>o )
That this 1is indeed a filter was proved by Stewart and Tijdeman
(1979]. This means that for any two sets Al i A2 with H(A1)>0
and E(A2)>0 » there is a third set A such that d(A»>0 and

| % - - =

(1.3) (A-K) ¢C {Al ﬁl) N (A2 Az) 5
The sharp inequality E(A)ga(Al)H(Az) was proved by Ruzsa [1978),

Bvery result concerning intersective sets has a dual
formulation in terms of this filter, For example (1.3) means that
the union of two non-intersective sets is not intersective either.

The result that an H containing arbitrarily long intervals is



intersective asserts that D(A) has bounded gaps if A has a
positive upper density.

Among non-intersective sets we introduce a hierarchy by
defining a measure of intersactivity.

1.4 Definition. By the measure of intersectjivity of a set H

of integers we mean the quantity
€1.5) J(H) = sup (d(A): H N (A-A)=2) .,

S0 intersective sets have &(H) = 0 .

It 1s known (Stewaft—Tijdeman (15) and Ruzsa [13]), that the
concept of intersectivity remains unchanged, even the value of
4 (H) is not affected, if we replace upper density by lower den-
sity or asymptotical density, or if we loosen the requirement to
d(ANCA+h))=0 for all h€H .

The most effective method known to prove that a set is
intersective makes use of another class of sets which we shall
call correlative.

1.6 Definition. Ve say that a set H of integers is ggg:l

relative, 1if every sequence (yn) of complex numbers, bounded
in square mean, that is satisfying

X Iynl2 = O(N)
ni{N

and having "H-correlation” 0 , that is

I y ..y = ol
n<F n+h’n

for all h€H , must have a zero "mean":

L Yy * o(N) .
n{N



THEOREM A (Kamae - Mendes France [8)), Correlative sets are

intersactive,

It 1is easy to understand why: given a set A , put Yo<r it

neEA 0 otherwise. The applicability of this criterion lies in
the less obvious equivalent formulations. i
THEOREM B (Kamae - Mendes France (8], Ruzsa [13]). Cor-

relativity is equivalent to each of the following properties:

a) Van der Corput's property: if (un) is a sequence of real

numbers such that (u“+h—un) is uniformly distributed modulo one

for every h€H , then (un) itself must also be uniformly
distributed.

b) Fositive polynomial property: for every £>0 there exists

a trigonometrical polynomial

£3.7 f(x) =c_ +

0 ch cos hx

I
h€H
such that f(0)=1 , f(x)>0 for all x and cogg ‘

c) Bvery measure A on (0, 2rn) with the property

J cos hx dA(x) = 0

for all h€H must be continuous at 0 , that is AC{0))=0 .

For applications, the form b) with trigonometric polynomials
seems to be best suited,
Kamaa and Mendes France also gave the following criterion.

THEOREM C. If the set H 1is such that for every natural

number d there is a sequence (h;d)) of elemants of H , all

{
divisible by d and such that (hj'd)u) is uniformly distributed




modulo 1 for every irrational u , then H is correlative and

a fortiori intersective.

Vhile this condition is easily seen not to be necessary, it
has the advantage that it is expressed in terms of a property that
has been investigated for most "natural” sets (primes, valuas of
polynomials &c).

Until recently, every set known to be intersective was alsn

correlative,

THEOREM D (Bourgain (5]). There exists an intersective set

that is not correlative.

The hardest part in constructing such an example is to find
a method to prove intersectivity, which is not even in a hidden
connection with correlativity; Bourgain solves this by an
ingenious combinatorial argument.

On the other hand, to check the Intersectivity of a set we
may try it on certain subclasses of the class of sets of positive
density.

1.8 Definition. A set H {is combinatorially intersective,

1f it bas the following property: no matter how we split the set
of natural numbers into finitely many classes

(1.9 N=A uU,.. ua

1 k'

somae of them must have a difference in H , that is

Hnvu (Aihki) 7z a,

Since in a partition (1.9) at least one of the sets Ai must

have a positive upper density, intersective sets are alsn



combinatorially intarsactiva.

1.10 Definition. Call a set H weakly intersective, if it

intersects the difference set of every set A with bounded gapsz,

that 1s, 1f A={a1' 22, .,.) whore always nj<inj+1<nj+Kk with

r

o Flwed K, than WNCA-M)70 .
If A has bounded (by K ) gaps and its minimal element is

a , put A1=A*a+i for 1i=1, ... K . Then clearly

Ua =X

and D(ai)=D(a) for all 1 . This consideration shows that

combinatorially intersective sets are weakly intersective. The

converse 1s also true.

THEOREM 1. The concepts of weak and combinatorial inter-

sectivity are equivalent. In other words, if the sets Al’ i g Ak

form a partition of the set of natural numbers, then there is a

‘ée. B with bounded gaps and a J§ , 1<{j<{k such that

(1.11) D(Aj) 2 DB

One can even find a B that is infinite in both directions:

B = (b )" \ ‘b -
1 4=, , ALTRL AL

while (1.,11) can be strengthened as follows: for every finite CcB

there is an integer m such that CimcA

J

Observe that (1.11) is the case |Cl=2 of this last
assertion,

On the other hand, combinatorial intersectivity does not

imply intersectivity,
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THEOREM E (Kriz (9)). There exists a combinatorially inter-

sective seat H that is not intersective; we can even have

A(H)>1/2-2 . In__ terms of difference sets, there is a set A of

density d(A)>1/2-28 such that A-A does not contain any set of

the form B-B , where B has bounded gaps.

r

The 1/2 in Theorem E 1is optimal. If d<A)>1/2 , then

(exercise) A-A=Z . If d(A)=1/2 and A-A does not contain every

Integer, say mZA-A , then it is easily shown that all multiples
of 2m are in A-A .

Ve devote sections 6-92 to a new proof of this important
result., The relation of my proof to Kriz's is discussed in §10

Let uws try now even more special sets. Arithmetical
progressions are +too special; the next 1idea 1is generalized
arithmetical progressions
(1.12) UCu, &) = {n: Jlunji<g)
with some g>0 y where the "norm" of x now is

Ixll = min ({x), 1-i{x)) ,
the distance of x from the nearest integer. For wu=1/q and
£<{1/q we obtain the set of multiples of q .

Vhile the intersectton of ordinary arithmetical progressions
is also an arithmetical progression, this does not hold for these
generalized sequences, thus it 1is worth considering a multi-
dimensional version. For

u = (ul, v ) (ui real)

(1.13) UCu, €) = {n: Jlu,nli<s for j=1, ... k)

J



These sets are well known (and easily seen) to have a positive
density, even bounded gaps, and the filters generated by them and
their difference sets are the same, since

UCu, €) € D(U(u, =)) € U(u, 2&)
Hence 1f a set 1s weakly intersective, it must intersect the
difference set of every U(u, &) , which is equivalent to saying
that it intersects every Udu, &) .

1.14 Definition. Call a set H of integers approximative, if

it intersects every UCu, &) , or in other words, if for every
real “1’ uk and &>0 there is a hEH such that
"h“j " < & ' j=1| LR k ’

Va can summarize the know implications as follows:

correlative # intersective # combinatorially intersective - approximative .

1.15 Main problem. Are combinatorial intersectivity and

approximativity equivalent?
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2. Topological intraoduction

The problem about intersective and correlative sets has also
arisen in a different context. For a non-compact topological group
G (the simplest of which, the group of integers, will be in the
focus of our interest), there exists a certain finest topology
that is coarser than the original and that makes the group bounded
(1t may not be a Hausdorff topology). This is the so called Bohr
topology, which is of primary importance to the study of almost
periodic functions and gives rise to the Bohr compactification.

"Coarser" means that our new open sets must be open in the
0ld sense; "bounded" means that if U is a new open set, G can

ba covered by a finite number of translates of VU :

(2.1) (U+a ,)

1 J

@D
]
=

J

with some a a,€G ., In general, call a set U big, if (2.1)

S

holds with suitable a a

1" Tk

Observe that for integers, this is the condition of bounded
gaps. From this aspect, +the natural set to consider is the set
of all integers, positive and negative; this fact, however, does
not affect seriously the majority of our considerations.

Now, 1in a topological group, if U 1is a neighbourhood of

O , then we can always find neighbourhoods Uk of 0, such that
U=, Uy+1 %41y + In particular, if U 1is a Bohr neighbour-

hood, then there 1is a chain (Uk) of big open sets (big in the
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sense (2.1)) such that U1=U and Uk+1_uk+1cuk for every k .

Thiz can serve as a definition of the Bohr topology.

Now the question arises whether one could reduce the number
of steps 1in this process, that 1s whether instead of an infinite
sequence, a sequence of a fixed length is suffictent. For a large
clasz of groups this is indeed the case, sae Alfsen-Holm [1] and
Landstad (10].

For commutative groups, the Bohr topology can also be charac-
terized as the coarsest topology making all the (continuous)

characters continuous. This means that we can select the sets

U(Vlh T ?‘k’ g) = {85 H’J(E,‘)‘“(E. I=1, vovy k)

As a basis of neighbourhoods, where LAY are characters

4"
and >0 . Observe that for the group of integers, the characters

are the functions

n-e , UER ,

~

and hence the basic neighbourhoods are just the sets Ulu, =)
defined in (1.13),

It was proved by Bogolyubov [3] 1in 1939 for the case of
integers, and generalized by Folner [6] for general commutative
groups, that the second difference set of a "big" set is always a
Bohr neighbourhood. Recall that for integers, "big" means boundad
gaps. In fact, Bogolyubov used the weaker concept of positive
upper density, and Folner [7] generalized this for groups using
Banach means.

Let us state Bogolyubov's theorem exactly.



- 12 -

THEOREM F. If A 1is a set of natural numbers and d(A)>0 ,

then the set

D(D(A)) = A+A-A-A

is a Bohr neighbourhood of 0 , that is, it contains an Uu, &)

of the form (1,13) with some u and &0 . R

Kriz's Theorem E 1{implies that we cannot replace the second
difference set by the first; whether this can be done 1f A has
bounded gaps remains open.

An analogous question is answered by the following classical
theorem of Steinhaus: 1{if A is a set of reals of positive
Lebesgue measure, then A-A 1is a neighbourhood of 0 .

Results of this type are often formulated with open symmetric
big sets. If G 1is not discrete, then Bogolyubov-Felner's method
yields only that A+A-A-A+V is a Bohr neighbourhood for any
neighbourhood V of 0 ; thus if A 1is open, big, symmetric and
contains 0 , then A+A+A+A+A 1is a Bohr neighbourhood of 0 . For
Integers, or in general for discrete groups, we can take V={0) ,
thus 4 copiles of A sufficg. If now we consider sets of positive
density, then three do not.

THEOREM 2. There 15 a symmetric set A of integers such that

0€EA , the positive elements of A form a set of positive density

and A+A+A 1s not a Bohr neighbourhood of 0 .

On the other hand, it must have a nonempty interior.

THEOREM 3. 1If d(A)>0 , then there is an a€A such that

A+A-A is a Bohr neighbourhood of a .

The curious possibility remains that this may also hold for



.-13,...

A-A (though I think it is very unlikely).

2.2 Problem. If d(A)>0 , may A-A have an empty interior in
the Bobhr topology?

Folner also proved that. A-A "almost" contains a Bohr

neighbourhond. 5
THEOREM G (Felner (6, 7)). If d(A)>0 , then there exists a

u and an €>0 such that the set

Uy, &)\(A-A)

has density 0 .

In terms of intersective sets, this means that 1f H inter-
sects every UCu, €) 1in a set of positive density, then it is
Intersective. From the arithmetical point of view this is of
limited interest, since most "interesting" sets have density 0 .

These problems, which are partially answered by the above
theorems, have already bean asked by F. Flor,including my 'main

problem' 1.15 (written communication).

3. Proof of Theorem 1

Assume

3.1 LEMMA. There is a subscript J , 1<{j<k , and an integer

K with the following property: for arbitrary large m, the set

-ﬁj contains a subset

(m) (m) (m) ém)

Bm = {bl i W w bm )}, b1 S <bm
(m) _(m)

of m elements with gaps at most K <(that is, b“l~b1 <K )
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Proof. Assume the contrary. Then for every J§ and K there

iz a v, (J) such that A has at most v,(K) consecutive

J J J

e2lements with gaps not larger than K . Hence every interval of

length NJ(K)=K(1+V (K)) contains a subinterval of length K

J

r

that is free of elements of AJ

Consider now any interval of length

Wl(wzi... (wk(l))... ))

1t contains a subinterval of length w_¢...) free of elements of

2
Al i this again contains a subinterval of length Wal..) free of
elements of A, and so on. Repeating this process k times, at

2
the end we obtain an interval of length 1 and free of elements

of ll, v Ak y that 1s, a number not contained in any of the

AJ y & contradiction. H

Concentrate our attention on this set A and this number

J

K . For every m, take a set Cm of 2mt]l elements

Cn = {c_m, C—m+1’ i i C—l’ EO’ Gl’ - cm} C AJ

of gaps <K .

Let gm be the class of all sets B of integers with the

properties that

(1) BCAJ+k with some integer k ,

(i) B haé 2m+1 elements, m of which are positive, m
sre negative and one is 0 ;

t311) the difference between consacwiive slements of B is



- 15 -

always at most K .

B is clearly finite, and, CpCo Pbelng a set with these

properties, it is not empty.

Now we form a graph by connecting a Bﬁgm to a B’EBm_}1 if
BCB' . Since every lavel Bm is finite and every 'vertex' at
level m 15 connected to some vertex in §m-1 » by a well known

theorem of G. Konig there is an infinite path upwards, that is, a

sequence (Bi) such that Bi€§1 and BiCB1+1 . Put
)
B= U B, .
=1 1

Since the sequence (By) 1is increasing, every finite subsat
of B is contained in some Bi y hence in some translate

T K s
o j B

4, Proof of Theorem 2

Let B be a set of natural numbers of positive density such
that B-B  is not a Bohr neighbourhood of 0 ; the existence of
such a set follows from Theorem S and the observation that the
sets Uy, &) have bounded gaps. Put

C = {4b+1: bEB) .
Clearly d(C)=d(B)/4>0 . Finally, lat
A=CUC U 0);

A will be our symmetric set,
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Ve show that A+A+A  is not a Bohr neighbourhood of 0 .
Since the multiples of 4 form a neighbourhood, if A+A+A were a
neighbourhood, so would be

(A+A+R)NCAZ) |

Observe that an element of A+4A+A can be di;isible by 4 only
if 1t belongs to C-C . But C-C=4(B-B) is not a neighbourhood,
for if we had

‘e u

C-C = 4(B-B) 2 UY(u

L ki‘-g)!
then we would also have

B_B 3 U(4U1, LR 4“&' E) »

a contradiction. B

5. Proof of Theorem 3

This will be an easy deduction from Folner's Theorenm G.
Choose a Bohr neighbourhood U=UCu, =) such that U\(A-A)

has density 0 . Let V=U(u, €/3). N can be covered by a finite

number of translates of V y S0 let

k
Nc v (V+bj)
J=1
A, having positive upper density, intersects some of the

sets Vib,  in a set of positive upper density; say, H(AJ)>0 ;

where AJ=AH(V+bJ) . Ve now show that for evary af€A

J
A+A-A-a 2 V .

Let  vEV be arbitrary. We want to find elements a
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of A such that

that is,

4. 1) (a,-a)-v = a

1 3 0g »

>

Let al run over the elements of AJ . Since

aIEV+bJ . aEV+bJ i vev ,
we have

al-a-v € V-v-Vv Cc y ,

Thus the left-hand side of (4.1) runs over a subset of U of
positive upper density. If equation (4.1) had no solution, this
would be a part of UN(A-A) which is known to have density 0 .
Since this 1is impossible, (4.1) is solvable for every v , which

Just means VCA+A-A-a . B

6. Theorem E: the modular case

In Sections 6-9 we prove Kriz's Theorem E. The crucial step

in the  proof is establishing a version for the group Zm=2/mz of

residue classes modulo m .

6.1 Definition. Let G be a commutative group. Ve call a set

HCG  k-intersective, if for every partition G = A1U...Uak of G

into k subsets we have

HN (U (A,-A )) # & .

. |

For us the interesting cases are G6G=Z or Zm ‘

6.2 MAIN LEMMA. For every £>0 and positive integer k there
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are infinitely many integers m and sets A, HcZn such that

l1A|>C(1/2-g)m , HN(A-R)=2

and H is k-intersective,

Proof. m will be the product of 2rtk odd primes:
m= p1p2"‘p2r+k ' p=p1<p2<...<pé}+k ;
r and the primes will be chosen later on.

Va identify the elements of Zrl with the vectors

a = (ai. a Dgpigpi—l '

g0 v Boapd

where a denotes the residue modulo Py Ve call a residue
b (mod pi) aven, if it iz one of 2, 4, ..., pi—l , odd, if it is
one of 1, 3, ey p1—2 , while (like in the roulatte) 0 |is

neither. The difference of two aven (resp. two odd) residues
cannot be equal to +1 .

Row let A consist of the vectors a with the property that
at most r-1 coordinates are even, and the rest is odd (none is
0 ). Let H be the set of elements with the property that at most
k coordinates are different from +1 . First we show

(A-A)MH = 7,

Indeed, let a, a'€A . Both a, a' have at most r-1 even
coordinates, thus there must be at least k+2 coordinates that
are odd in both, and the corresponding coordinates of a-a' cannot
be equal to +1 , hence a-a'fH .

Faxt we estimate the cardinality of A . Having chosen which

of the coordinates should be odd and which even, the.number of

possible choices is



thus we have

|A|/m =

-1
+k ~(2r+ +
5 (1_1/p)2r k 2 (2r+k) 2r k]

)
j=0 ¢ 4

I1f we choose r so large that

r-1 ;
-(2r+ }
g Ry [2rjk > (U-=)/2
J=0 '
and then p so large that
A=-1/p17YE 5 g

then we shall indeed have
1Al > (1/2-2)m .
Finally we show that H 1is k-intersective. To this end we
need a result of Lovdsz [11] (see also Birdny [2] for a simple
proof).

6.3 LEMNA. If we partition the r-element subsets of a set of

cardinality 2r+k into k+1 classes, some of the classes

contalns two disjoint sets,

Now, to a sat Xc{1, 2, ..., 2r+k) , |X|=r , we assign an
Q(X)Ezm by putting a,=2 1if 1€X, =1 1if 1€X . Any partitioning
of z, into k sets A, 1induces a partiftion of the subsats of
{1, ..., 2r+k) , thus by the Lemma there is an 1 , 1{1<k and sets

| X, Yc{l, ...2r+k) , xny=a

such that aX), g(Y)EAi . By XNY=2 , r coordinates of a(X)-a(Y)

are equal to 2-1=-1 , another r are =1 snd k are =0, thus
indeead a(X)-a(Y)€EH . This concludes the proof that H 1is

k-intersactive., B
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7. Theorem B: the finite case

Ve get a step nearer to Theorem E.

7.1 LEMMA. Let  Hcll, m/2)] be a set of integers. If the

residues of H form a Zk-intersective set in Zm , then H is

k-intersective.

Froof. Let
1 e k

be a partition of the set of positive integers. Ve split Zm into

2k classes as follows. Any element of Zm 15 represented by an
integer q , 14q<m, and qEAi for some 1 . Now we put q into
B21 if q<m’2 , into B if m/2<{q{m . For some § , BJ—BJ

2141
contains a residue of H , that is,

b-b'=h (mod m)
By the construction we have |b-b'|<m , thus the congruence must

be an equality. Since BJCA1 with 1=[j/2] , this concludes the

proof. B

7.2 LEMMA. For every £>0 and positive integer k there is a

finite k-intersective set H of integers such that SH)>1/2-¢ .

Froof. We apply the Main Lemma of the previous section. Let
H* be a 2k-intersective set of residues modulo m for a suitable

m , such that H*N(A-A)=2 for an Aczm y  JAI>C(1/2-8)m . Let

H = {h: 1<h{m/2, h or -h is represented in H* )

By the symmetry of difference sets and Lemma 7.1 we conclude that



- 21 -

H 1is k-intersective. Now let B be the set of positive integers
whose residue modulom 1is in A . We have
d(B)=|A|/m>1/2-= , HAD(B)=4 ,

which shows §(H)>1/2-¢ . B

8. Properties of the measure of intersectivity

To combine the finite k-intersective sets of the pfevious
section into a single infinite combinatorially intersective one
we need some properties of the intersectivity measure.

8.1 LEMMA (Finitariness). For every set H of integers and

>0 there is a finite H'CH such that

d(H') < d(H)+= .

8.2 LENMA. For every natural number x and set H of

integers there is a set of integers AcCl1, x] such that

(A-M) NH=2,, Al > §UDx .

8.3 LEMMA. For an arbitrary set H and natural number m we

have &(mH)=8§(H) .
For proofs of lemmas 8.1-8.3, see Ruzsa [(12].

8.4 LEMMA. Let Hl' H2 be nonempty sets of integers, H

finite. Ve have

(8.5) Iim inf §CH UnH,) > 2§CH
mn

l)é(Hg) ‘

Proof. Let A2 be a sequence of density d(Hz) whose

difference set 1s disjoint +to I-I2 . (Such a set exists, see

Ruzsa [12]; actually, for our present reasoning a set of upper

density 6{H2)~E would also do.)
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Let M be the m;ximnl elepent of Hl , m=m-2§ and

Acti, m'] a set whose cardinality is
1A,) 2 $¢Hm

(see Lemma 8.2), D(Al)nﬂl = 7,

r

Let h and h

1 be arbitrary elements of Hl , resp. H2 ;

2

Let A be the set of natural numbers of the form a=xtmy , where

€ £
aither x,Al and y-A2 , or xEA1+h1 and yEA2+h2 . Observe that
Aln(a1+h1) = Azn{A2+h2) = @2
by their very definition. Consequently
1811 24
(8.6) d(Ad) =2 2[1-==
m d(Ay) > 4[1 n] §CHDSH,)

if we can now show that D(A) is indeed disjoint to HIUul!2 ,

then (8.6) immediately yields (8.5).

To see this, choose two elements of A, aj=xj+myj (j=1, 2).

Assume first al—aQEHl . Then

m{yzﬂyl) = xl—xz—h .

x €01, m']l , the absolute value of the

Since Jhi<HK and Xy Xy

right hand side is smaller than m , thus in order to be divisible—x2 €

by m it must be 0 . This means

(8.7 Yy = Vg s x

Recall that the elements of A are of two types:

(1) x€A_, yE€A, i (2) xEA

2 +h1, yEA2+h ‘

1’ 1 2

Now {f a a. are of the same type, then the second equation

1’ 2



- 23 -

of (8.7) 1is impossible; if they are of different types, then the

first. This contradiction shows al—azeﬂl .

Assume now a1+a2=mh , hEHz . Then

m{yl—yz—h) = XX,
Again, the right hand side is less in absolute value than m ,
thus both sides must be equal to 0 . This leads to a contra-

diction in the same way as (8.7). B

9. Completion of the proof

9.1 LEMNA., If H 1s k-intersective, so is mH .

Proof. Let A, A, be a partition of N . Fut
B1 = {n: mnEAi}
(Bl, § Wi Bk) is a partition of N as well. By assumption, H
intergects D(Bi) for some 1 , and then mH intersects the

corresponding D(Ai) . B

Proof of Theorem E. Choose a saquence (ek) of numbers,

0<2k<1 . For each k , let Hk be a k-intersective set with

9.1 G{Hk) > (l*Ek)/2

(Lemma 7.2).

¥e define a sequence of integers (mk) recursively. Let

m =1 ., VWrite

Ly

i
o

=

j= =]

L



Given My vov B 4 v select m. so that

9, = §¢( — 5
2.2) '“Lk) d 'Lk—lumkﬂk) > 2(1 Ek)ﬁ(Lk_l)G(Hk) H

this is possible by Lemma 8.4,

(9.1) and (2.2) yield _ .

.2
§CLp) > A-ep® s, ),

thus by induction

k 2 k
dCLy > W A-e %Ly L T (-g ye
j=2 2 §=1 ]
Let y
™ )
H= U L, = U (mHu)
gzt 3 gog 1

By Lemma 8.1 we have

: L 5 2
§(H) = linm G(Lk) > 5 T -e,)° ,
j=1

hence by a suitable choice of our (Ek) we can achleve

SCHY >1/2-¢ .

On the other hand, since Hk was k-intersective, so is

mka . Consequently H 1is k-intersective for every k , that is,

it is combinatorially intersective., B
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10. Borsuk, Lovédsz, Kriz, and I

In the first version of the paper (spring 1985) I had the
following result, which is weaker than Theorem E.

For every >0 there is an approximative set H of positive

integers such that J&§(H)>1/2-¢ .

For u,, ...ukEZm and >0 put
L K¢ = . 4
J.uj, uk. £) (nezm. HnuJ/mH’E for all 1{j<k)
Call a set chm (k,e)-approximative, if it intersects avery
U(ul. ...uk. £)

The crucial step was a modular version, like the Main Lemma

in §6:

For every positive integer kX and )0 there are infinitely

many integers m such that there are sets H, Aczm ,

IAI>(1/2-e)m , (A-A)NH=2 ,

while H 1is <(k,z)-approximative,
The rest was essentially the same as here in §57-9.

This was proved in the following way. Take LSRR €Z  and

for xEZm put

f(x) = e(xqj/m) , g{x) = L ll+e(xmj/m)l ;
where e(t)=exp 2nit . Ve have always
£ +f(y) | £ glx-y) ,
thus the sets
A = {x: Re f(x)>L) , H = {x: g(x)<L)

satisfy (A-A)NH=2 .



Now, for a "typical" chaice of uJ , the functions e(an/m)
are "almost independent”, +thus |A|~m/2 1if L=0(vq) . 1 proved
the (k,e)-approximativity of H (for suitable choice of m, L,

9, and for almost all choices of the coefficients 2y ) by a

r

complicated probabilistic-analytic argument.

I wanted to prove that this H 1is also k-intersective. For

px) = (e(xalfm), ...e(xaq/m)) € ’1'r .

where T = {z: |z|=1) is the unit circle. Again, for a 'typical’

choice of a the values ¢(x) are 'dense’' on the torus 'Tr "

J

Obsererve that a small value of g(x-y) means that «¢(x)
and 9(y) are almost antipodal. The intersectivity of H would

follow from the following assertion.

STATEMENT. If we split the torus 17 into k sets X

1’
...Ik » then some set Ij contains two points §={x1, ...xq) and
1=<y1. ...yq) that are almost antipodal in the sense that xj=~yj

for all but L values of J , where L=L(k) depends only on k
and not on q .
This sounds very similar to Borsuk's famous theorem [5].

If we cover the unit sphere

.I.
5, = e xi=1)

with k+1 closed sets, then ons of the sets contains two anti-

podal points.
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For a long time 1| tried, 1in vain, to find a direct link
between the above Statement and Borsuk's theorem. Finally I
realized that it follows from Lovdsz' theorem, here reproduced as
Lemma 6.3, 1in the following way. Let q=2r+k' , where k'sk or

k-1 (the case qfk 1s obvious). Ve map the sets Xc{l, 2, ...q)

into T4 by putting

$(x) = (xl. .xq) g xJ =1 1f JEX , -1 otherwiss.
If IX|=|Y|=r and XNY=2 , then W(X) and W¥(Y) are antipodal
with the exception of k'<{k coordinates, hence the Statement

follows from Lemma 6.3 with L=k .

The piquancy of the proof is that both Lovdsz and Bardny use
Borsuk's theorem to obtain Lemma 6.3; the connection is parti-
cularly explicit in Bdrédny's version.

Problem. Vhat 1is the real size of L(k) ? I have a lower
bound ¢ log k .

Having reduced everything to a combinatorial result, it was
a natural idea to remove the analytical setup and replace the
functions f and g by a discrete argument, as presented in 56.
At this point, as I felt very satisfied, 1 learned that I had been
preceded by Kriz, and that his proof also applies Lovdsz' Lemma
6.3.

This is not the only similarity between the proofs. Though he
has a completely different perspective and terminology, there

seems to be a strong strategical parallelism. Both pronfs start

with a multidimensional version; Kri{z works in gk , Wwhich cor-
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responds to my handling of Zrl as a direct products of the

Zp (§6). The next step is a reduction to one dimension (87),
J

then a combination of two sets 1into one with a small loss in
4 (H) (§8), finally a combination of infinitely many sets (59).
In my approach, the second step is simpler. Step 4 is seemingly
longer 1in (9], but this is due to the fact that Kriz also proves
(as Theorem 3.4) Stawart and Tijdeman's [(15] result that in the
definition of d(H) (see §1) one can {interchange upper and

asymptotical density.
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