Lecture 11

Chapter 26

Capacitors in Series and Parallel

Today we are going to discuss:

Chapter 26:

Section 26.5

In its simplest form, a capacitor consists of a pair of parallel metal plates separated by air/insulating material.

Parallel-plate capacitor

Let's find capacitance of a parallel-plate capacitor

<u>We need to find Q and ΔV :</u>

The electric field between the plates is $E = \frac{\eta}{\varepsilon_0} = \left\| \eta = \frac{Q}{A} \right\| = \frac{Q}{\varepsilon_0 A} \quad \begin{array}{l} \eta - \text{surface} \\ \text{charge density} \end{array}$

 $Q = \varepsilon_0 A E$

The potential difference between plates:

 $\Delta V_C = Ed \quad (Eq.25.26)$

This gives the capacitance:

 $C \stackrel{\text{def}}{=} \frac{Q}{\Delta V_C} = \frac{\varepsilon_0 AE}{Ed} \quad \square \qquad C =$

Capacitance is a purely geometric property of two electrodes because it depends only on their surface area and spacing.

ConcepTest

A parallel-plate capacitor initially has a voltage of 400 V and stays connected to the battery. If the plate spacing is now doubled, what happens?

Varying Capacitance

A) the voltage decreases

- B) the voltage increases
- C) the charge decreases

D) the charge increases

E) both voltage and charge change

Since the battery stays connected, the potential difference

must remain constant! (A, B and E are out)

Since $C = \frac{\varepsilon_0 A}{d}$, when the spacing *d* is doubled, the capacitance *C* is halved.

And since $C \stackrel{\text{def}}{=} \frac{Q}{\Delta V_C} \Rightarrow Q = C\Delta V$, that means the charge must decrease.

Follow-up: How do you increase the charge?

Parallel-plate capacitor

$$C=\frac{\varepsilon_0 A}{d}$$

We can increase capacitance by increasing area A by making "a roll of metal and insulator"

Parallel-plate capacitor/keyboard

The keys on most computer keyboards are capacitor switches. Pressing the key pushes two capacitor plates closer together, increasing their capacitance.

Combinations of Capacitors

Wake me up on Friday!

In practice, two or more capacitors are sometimes connected together. The circuit diagrams below illustrate two basic combinations: parallel capacitors and series capacitors.

A method of an equivalent capacitor

The equivalent capacitance is the capacitance of the single capacitor that can replace a set of connected capacitors

without changing the operation of the circuit

Capacitors in Parallel

Consider three capacitors connected in parallel.

PHYS.1440 Lecture 11 *A. Danylov* Department of Physics and Applied Physics UMASS

ConcepTest

A parallel-plate capacitor initially has a potential difference of 400 V and is then disconnected from the charging battery. If the plate spacing is now doubled, what is the new value of the voltage?

Once the battery is disconnected, *Q* has to remain constant, since no charge can flow either to or from the battery.

Since $C = \frac{\varepsilon_0 A}{d}$, when the spacing *d* is doubled, the capacitance *C* is halved.

And since
$$C \stackrel{\text{\tiny def}}{=} \frac{Q}{\Delta V_C} \Rightarrow Q = C \Delta V$$
, that means the

voltage must double.

