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Preface

This is an undergraduate level introduction to classical number theory, covering
traditional topics (from discoveries of the ancient Greeks, to the work of Fermat,
Euler, and Gauss), along with a few sections that outline newer applications of
number theory made possible by 20th century computer science.

While familiarity with calculus and linear algebra may be helpful for reasons of
mathematical maturity, most of the material in this book is accessible to read-
ers having a solid background in high school level mathematics. Sections are
kept sufficiently short and focused for single session of reading. The first 26
sections (omitting sections 13, 14, and 17 with no loss of continuity) form a core
introduction to the subject, providing the basic tools needed for further study.
Selections can be made from among the remaining sections (13, 14, 17, 27–33) for
applications and further topics. The book is also designed with extracurricular
readers in mind: a student using this textbook for a reading course can read
every section in the order provided.

As with all mathematical studies, the exercises are of paramount importance.
Section 35 contains hints, simple answers, and, in some cases, full solutions to
selected exercises.

The first edition of any textbook is likely to want correction and refinement. I
hope to find and correct errors and to fill some omissions for a more polished
future edition. Comments are most welcome.

I am grateful to my students at UMass Lowell for their patience with earlier
drafts of this book, as well as for their comments and corrections. I am also
very grateful to Tanya Khovanova for carefully proofreading several sections
and for making many detailed and helpful suggestions. Finally, I am grateful
to Michael Artin, for introducing me to this subject, and to Glenn Stevens, for
showing me that classical number theory is a deep, exciting, and accessible part
of mathematics that every student of the sciences can enjoy.

Dan Klain
June 2017
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1 What is number theory?

At first glance the term “number theory” seems mysteriously broad. Isn’t all
of mathematics about numbers? Is this just another name for mathematics in
general? A more cautious reader might note that geometry and logic (for ex-
ample) aren’t really about numbers, even if numbers are sometimes used. But
even leaving out these topics, the “study of numbers” still sounds overly broad.
Indeed, the term number theory is traditional, and refers exclusively to the study
of whole numbers; that is, the numbers we count with:

1, 2, 3, 4, . . .

along with the daring addition of 0, and, when convenient, the negative integers.
Excluded from consideration are fractions, real numbers, and complex numbers.
Those abstractions, while called numbers in ordinary language, are traditionally
studied in courses on Analysis.

While the whole numbers have their origins in counting, number theory is not
about counting either. The study of advanced techniques in counting1 is a field
of mathematics all its own, called Combinatorics.

Number theory then is the pure study of whole numbers and their relations to one
another, especially with regards to addition and multiplication, both of which
will always transform whole numbers into whole numbers. For a sense of what
this means, consider the following questions about whole numbers:

• Is the sum of two odd numbers even or odd? What about the product?

• If we divide n by 3, we have 2 left over. If we divide the same number n by 17,
we have 9 leftover. What are the possible values for n?

• Can a power of two ever end in the digits “...324”?

• When can a positive integer n be written as a sum of two integer squares?

• Is the number 1 + 1
2 + 1

3 + · · ·+ 1
n ever a whole number if n > 1?

• Does the equation 12x − 57y = 39 have integer solutions x and y? What if 39 is
replaced with 38?

Number theory, as described so far, may seem a rather abstract topic to spend
months (years?) studying. Indeed, because of its ostensible purity and great dis-
tance from industrial or scientific applications, number theory was once known
as the “Queen of Mathematics.”

1For example, if four married couples are seated at a round table, how many ways can they be
arranged, alternating by gender, so that no one sits next to his or her spouse?

7
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8 1 What is number theory?

This is no longer the case. While still considered an exemplar of abstract math-
ematical elegance, number theory now provides concrete applications to infor-
mation theory and computer science, including cryptography, data compression,
error-correcting codes, and pseudorandom number generation, to name just a
few examples.

All the same, the most compelling reason to study number theory is for its
unique combination of simplicity and mystifying complexity, which provides a
setting for mathematical beauty, surprise, and the sudden clarity that can be so
thrilling to those who enjoy mathematics.
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2 Integers and arithmetic

Our primary setting is the set Z of integers; that is, whole numbers, positive
and negative:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, . . .}.

It is also convenient to denote by N the set of natural numbers; that is, the
positive integers:

N = {1, 2, 3, 4, 5, 6, 7, 8, . . .}.

We will assume familiarity with properties of the integers that the reader should
recall from grade school. In particular, the integers have an ordering, and they
are closed under addition, subtraction, and multiplication. Moreover, we will
also assume that N is closed under addition and multiplication.

The following identities summarize the algebraic properties of the integers.

Theorem 2.1 (Basic properties of integer arithmetic).
Let a, b, c ∈ Z.

• a + b = b + a (addition is commutative)

• a + (b + c) = (a + b) + c (addition is associative)

• a + 0 = a (zero is the additive identity)

• a + (−a) = 0 (every integer has an additive inverse)

• ab = ba (multiplication is commutative)

• a(bc) = (ab)c (multiplication is associative)

• a · 1 = a (1 is the multiplicative identity)

• a(b + c) = ab + ac (distributive law)

• If ab = 0 then either a = 0 or b = 0 (or both). (integral domain)

The last property in the list above implies the following Cancellation Law.

Proposition 2.2. Let a, b, c ∈ Z, and suppose that a 6= 0. If ab = ac then b = c.

Proof. Since ab = ac, we have ab− ac = 0, so that a(b− c) = 0. Since a 6= 0, the
last property in Theorem 2.1 implies that b− c = 0, so that b = c. q

Notice what we did not say in the proof above. We did not talk about “dividing
both sides by a”. Instead, the proof used properties of addition, subtraction,

9
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10 2 Integers and arithmetic

and multiplication, without any direct reference to division. The reason for this
circumlocution will become evident as the theory unfolds.

§

For a, b ∈ Z we write a < b if a is less than b. Denote a ≤ b if either a is less than
b or a = b. The following identities summarize some of the order properties of
the integers.

Theorem 2.3 (Order properties of Z).
Let a, b, c ∈ Z.

• a ≤ a (reflexive property)

• If a ≤ b and b ≤ a then a = b (antisymmetric property)

• If a ≤ b and b ≤ c then a ≤ c (transitive property)

• If a, b ∈ Z then a ≤ b or b ≤ a (total ordering)

• If a ≥ b then a + c ≥ b + c.

• If a ≥ b and c ≥ 0 then ac ≥ bc.

• If a ≥ 0 and b ≥ 0 then a + b, ab ≥ 0. (closure of N)

The assertions of Theorem 2.3 should already be familiar to the reader, and
we will not belabor them. However, the next property of the integers, while
fundamental, is not generally emphasized in grade school.

The Well-Ordering Principle:
Every non-empty subset of N contains a minimal element.

Note that Z does not satisfy the well-ordering principle. The set of all integers
has no minimum. However, the well-ordering principle still holds for the set
N ∪ {0} of non-negative integers: If S ⊆ N ∪ {0} is nonempty, either 0 ∈ S, in
which case 0 is the minimum, or 0 /∈ S, in which case S ⊆ N, and the original
well-ordering principle supplies a minimum for S.

The well-ordering principle enables us to use mathematical induction to prove
facts about the integers.

Theorem 2.4 (The Principle of Mathematical Induction). Let S ⊆ N such that
1 ∈ S, and such that, whenever n ∈ S, we have n + 1 ∈ S as well.

Then S = N.

Proof. Denote by T the complement of S in N; that is,

T = N− S = {n ∈N | n /∈ S}.
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2 Integers and arithmetic 11

Suppose that S 6= N. In this case the set T is not empty, so the well-ordering
principle implies that T has a minimal element t. Since 1 ∈ S, we know that
t 6= 1, so that t− 1 is a positive integer. Since t is the minimum of T, the integer
t− 1 /∈ T, so that t− 1 ∈ S. Set n = t− 1. The hypotheses of the theorem assert
that, since n ∈ S, we have t = n + 1 ∈ S as well. So t ∈ S, contradicting the fact
that t ∈ T. It follows that T cannot have a minimal element, so that T = ∅ and
S = N. q

Theorem 2.4 is often used to prove that a property holds for all positive integers
by performing the following two steps:

• Verify that the property holds for the number 1. (The Trivial Case)

• Prove that, if the property holds for a positive integer n, then it must also
hold for n + 1. (The Induction Step)

Theorem 2.4 then implies that the set S of positive integers that satisfy the given
property is the entire set N; in other words, the property is true for all positive
integers.

Here an example involving the factorial function: n! = 1 · 2 · 3 · · · (n− 1) · n.

Example: Prove that there are n! ways to seat n people in a row of n seats.

First observe that there is 1! = 1 way to seat one person in one seat.
Suppose that there are k! ways to seat k people in k seats, for some particular
integer k. To seat k + 1 people in k + 1 seats, we have k + 1 choices of whom
to place in the first seat. There are now k! ways to seat the remaining k
people (by the induction hypothesis). It follows that there are a total of

(k + 1) · k! = (k + 1)!

ways to seat k + 1 people. The Principle of Mathematical Induction now
implies that the factorial formula gives the correct answer for all n.

§

Induction is sometimes helpful for verifying identities.

Example: Prove that

1 · 2 + 2 · 3 + 3 · 4 + · · · + n · (n + 1) =
n(n + 1)(n + 2)

3
(2.1)

for all positive integers n.

First, consider the case n = 1. In this case the left-hand-side of the
identity is 1 · 2 = 2, while the right-hand-side is

1(1 + 1)(1 + 2)
3

= 2
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12 2 Integers and arithmetic

as well.
Next, suppose the identity holds for some integer n ≥ 1, and consider

the situation for n + 1. In this case the left-hand-side of the identity (2.1)
becomes

1 · 2 + 2 · 3 + 3 · 4 + · · · + n · (n + 1) + (n + 1) · (n + 2)

=
(

1 · 2 + 2 · 3 + 3 · 4 + · · · + n · (n + 1)
)
+ (n + 1) · (n + 2)

=
n(n + 1)(n + 2)

3
+ (n + 1)(n + 2) (by the induction assumption)

= (n + 1)(n + 2)
(n

3
+ 1
)

=
(n + 1)(n + 2)(n + 3)

3
.

Meanwhile, substituting n + 1 for n on the right-hand-side of the iden-
tity (2.1) yields

(n + 1)((n + 1) + 1)((n + 1) + 2)
3

=
(n + 1)(n + 2)(n + 3)

3
,

as well. This completes the induction step and the proof.

§

Sometimes proofs by induction are more easily understood in the language of
the well-ordering, and sometimes the opposite. When you have a choice, use
the approach that seems simplest to you.

§

Recall that the positive integers N are closed under addition and multiplication.
This observation has the following elementary but important consequence.

Proposition 2.5. If a, b ∈N then ab ≥ a, with equality if and only if b = 1.

Proof. The proof is by induction with respect to b. Let a ∈ N. Clearly a · 1 = a.
Moreover, since a > 0, we have 2a = a + a > a + 0, so that 2a > a. Suppose that
ab > a for some b ∈N. We then have

a(b + 1) = ab + a > a + a > a,

as well. It follows that ab > a for all b ≥ 2. q

§

While Z is closed under addition, subtraction, and multiplication, note that
division is not always possible. For example, 5/3 is not an integer. Ratios of
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2 Integers and arithmetic 13

integers (which may not always be integers) form another important category of
numbers: A real number x is said to be a rational number if x can be expressed
in the form

x =
a
b

(2.2)

where a, b ∈ Z. Every integer is also a rational number (why?), but not every
rational number is an integer. Moreover, the expression (2.2) is not unique, since

2
5

=
4
10

=
400
1000

=
−8
−20

,

for example. However, for any particular rational number x, there is a unique
expression (2.2) for which the denominator b is positive and minimal (see Exer-
cise 2.14). When b is chosen this way, the expression a/b is said to be in lowest
terms.

§

Exercise 2.1. Show that every integer is also a rational number.

Exercise 2.2. Use mathematical induction to prove that, for n ∈N, we have

1 + 2 + 3 + · · ·+ (n− 1) + n =
n(n + 1)

2
.

Can you also prove this formula more directly, without using induction?

Exercise 2.3. Use mathematical induction to prove that, for n ∈N, we have

1 + 4 + 9 + · · ·+ (n− 1)2 + n2 =
n(n + 1)(2n + 1)

6
.

Exercise 2.4. Use mathematical induction to prove that, for n ∈N, we have

1 + 8 + 27 + · · ·+ (n− 1)3 + n3 = [1 + 2 + 3 + · · ·+ (n− 1) + n]2.

Hint: Exercise 2.2 is helpful.

Exercise 2.5. Given n ∈N, guess a formula for the sum

1 + 3 + 5 + · · ·+ (2n− 1),

and use induction to prove that your guess is correct.

Exercise 2.6. Use mathematical induction to prove that, for n ∈N, we have

1! · 1 + 2! · 2 + 3! · 3 + · · · + n! · n = (n + 1)!− 1.

Exercise 2.7. Let F0 = 0 and F1 = 1. For n ≥ 2 define

Fn = Fn−1 + Fn−2.

The sequence {Fn}∞
n=0 is called the Fibonacci sequence, and the values Fn are called the Fibonacci

numbers.1

(a) Use induction to prove that, for k ≥ 1,

F0 + · · ·+ Fk = Fk+2 − 1.

(b) Use induction to prove that Fk ≤ 2k−1 whenever k ≥ 1.
(c) Use induction to prove that Fk ≥ 2k/2 whenever k ≥ 6.

1Named for the Italian mathematician Fibonacci (c. 1170 – c. 1250), also known as Leonardo
Bonacci and Leonardo of Pisa, and author of the Liber Abaci.



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

14 2 Integers and arithmetic

Exercise 2.8. Use mathematical induction to prove that, for integers n ≥ 4, we have 3n > 4n2.

Exercise 2.9. Use mathematical induction to prove that, for integers n ≥ 6, we have 3n > 2n3 + 1.
Hint: 2n3 + 1 < 3n3.

Exercise 2.10. Use mathematical induction to prove that, for integers n ≥ 4, we have n! > 2n.

Exercise 2.11. Prove that a set S of n distinct elements has 2n subsets.
Hint: If S is non-empty, suppose x ∈ S. Use induction on the size of a set, along with the fact that
every subset of S either contains x or does not contain x.

Exercise 2.12. Prove that every non-empty subset S ⊆ Z contains an element of smallest absolute
value.

Exercise 2.13. Show that if the number 1
2 were an integer then the well-ordering principle would

be violated.

Exercise 2.14. Use the well-ordering principle to prove that every rational number has a unique
expression of the form (2.2) in lowest terms.
Note: This exercise asks you to prove both existence and uniqueness.

Exercise 2.15. Prove the Principle of Strong Induction:

Let S ⊆ N such that 1 ∈ S, and such that, whenever {1, 2, 3, . . . , n} ⊆ S, we have
n + 1 ∈ S as well. Then S = N.

Exercise 2.16. Find an example of integers a, b ∈ Z such that ab < a. Can you find an example
where a and b are both non-zero? Can you find an example where both ab < a and ab < b?

Exercise 2.17. Suppose that x, y ∈ R and x, y > 0. Is it always true that xy ≥ x?

Exercise 2.18. Use mathematical induction to prove:

(a) For integers n ≥ 6, we have n! <
( n

2
)n.

(b) For integers n ≥ 1, we have n! >
( n

3
)n.

Hint: Logarithms and a little calculus are helpful for this exercise.
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3 Some useful algebraic identities

In this section we recall two fundamental algebraic identities that you may have
seen before: the geometric sum formula and the binomial theorem. These iden-
tities are theorems of algebra, not of number theory, but will be useful to us later
on.

§

Theorem 3.1. For all positive integers n and all x, y,

xn − yn = (xn−1 + xn−2y + xn−3y2 + · · ·+ xyn−2 + yn−1)(x− y) (3.1)

Proof. Multiply out the right side, and notice that everything cancels except the
first and last terms. q

There are many special cases of Theorem 3.1 worth examining in detail. For
example, when n = 2 we have

x2 − y2 = (x + y)(x− y),

the classic “difference of two squares.”

If n = 3 we have
x3 − y3 = (x2 + xy + y2)(x− y).

Setting y = −z in the previous expression yields

x3 + z3 = (x2 − xz + z2)(x + z).

§

If y = 1 in (3.1), we obtain the Geometric Sum Formula:

1 + x + x2 + · · ·+ xn =
1− xn+1

1− x
(3.2)

which holds provided that x 6= 1.

15



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

16 3 Some useful algebraic identities

Notice that if |x| < 1 in (3.2) then xn+1 → 0 as n → ∞. It follows that, for
−1 < x < 1,

1 + x + x2 + x3 + · · · = 1
1− x

. (3.3)

This infinite sum is called a geometric series.

§

Before stating the next fundamental identity, recall that “n factorial”, denoted n!
is defined by

n! = 1 · 2 · 3 · · · (n− 1) · n,

for all positive integers n. By convention we also define 0! = 1. The number n!
counts the number of ways to arrange n different objects in a row: n choices for
the first position, then (n− 1) choices for the second position, and so on until
all of the n objects are arranged.

Next, define the symbol (n
k) by(

n
k

)
=

n!
k!(n− k)!

,

where n and k are non-negative integers. For example,(
8
3

)
=

8!
3!5!

=
8 · 7 · 6
3 · 2 · 1 = 56.

Notice that (
n
k

)
=

(
n

n− k

)
,

and that (
n
0

)
=

(
n
n

)
= 1 and

(
n
1

)
=

(
n

n− 1

)
= n.

With such a complicated looking denominator, it isn’t obvious that (n
k) is an

integer. One way to see this is to observe that (n
k) must be a whole number

because it counts something. Suppose a class has n students, and we must choose
a team of k students to go on a mission. The teacher picks the team by choosing
k students one by one, having them stand in a line. There are n choices for the
first student, then (n− 1) choices for the second student, and so one, giving

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!

ways to make this ordered set of choices. But the membership of the team is the
same no matter how the k lucky students are lined up. Since there are k! ways to
line up (re-arrange) the lucky k students, the number of actual distinct teams is

n!
(n− k)!k!

=

(
n
k

)
,
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3 Some useful algebraic identities 17

which is, therefore, an integer. This counting argument will lead to an explana-
tion of the following algebraic identity.

Theorem 3.2 (Binomial Theorem). For all positive integers n and all x, y,

(x + y)n = xn + nxn−1y +
n(n− 1)

2
xn−2y2 + · · ·+

(
n
k

)
xkyn−k + · · ·+ nxyn−1 + yn

=
n

∑
k=0

(
n
k

)
xkyn−k. (3.4)

Because of their appearance as coefficients in expansions of binomial powers
(x + y)n, the numbers (n

k) are called binomial coefficients.

Proof. Observe that

(x + y)n = (x + y)(x + y) · · · (x + y).

When this is multiplied out, and like terms are collected, each term will be of
the form akxkyn−k, for some integer ak, since each term is formed by picking
either an x or a y from each of the n copies of (x + y) and multiplying these n
choices together. The number ak counts the number of times we choose exactly
k ’x’s and n− k ’y’s as we select from each factor. Think of each (x + y) factor
as a student, where x means pick the student for our team, and y means don’t
pick that student. It follows that ak is the number of ways to pick a team of k
students from an n student class, and that’s why ak = (n

k). q

The following special case of the Binomial Theorem 3.2 will be useful later on.

Corollary 3.3. For all positive integers n and all x,

(1 + x)n = 1 + nx +

(
n
2

)
x2 + · · ·+

(
n
k

)
xk + · · ·+ nxn−1 + xn. (3.5)

§

Exercise 3.1. Use Theorem 3.1 to prove the geometric sum formula (3.2).

Exercise 3.2. Prove that, for positive integers n

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

Exercise 3.3. Prove that

1 +
1
2
+

1
4
+

1
8
+

1
16

+ · · · = 2.

Exercise 3.4. Prove that
9

10
+

9
102 +

9
103 + · · · = 1.

What does this tell you about the decimal expansion 0.99999 . . .?
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18 3 Some useful algebraic identities

Exercise 3.5. Express the repeating decimal expansion 0.127127127 . . . as a fraction by first rewrit-
ing this expansion as a geometric series and then summing the series using (3.3).

Exercise 3.6. Prove that, for positive integers k < n and all x 6= 1,

xk + xk+1 + · · ·+ xn =
xk − xn+1

1− x

Exercise 3.7. Prove that, for positive integers k and |x| < 1,

xk + xk+1 + · · · = xk

1− x

Exercise 3.8. Factor the polynomial x4 − y4 into 3 polynomial factors.

Exercise 3.9. Factor the polynomial x6 + y6 into 2 polynomial factors.

Exercise 3.10. Factor the polynomial x6 − y6 into 3 polynomial factors.

Exercise 3.11. Use the binomial theorem to prove that the sum of the binomial coefficients satisfies(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
n

)
= 2n.

Exercise 3.12. Use the binomial theorem to prove that the alternating sum of the binomial coeffi-
cients satisfies (

n
0

)
−
(

n
1

)
+

(
n
2

)
+−+ · · ·+ (−1)n

(
n
n

)
= 0.

Exercise 3.13. Prove that (
n
k

)
=

(
n− 1

k

)
+

(
n− 1
k− 1

)
.

Exercise 3.14. Use mathematical induction to give another proof of the geometric sum for-
mula (3.2).

Exercise 3.15. Use mathematical induction to give another proof of the Binomial Theorem 3.2.

Exercise 3.16. Prove that, if n is an odd positive integer, then 7n + 4n is divisible by 11 (that is,
7n + 4n = 11k for some integer k).

Exercise 3.17. Prove that, if n is an even positive integer, then 7n − 4n is divisible by 33 (that is,
7n − 4n = 33k for some integer k).
Hint: Exercise 3.16 is helpful.
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Given integers a, b with a 6= 0, we say that “a divides b”, denoted a|b, if there
exists k ∈ Z such that b = ka. In this case we say that a is a factor or divisor of b,
and that b is a multiple of a.

If a does not divide b, we sometimes write a 6 | b. For example, 3 6 | 8, since 8
3 is

not an integer. More precisely, 8 6= 3k for every integer k.

Divisibility satisfies the following elementary properties.

Proposition 4.1. Let a, b, c, x, y ∈ Z.

(i) If a 6= 0 then a|a.

(ii) If a, b > 0 and a|b then a ≤ b.

(iii) If a|b and b|a then a = ±b.

(iv) If a|b and b|c then a|c.

(v) If a|b and a|c then a|(bx + cy) for all integers x, y.

Parts (i), (iii), and (iv) imply that the divisibility relation | defines a partial order
on the positive integers.

Proof. Part (i) is left as an exercise. Part (ii) follows from Proposition 2.5. To
prove part (iii), suppose that a, b ∈ Z, where a|b and b|a. It follows that, on
taking absolute values, |a| divides |b| and that |b| divides |a|. Since |a|, |b| ∈ N,
from Proposition 2.5 implies that both |a| ≤ |b| and |b| ≤ |a|, whence |a| = |b|.
In other words, a = ±b.

To prove part (iv), go back to the definition of divisibility: If a|b and b|c then
there exist integers m, n so that b = ma and so that c = nb. Therefore,

c = nb = n(ma) = (nm)a,

so that a|c.

The proof of part (v) is similar, and is left as an exercise. q

§

19
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20 4 Divisibility

Recall from grade school that, while not every positive integer divides another,
we can always attempt a division, provided we are willing to accept a “remain-
der.” For example, while 7 6 | 45, we know that

45 = 7 · 6 + 3,

where 3 is a remainder.

We could also have written
45 = 7 · 5 + 10,

but this is somehow inferior, because we know that another 7 can still be ex-
tracted from the 10. The process of division with remainder is not complete
unless the remainder is smaller than the divisor. This assertion is made more
precise by the following theorem.

Theorem 4.2 (Division with remainder). Let a, b ∈ N. There exist unique integers
q and r such that

b = aq + r,

where 0 ≤ r < a.

The value q is called the quotient, and r is called the remainder.

Proof. Consider the set S of all non-negative integers of the form b− am, where
m ∈ Z. If m = 0 then b− am = b > 0, so that b ∈ S, and S is not the empty
set. It follows from the well-ordering principle that S has a minimum, which we
will denote by r. Since r ∈ S, it follows that r ≥ 0 and that

r = b− aq

for some particular integer q.

Suppose r ≥ a. In this case we have

b− a(q + 1) = b− aq− a = r− a ≥ 0.

This means that r′ = b − a(q + 1) ∈ S. But r′ = r − a < r, since a > 0. This
contradicts our choice of r as the minimum of the set S. Therefore, 0 ≤ r < a.

It remains to show that r and q are unique. Suppose that b = aq1 + r1, where
0 ≤ r1 < a. In this case, we have

aq + r = b = aq1 + r1,

so that
|a(q− q1)| = |r1 − r|.

Since 0 ≤ r, r1 < a, we know that |r1 − r| < a, so that |a(q− q1)| < a. This can
only happen if q− q1 = 0, so that q1 = q and r1 = r. q
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4 Divisibility 21

The style of argument in the last part of this proof is often used to prove unique-
ness in mathematics: To show that an object X with certain properties is unique,
suppose that another object Y also has those same properties, and then use those
properties to prove that X = Y.

§

Ancient mathematicians believed that all numbers could be expressed as frac-
tions, however, the Pythagorean school discovered that this is not the case. Con-
sider a square region with total area 2. The edge of this square must have length
s, where s2 = 2. Suppose we try to express s as a ratio of integers, s = a/b. If
this is possible at all, then the well-ordering principle implies that this can be
done in lowest terms.

In this case, we have a = sb, so that a2 = s2b2 = 2b2. In other words, a2 is even.
This means that a must also be even (see Exercises 4.6 and 4.14), so that a = 2m
for some integer m. Hence, 2b2 = a2 = 4m2, which implies that b2 = 2m2, so
that b is also even, where b = 2n for some n. We conclude that

s =
a
b

=
2m
2n

=
m
n

,

where 0 < n < b, since n|b. This contradicts our choice of a/b being already
in lowest terms. It follows that s cannot be expressed as a rational number. We
typically denote s by the symbol

√
2, and we say that

√
2 is irrational.

§

Exercise 4.1. Show that a|0 for all non-zero integers a.

Exercise 4.2. Show that 1|n for all n ∈ Z.

Exercise 4.3. Show that 13|1001.

Exercise 4.4. What is the highest power of 3 (e.g. 30, 31, 32, . . .) that divides 999?

Exercise 4.5. Find the remainders of the following numbers after division by 7:

73, 4, 1001, −12, 0

Exercise 4.6. An integer n is said to be even if n is divisible by 2; otherwise, n is said to be odd.
The quality of being even or odd is called the parity of a number. Answer each of the following
questions, and prove that your answer is correct in general.
(a) Is the sum of two even numbers even or odd?
(b) Is the sum of two odd numbers even or odd?
(c) Is the sum of an even and an odd number even or odd?
(d) What happens if addition is replaced with multiplication in part (a)-(c)?

Exercise 4.7. Suppose that a, b ∈ Z and that a + b is odd. Prove that ab is even.
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Exercise 4.8. Let k be an even positive integer. Is it ever possible to express 1 as a sum of
reciprocals,

1 =
1

n1
+

1
n2

+ · · ·+ 1
nk

,

where every denominator ni is an odd positive integer?

If not, prove it is impossible. If so, give an explicit example.

Exercise 4.9. A natural number will be called awesome if it can be represented in the form ab + ba,
where a and b are natural numbers. For example, number 177 is awesome, because 177 = 27 + 72.
Is 2015 awesome?1

Exercise 4.10. List all numbers n ∈ N such that n = 1 + 2 + · · ·+ (n− 1), and prove that your
list is complete.

Exercise 4.11. Prove parts (i) and (v) of Proposition 4.1.

Exercise 4.12. State and prove an extended version of the Theorem 4.2 for all integers a, b ∈ Z.

Exercise 4.13. Prove that, if 0 ≤ r, r1 < a, then |r1 − r| < a, as claimed near the end of the last
proof.
Hint: Consider the two cases in which r > r1 and r ≤ r1.

Exercise 4.14. Let a be an integer. Prove that a is even if and only if 4|a2.

Exercise 4.15. Prove that if n ∈ Z then n5 + n4 + 1 is always odd.

Exercise 4.16. Let n, m ∈ Z. Suppose that the remainder of n after division by 3 is 2, and suppose
that the same holds for m.
(a) What is remainder of m + n after division by 3?
(b) What is remainder of mn after division by 3?

Exercise 4.17. (a) Suppose that m and n are odd integers. Prove that

x2 + 2mx + 2n = 0

has no integer solutions.†

Hint: Think about divisibility by 2 and by 4. Consider the different cases that may arise.

(b) Now use part (a) to prove that this quadratic equation has no rational solutions.

Exercise 4.18. Let a be an integer.
(a) Prove that a is divisible by 3 if and only if a2 is divisible by 9.
(b) Prove that

√
3 is irrational.

Exercise 4.19. Prove that 2
1
3 is irrational.

Exercise 4.20. Recall the Fibonacci sequence {Fn} of Exercise 2.7.
(a) Is the Fibonacci number F1000 even or odd? What about F1000000?
(b) Is the Fibonacci number F1000 divisible by 3? If not, what is the remainder after division by 3?
What about F1000000?
Note: You should be able to answer these questions without any sort of computer assistance (or
long computations).

1If you like awesome numbers, then you might also enjoy this delightful mathematics blog:
http://blog.tanyakhovanova.com

†From the 1907 Eötvös Competition [25].
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Here are some examples of natural numbers:

45 6 1635 3003000 11111.

What do these symbols mean exactly? Traditionally we represent numbers “base
ten,” meaning that the first ten non-negative integers are represented by the
distinct symbols

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

after which we use multiple symbols to count higher powers of the number ten,
which is itself rendered “10,” meaning one ten and zero ones. For example, the
symbol “1635” is a shorthand that represents the integer

5 + 3 · 10 + 6 · 102 + 1 · 103.

The symbols 1, 6, 3, 5 are called digits. Since the number has been rendered base
10 in this case, these particular symbols are decimal digits.1

Notice that if we use the division algorithm to divide the number 1635 by the
number 10, the remainder is the “ones” digit 5. In other words,

1635 = 163 · 10 + 5.

If we then repeat the procedure with the quotient 163, we find

163 = 16 · 10 + 3,

and so on.

§

More generally, the representation of an integer n in a base b is a shorthand for
expressions of the form

n = d0 + d1b + d2b2 + · · · dkbk,

where the values d0, d1, . . . , dk are the base b digits and must each satisfy 0 ≤ di ≤
b− 1.

This representation is obtained by repeated division with remainder by the value
b. Theorem 4.2 guarantees that each digit di lies in the list {0, 1, . . . , b− 1} of pos-
sible remainders, and that the resulting expansion is unique. This phenomenon
is expressed by the following theorem.

1The word decimal is derived from the Latin word decem for the number 10. The word digit is
derived from the Latin word digitus meaning finger.

23
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24 5 Representations of numbers

Theorem 5.1. Let n, b ∈ N, where b > 1. The number n has a unique expansion of
the form

n = d0 + d1b + · · ·+ dkbk, (5.1)

where 0 ≤ di < b for each i = 0, . . . , k.

In other words, every positive integer has exactly one way of being written down
in base b notation.

§

From a purely mathematical perspective, ten is not such a desirable base, since it
is not divisible by 3 or 4. Indeed, the ancient Babylonians used a notation in base
60, which amends this flaw, at the expense of having many more distinct sym-
bols to deal with. As far as I can tell the only reason most human civilizations
have settled on base ten is that we have ten fingers to count with.

Computers store information in the form of switches that have one of two pos-
sible states, on or off. Consequently numbers are stored by computers in binary
form; that is, base 2. So, for example, the binary number 10110111 represents
the decimal number

1 · 20 + 1 · 21 + 1 · 22 + 0 · 23 + 1 · 24 · + 1 · 25 · + 0 · 26 + 1 · 27

= 1 + 2 + 4 + 16 + 32 + 128 = 183.

Binary digits are so important that the phrase “binary digit” has been condensed
to the word “bit.”

If there is any doubt how a numerical representation might be interpreted, we
write (dkdk−1 · · · d1d0)b to denote a number in base b notation. For example, we
have

(10110111)2 = (183)10.

But this tedious notation is dropped when there is no ambiguity.

§

The iterated division algorithm provides a method for converting one base to
another. For example, to express 1635 in base 8 (octal), repeat divisions by 8 to
obtain:

1635 = 8 · 204 + 3
204 = 8 · 25 + 4
25 = 8 · 3 + 1
3 = 8 · 0 + 3
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5 Representations of numbers 25

so that (1635)10 = (3143)8. Note that the digits are written in reverse order of
their appearance in the sequence of divisions.

Conversely,
3 + 4 · 8 + 1 · 82 + 3 · 83 = 1635

once again.

§

When a base b is a number greater than 10, new symbols must be added to
represent the decimal numbers 10, 11, . . . , (b− 1) in the new base.

An important special case is base 16, which uses the hexadecimal digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

For example,

(18)10 = (12)16 (45)10 = (2D)16 (256)10 = (100)16.

The most commonly used bases are 2, 8, 10, and 16. Base 8 digits are called octal
digits. In this book you should assume that a number is expressed in base 10
unless otherwise noted.

§

Exercise 5.1. Convert the following binary numbers to decimal:

(a) 1

(b) 11

(c) 110

(d) 1000

(e) 10101

(f) 11101101

Exercise 5.2. Convert the following decimal numbers to binary:

(a) 5

(b) 15

(c) 16

(d) 24

(e) 60

(f) 729

Exercise 5.3. Convert the binary numbers in Exercise 5.1 to octal and hexadecimal by grouping
binary digits in 3s and 4s (respectively) and converting these groups into octal or hexadecimal
digits (respectively). Why does this work?

Exercise 5.4. Convert the decimal numbers in Exercise 5.2 to octal and hexadecimal.

Exercise 5.5. Convert the following octal numbers to binary:
Hint: Each octal digit expands to a group of three bits. (Why?)
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(a) 3

(b) 10

(c) 30

(d) 32

(e) 70

(f) 100

Exercise 5.6. Convert the following hexadecimal numbers to binary and to decimal:

(a) 9

(b) C
(c) 10

(d) 15

(e) 2A
(f) ABC

Exercise 5.7. Let n be an integer.
(a) Prove that n is divisible by 2 if and only if its final decimal digit is even.
(b) Prove that n is divisible by 4 if and only if its final two decimal digits form a number that is
divisible by 4.
(c) Prove that 2n never ends with the digits ‘14’.
Hint: Notice that the final decimal digit of n is the remainder after division of n by the number
10.

Exercise 5.8. Suppose that n ∈ N. What possible values can be found as the final decimal digit
of n2?

Exercise 5.9. Use the results of the previous exercise to explain why you know at a glance that the
number

574189075420685700469527892875489843284092292096285751873

is not the square of an integer.

Exercise 5.10. Suppose that n ∈ N has 6 as its final decimal digit. Prove that all of the higher
powers n2, n3, n4, . . . also have 6 for a final decimal digit.

Exercise 5.11. Suppose a number x is given by the binary expansion

0.10011101110111 . . . ,

where the pattern 0111 repeats forever. Rewrite this expansion using geometric series, and then
sum the series using (3.3) to express x as a fraction using decimal digits.

Exercise 5.12. Express the decimal fraction 1/3 as an infinite binary expansion.
Hint: Express the number 3 in binary, and perform a long division in base 2. Continue until a
pattern appears.
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An integer c 6= 0 is said to be a common divisor of integers a and b if c|a and c|b.

Suppose that a and b are not both zero. In this case, Proposition 2.5 implies
that, if c|a and c|b, then |c| ≤ max{|a|, |b|}, so that there are a finite number
of integers c that divide both a and b. Since finite set of integers always has a
maximum, there is a unique largest integer d > 0 such that d|a and d|b. We call
this integer the greatest common divisor of a and b, and denote it by gcd(a, b).

Here are some elementary properties of the gcd.

Proposition 6.1. Let a, b ∈ Z, not both zero.

• gcd(a, b) = gcd(b, a).

• gcd(a, 1) = 1.

• gcd(a, 0) = |a| for all a 6= 0.

• gcd(a, b) = |a| if and only if a|b.

The proof of this proposition is left as an exercise (see Exercise 6.5).

The following proposition will lead to an easy and fast way to compute the gcd.

Proposition 6.2. If a, b ∈ Z then

gcd(a, ax + b) = gcd(a, b)

for all integers x ∈ Z.

Proof. Let d = gcd(a, b) and let d′ = gcd(a, ax + b). Since d|a and d|b, it follows
from part (v) of Proposition 4.1 that d|(ax + b). In other words, d is a common
divisor of a and ax + b. Since d′ is the greatest such (by definition), it follows
that d ≤ d′.

Similarly, since d′|a and d′|(ax+ b) we have d′|((ax+ b)− ax), so that d′|b. There-
fore, d′ ≤ gcd(a, b); that is, d′ ≤ d. It now follows that d′ = d. q

Proposition 6.2 allows us to use division with remainder to efficiently compute
the gcd. To compute gcd(a, b), use Theorem 4.2 to perform a division:

b = aq + r,

27
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where 0 ≤ r < a. By Proposition 6.2 we have

gcd(a, b) = gcd(b, a) = gcd(b− aq, a) = gcd(r, a).

Since r < a we can repeat the procedure:

a = rq1 + r1,

where 0 ≤ r1 < r. Again, by Proposition 6.2 we have gcd(a, b) = gcd(r, a) =
gcd(r, r1). Iterating this procedure yields a succession of remainders r > r1 >
r2 > . . . ≥ 0, such that

gcd(a, b) = gcd(r, a) = gcd(r1, r) = · · · = gcd(rk, rk−1) = · · · .

Since each remainder is non-negative and strictly smaller than its predecessor,
this procedure must terminate; that is, eventually rk+1 = 0, so that gcd(a, b) =
gcd(0, rk) = rk.

This method of computing the gcd is called Euclid’s Algorithm.

Example:

To compute gcd(1029, 840), we iterate division with remainder to obtain

1029 = 840 · 1 + 189
840 = 189 · 4 + 84
189 = 84 · 2 + 21 (6.1)
84 = 21 · 4 + 0

so that gcd(1029, 840) = 21.

Sure enough, a simple computation reveals that 1029 = 21 · 49 and that 840 =
21 · 40. Notice that, after factoring out the gcd of 21 from the input numbers
(1029, 840), the new pair (49, 40) has no positive common factors except 1. In
grade school one might have said that

1029
840

=
49
40

,

where the second fraction is expressed in lowest terms.

Example:

To compute gcd(573, 46), we iterate division with remainder to obtain

573 = 46 · 12 + 21
46 = 21 · 2 + 4
21 = 4 · 5 + 1 (6.2)

4 = 1 · 4 + 0

so that gcd(573, 46) = 1. In other words, the fraction 573
46 is already in lowest

terms.
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If the number 1 appears as a remainder (as in the preceding example), we may
immediately conclude that the gcd = 1. In this case, we say that the original
pair of numbers (such as 573 and 46) are relatively prime or co-prime.

§

The greatest common divisor of three or more integers a1, a2, . . . , an is defined
to be the largest integer d that divides every integer ai.

The list is mutually relatively prime if gcd(a1, . . . , an) = 1. A list of integers
a1, a2, . . . , an is said to be pairwise relatively prime if gcd(ai, aj) = 1 for every pair
of numbers ai, aj in the list. You should think about why these two concepts are
not the same.

§

Given integers a and b, not both zero, and denoting d = gcd(a, b), we will
reverse Euclid’s algorithm to solve the equation

ax + by = d

where the solutions x and y are both integers. This is called a linear Diophan-
tine equation. More generally, Diophantine equations1 are equations that require
integer-valued solutions.

To see how this works, consider the example of gcd(1029, 840) derived earlier.
Reversing the equations (6.1) of division with remainder, we find that

21 = 189 + 84 · (−2)
= 189 + (840 + 189 · (−4)) · (−2) = 840 · (−2) + 189 · 9
= 840 · (−2) + (1029 + 840 · (−1)) · 9 = 840 · (−11) + 1029 · 9

so that
840 · (−11) + 1029 · 9 = 21.

We have solved 804x + 1029y = 21 with integer solutions x = −11 and y = 9.
But what a mess! This tedious procedure will be simplified later on, but for the
moment we give an alternative proof that this always works.

Theorem 6.3. Let a, b ∈ Z, not both zero. Let d = gcd(a, b). There exist integers x
and y such that

ax + by = d. (6.3)

1Named after Diophantus of Alexandria, a 3rd century Greek mathematician and author of
Arithmetica. In spite of his enormous influence, very little is known about the life of Diophantus
[33, p. 50-51]
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Proof. Let S be the set of all positive integers of the form ax + by, where x, y ∈ Z.
Since a and b are not both zero, S is not empty. (For example, setting x = a and
y = b we have ax + by = a2 + b2 > 0, so that S contains this number.) Since S
is a non-empty set of positive integers, the well-ordering principle asserts that S
has a minimum element, which we will denote by e. Since e ∈ S, it follows that
e = ax0 + by0 for some particular integers x0 and y0. It remains to show that e is
the gcd.

Using division with remainder, write a = eq + r, where 0 ≤ r < e. Note that

r = a− eq = a− (ax0 + by0)q = a(1− qx0) + b(−qy0).

If r > 0 then this formulation implies that r ∈ S. But this violates the minimality
of e in S, since r < e. It follows that r = 0, so that e|a. Similarly, e|b. In other
words, e is a common factor of a and b.

Let d = gcd(a, b). Since e is a common factor of a and b, we immediately know
that e ≤ d. However, since d|a and d|b, it follows that d|(ax0 + by0), so that d|e.
Hence, d ≤ e, so that e = d, and

gcd(a, b) = d = e = ax0 + by0,

so x = x0 and y = y0 are integers that solve the equation (6.3). q

§

The solution provided by Theorem 6.3 is not unique. For example, the equation

5x + 3y = 4

has integer solutions x = 2 and y = −2. However, x = 8 and y = −12 also solve
this equation.

§

Theorem 6.3 has many useful corollaries.

Corollary 6.4. An integer k is a common factor of a and b if and only if k| gcd(a, b).

Proof. Let d = gcd(a, b).

Suppose that k|d. Since d|a we have k|a by transitivity (Proposition 4.1, part (iv)).
Similarly, k|b, so that k is a common factor of a and b.

For the converse, suppose that k|a and k|b. By Theorem 6.3, there exist integers
x, y so that d = ax + by. Since k|a and k|b, it follows (again from Proposition 4.1)
that k|(ax + by), so that k|d. q
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Corollary 6.5. Let a, b ∈ Z, not both zero, and let k ∈N. Then

gcd(ka, kb) = k gcd(a, b).

Proof. Let d = gcd(a, b). Since d|a, it follows that a = dx for some integer
x, so that ka = kdx. In other words, kd|ka. Similarly, kd|kb. It follows that
kd ≤ gcd(ka, kb).

Meanwhile, since k|ka and k|kb, we know that k| gcd(ka, kb) by Corollary 6.4.
This means that gcd(ka, kb) = ke for some integer e.

Since gcd(ka, kb)|ka, we have ke|ka, so that e|a. Similarly, e|b. Therefore, e ≤ d,
so that gcd(ka, kb) = ke ≤ kd.

On combining these two results, we have gcd(ka, kb) = kd, and the corollary
follows. q

§

Exercise 6.1. Compute the following greatest common divisors:

(a) gcd(6, 15)

(b) gcd(6, 14)

(c) gcd(6, 13)

(d) gcd(15, 10100)

(e) gcd(257, 243)

(f) gcd(23 · 32, 33 · 22)

Exercise 6.2. What is the gcd(0, 6)? gcd(0,−6)?

Exercise 6.3. Let n be a positive integer.
(a) What is the gcd(n, n + 1)?
(b) What is the gcd(n, n + 2)?

Exercise 6.4. Prove that gcd(a, b) > 0 always.

Exercise 6.5. Prove Proposition 6.1.

Exercise 6.6. Use Euclid’s algorithm to compute gcd(3864, 3335). You can do this without the
help of an electronic device!

Exercise 6.7. What is the gcd(−84,−123)?

Exercise 6.8. Recall the Fibonacci sequence {Fn} of Exercise 2.7. Prove that if n ≥ 0 then
gcd(Fn, Fn+1) = 1.

Exercise 6.9. Explain why the equation 6x + 3y = 4 can have no integer solutions.

Exercise 6.10. Let a, b ∈ Z, not both zero. Let d = gcd(a, b), where a = da′ and b = db′. Prove
that gcd(a′, b′) = 1.

Exercise 6.11. Let a, b, c ∈N. Prove that gcd(a, b, c) = gcd(a, gcd(b, c)).

Exercise 6.12. Find a, b, c ∈ N that are pairwise relatively prime, but are not mutually relatively
prime.

Exercise 6.13.
(a) Find positive integer solutions to the equation 21x− 15y = 3.
(b) Explain why the equation 21x− 15y = 2 has no integer solutions.
(c) Are there integer solutions to the equation 21x− 15y = 6?
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Given integers a, b not both zero, we say that a and b are relatively prime (or
co-prime) if gcd(a, b) = 1.

The following special case of Theorem 6.3 provides a fundamental step in many
of the proofs that follow.

Theorem 7.1. The equation
ax + by = 1

has integer solutions x and y if and only if a and b are relatively prime.

Proof. If a and b are relatively prime, then the result follows from Theorem 6.3.

For the converse, suppose that ax + by = 1, where a and b are integers, and let
d = gcd(a, b). Since d|a and d|b, it follows that d|(ax + by), which means that
d|1. It follows that d = 1 and that a and b are relatively prime. q

§

The next result is fundamental, as is its method of proof.

Theorem 7.2. If gcd(a, b) = 1 and a|bc, then a|c.

Proof. By Theorem 6.3, there exist integers x and y so that

ax + by = 1

It follows that
acx + bcy = c.

Since a|bc, it now follows that a|(acx + bcy), so that a|c. q

The next result has a similar proof, left as an important exercise for the reader
(see Exercise 7.1).

Proposition 7.3. If gcd(a, b) = 1 and a|c and b|c, then ab|c.

§

32
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For a, b ∈ N, denote by lcm(a, b) the least common multiple of a and b. When
considering the least common multiple of arbitrary non-zero integers in Z, only
positive multiples are considered, so that lcm(a, b) is never negative.

More generally, the least common multiple of three or more integers a1, a2, . . . , an
is defined to be the smallest integer e that is divisible by every integer ai.

Note that
lcm(ka, kb) = k · lcm(a, b).

The proof of this identity follows in a simple manner from the definition of the
lcm and is left as an exercise (see Exercise 7.11).

Proposition 7.4. Let a, b ∈N. If gcd(a, b) = 1 then lcm(a, b) = ab.

Proof. Let e = lcm(a, b). Since gcd(a, b) = 1, there exist x, y ∈ Z such that
ax + by = 1. It follows that

aex + bey = e.

Since a|e and b|e, there are k, l ∈N such that e = ak and e = bl. Therefore,

a(bl)x + b(ak)y = e,

so that ab|e. In particular, ab ≤ e.

Meanwhile, since e is the least common multiple, and since ab is (obviously!) a
common multiple of a and b, it follows that e ≤ ab. Hence, e = ab. q

The previous proposition generalizes in the following way to arbitrary pairs of
positive integers.

Theorem 7.5. If a, b,∈N, then

gcd(a, b) · lcm(a, b) = ab.

Proof. Let d = gcd(a, b), and let a′ = a/d and b′ = b/d. It follows from
Corollary 6.5 that a′ and b′ are relatively prime. By the previous proposition,
lcm(a′, b′) = a′b′. It follows that

lcm(a, b) = lcm(da′, db′) = d · lcm(a′, b′) = da′b′,

so that
gcd(a, b) · lcm(a, b) = d2a′b′ = da′db′ = ab.

q
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Since Euclid’s algorithm gives us an efficient way to compute gcd(a, b), Theo-
rem 7.5 gives us a simple algorithm for computing lcm(a, b) as well.

§

Exercise 7.1. Prove Proposition 7.3.

Exercise 7.2. Find integers a, b, c ∈ Z such that a|c and b|c but ab 6 | c.

Exercise 7.3. Let d = gcd(a, b). Use Theorem 6.3 to give a short proof that a
d and b

d are relatively
prime.

Exercise 7.4. Suppose that x = a
b , where a and b are positive integers.

(a) Prove that if the specific expression a
b for x is in lowest terms (that is, b is the smallest positive

integer denominator possible), then gcd(a, b) = 1.
(b) Prove that if gcd(a, b) = 1. the specific expression a

b for x is in lowest terms.

Exercise 7.5. Suppose that a, b ∈N and that gcd(a, b) = 1. Prove that gcd(a + b, a− b) is either 1
or 2.

Exercise 7.6. Let a be an integer.
(a) Show that gcd(3a + 7, 2a + 5) = 1
(b) What are possible values of gcd(5a + 4, 2a + 1)?

Exercise 7.7. Suppose that gcd(a2, b2) = 1. Use Theorem 7.1 to prove that gcd(a, b) = 1.

Exercise 7.8. Suppose that gcd(a, b) = 1.
(a) Use Theorem 7.2 to prove that gcd(a, b2) = 1.
Hint: Let d = gcd(a, b2). What is gcd(d, b)?
(b) Now use part (a) to prove that gcd(a2, b2) = 1.

Exercise 7.9. Let n ∈N. Compute the following least common multiples:

(a) lcm(12, 28)
(b) lcm(12, 29)
(c) lcm(132, 143)
(d) lcm(23 · 56, 32 · 53)

(e) lcm(n, 1)
(f) lcm(n, 2)
(g) lcm(n, n + 1)
(h) lcm(n, n + 2)

Exercise 7.10. Suppose that a, b ∈N. Prove that lcm(a, b) = a if and only if b|a.

Exercise 7.11. Suppose that a, b, k ∈N. Prove that lcm(ka, kb) = k · lcm(a, b).

Exercise 7.12. Prove that an integer m is a common multiple of a and b if and only if lcm(a, b)|m.
Hint: Division with remainder is helpful here.

Exercise 7.13. Let a, b, c ∈N. Prove that lcm(a, b, c) = lcm(a, lcm(b, c)).
Hint: The result of the previous exercise can be helpful here.

Exercise 7.14. Prove or disprove: If gcd(a, b, c) = 1, then lcm(a, b, c) = abc.

Exercise 7.15. Suppose that gcd(n, 4) = 1. If we divide n by 4, what possible remainders could
occur?

Exercise 7.16. Suppose that gcd(n, 5) = 1. If we divide n by 5, what possible remainders could
occur?
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Exercise 7.17. Suppose that m and n are odd integers, and let d ∈ N. Prove that if 2d divides
m3 − n3 then 2d divides m− n.†

Exercise 7.18. Find an integer such that gcd(n, 3) = 1 and gcd(n, 4) = 1, or explain why this is
impossible.

Exercise 7.19. Find an integer such that gcd(n, 4) = 2 and gcd(n, 6) = 3, or explain why this is
impossible.

Exercise 7.20. If gcd(n, 12) = 4 and lcm(n, 12) = 84, what is n?

†From the 1908 Eötvös Competition [25].
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For the case in which gcd(a, b) = 1, the reversal of the identities generated by
Euclid’s algorithm allows us to find x and y so that

ax + by = 1.

However, reversing those identities can be tedious, and result in a tree of con-
fusingly nested parentheses.

For example, to find integer solutions to 573x + 46y = 1, our results from (6.2)
yield

1 = 21− 4 · 5
= 21− [46− 21 · 2] · 5
= [573− 46 · 12]− [46− [573− 46 · 12] · 2] · 5
= 573 · 11 + 46 · (−137).

This is not a pleasant procedure.

A continued fraction makes this process much easier. Consider again the example
earlier in which we used Euclid’s Algorithm to show that gcd(573, 46) = 1.
Re-write the first division in (6.2) in the form

573
46

= 12 +
21
46

= 12 +
1
46
21

.

Then write the next division of (6.2) as

46
21

= 2 +
4
21

= 2 +
1
21
4

.

Putting the two together, we have

573
46

= 12 +
1

2 +
1
21
4

.

Continuing with the rest of (6.2), we have

573
46

= 12 +
1

2 +
1

5 +
1
4

(8.1)

36
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To solve 573x + 46y = 1, remove the last bottom fraction from the expres-
sion (8.1) above, and then simplify the continued fraction that remains:

12 +
1

2 +
1
5

= · · · = 137
11

.

The numerator and denominator of this last fraction will, with a suitable change
of sign, yield values for x and y. In this example, we have x = 11 and y = −137,
so that

573 · 11 + 46 · (−137) = 1.

The short explanation for why this works is that the continued fraction expan-
sion provides a simple bookkeeping device for Euclid’s Algorithm that makes
unwinding the division identities much easier.1 A more detailed explanation,
including a careful proof that this trick always works, will be given in Section 32.

§

Euclid’s algorithm (and the continued fraction shorthand) can be used to solve
more general linear Diophantine equations. Here are some more examples to
illustrate the method.

Example: Find integers x and y such that 130x + 88y = 12.

Using Euclid’s algorithm we find that gcd(130, 88) = 2 (an exercise for
you). Dividing the given Diophantine equation by 2 yields the equivalent
equation

65x + 44y = 6.

To find integer solutions x and y, compute the continued fraction for 65
44 via

Euclid’s algorithm, so that

65
44

= 1 +
1

2 +
1

10 +
1
2

. (8.2)

Since

1 +
1

2 +
1

10

=
31
21

,

we see that 65(21) + 44(−31) = 1. Multiplying by 6 yields

65(126) + 44(−186) = 6.

Example: Find integers x and y such that 130x + 78y = 12.

1Notice the analogous role of the partial quotients 12, 2, 5, and 4 in the continued fraction (8.1)
and in the display of Euclid’s algorithm in (6.2).
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Using Euclid’s algorithm we find that gcd(130, 78) = 26. This means that
26|(130x+ 78y) whenever x, y ∈ Z. Since 26 6 | 12, this Diophantine equation
has no solutions.

The next theorem summarizes our ability to solve linear Diophantine equations.

Theorem 8.1. Let a, b ∈ Z, both non-zero. The linear Diophantine equation

ax + by = e

has integer solutions x and y if and only if gcd(a, b)|e.

If a particular solution (x0, y0) exists, then there are infinitely many solutions, all having
the form

x = x0 +
kb

gcd(a, b)
and y = y0 −

ka
gcd(a, b)

,

where k ∈ Z.

Continuing with the example above, the complete set of all integer solutions to
the equation

130x + 88y = 12

is given by

x = 126 + 44k and y = −186− 65k for k ∈ Z.

Proof of Theorem 8.1. The first part of the Theorem (existence of solutions) fol-
lows from Theorem 6.3. There remains to describe all possible solutions. Sup-
pose the pair (x0, y0) solves the equation, and let (x, y) be a second solution. We
have

ax0 + by0 = e as well as (8.3)
ax + by = e.

Subtracting, we have
a(x0 − x) = b(y− y0).

Let d = gcd(a, b), so that a/d and b/d are integers, and gcd(a/d, b/d) = 1. We
now have

(a/d)(x− x0) = (b/d)(y0 − y).

Since gcd(a/d, b/d) = 1, it follows from Theorem 7.2 that (b/d) divides x− x0,
so that x = x0 + k(b/d) for some k ∈ Z, whence y = y0 − k(a/d). Meanwhile, it
is an immediate consequence of (8.3) that the pair

x = x0 + k(b/d) y = y0 − k(a/d)

solves ax + by = e for every k ∈ Z. q
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§

A re-interpretation of Euclid’s algorithm as a sequence of matrix row operations
provides yet another fast algorithm for solving linear Diophantine equations.2

In order to solve the equation

ax + by = gcd(a, b),

begin with the 2× 3 matrix [
a 1 0
b 0 1

]
. (8.4)

In accordance with Euclid’s algorithm we will use repeated division with re-
mainder on the first column entries to determine a sequence of elementary row
operations that subtract an integer multiple of one row from another, continuing
until the matrix has the form [

gcd(a, b) ∗ ∗
0 ∗ ∗

]
,

where the symbol ∗ represents whatever various numerical results appear in the
remaining 4 matrix entries. The row operations needed will correspond exactly
to the steps of Euclid’s algorithm. An exchange of rows may be necessary at the
final step.

It will turn out that the final reduced matrix will always have the form[
gcd(a, b) x y

0 ∗ ∗

]
where ax + by = gcd(a, b).

The reason this always works will be explained below, but first we illustrate with
a numerical example, using the matrix reduction method to solve the equation

573x + 46y = 1. (8.5)

Begin with the matrix [
573 1 0
46 0 1

]
,

and use division with remainder on the first column entries to obtain

573 = 46 · 12 + 21.
2Readers unfamiliar with matrix algebra and matrix row reduction can skip this discussion

without loss of continuity. An introduction to matrix row reduction and its connection to solving
linear equations can be found in [4] or in any modern linear algebra text.
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Subtract 12 of the bottom row from the top row to obtain a new matrix:[
573 1 0
46 0 1

]
−→

[
21 1 −12
46 0 1

]
Continuing as in (6.2), we perform the following sequence of row operations on
the matrix (8.4):[

573 1 0
46 0 1

]
−→

[
21 1 −12
46 0 1

]
−→

[
21 1 −12
4 −2 25

]

−→
[

1 11 −137
4 −2 25

]
−→

[
1 11 −137
0 −46 573

]
(8.6)

In first step we subtracted 12 times the bottom row from the top row. We then
subtract 2 times the top row from the bottom row, and so on until the final form
is achieved. The row multipliers 12, 2, 5, and 4 are precisely the quotients we
found via Euclid’s algorithm in (6.2), and also appear as partial quotients in the
continued fraction (8.1).

From the top row of the final matrix in (8.6) we conclude that x = 11 and
y = −137, so that

573 · 11 + 46 · (−137) = 1,

as we also discovered using the continued fraction (8.1). Notice that the final
step of the row reduction was not really necessary to find x and y, but does
reveal a striking symmetry: the bottom two entries of the right-hand square
form a vector perpendicular to the vector (573, 46). This is not a coincidence.

§

Why does this matrix algorithm work?

In order to solve the equation

ax + by = gcd(a, b),

begin with the matrix algebra identity

[
a 1 0
b 0 1

] −1
a
b

 =

[
0
0

]
. (8.7)

This matrix identity is equivalent to the assertion that

au + 1v + 0w = 0
bu + 0v + 1w = 0

(8.8)
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has a solution where u = −1, v = a, and w = b. Recall that if we add or
subtract one of these equations from another (any number of times), the solu-
tions (u, v, w) to the system of equations does not change. Adding one equation
to another in (8.8) corresponds in (8.7) to adding one row of the 2× 3 matrix to
another.

With this in mind, suppose that a ≥ b, and perform a division with remainder
to obtain a = bq + r, where 0 ≤ r < b. If we subtract the bottom row of the 2× 3
matrix from the top row q times, the matrix identity (8.7) becomes

[
r 1 −q
b 0 1

] −1
a
b

 =

[
0
0

]
.

Continuing in this manner, we perform Euclid’s algorithm on the entries of the
first column of the 2× 3 matrix until that matrix has the final form[

gcd(a, b) x y
0 x′ y′

]
where x, x′, y, and y′ represent whatever numbers appear in the remaining
entries after the process is complete. The matrix identity (8.7) now becomes

[
gcd(a, b) x y

0 x′ y′

] −1
a
b

 =

[
0
0

]
, (8.9)

and the corresponding equations (8.8) become

− gcd(a, b) + ax + by = 0
ax′ + by′ = 0

⇐⇒ ax + by = gcd(a, b)
ax′ + by′ = 0

In other words, the values (x, y) appearing in (8.9) solve the Diophantine equa-
tion ax + by = gcd(a, b).

§

Exercise 8.1. Use Euclid’s algorithm to show that gcd(130, 88) = 2, as asserted in the example of
this section.

Exercise 8.2. Use Euclid’s algorithm on the pair (65, 44) to verify that the continued fraction
shown in the identity (8.2) is correct.

Exercise 8.3. Use Euclid’s algorithm to show that gcd(130, 78) = 26, as asserted in the example
of this section.

Exercise 8.4. Find all solutions x, y ∈ Z such that 51x + 27y = 15.

Exercise 8.5. Find all solutions x, y ∈ Z to 130x + 88y = 12006, where x and y are both positive.
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Exercise 8.6.
(a) Find all x, y ∈ Z such that 4x + 13y = 200.
(b) Find all x, y ∈N such that 4x + 13y = 200.
(c) Find all x, y ∈N such that 12x + 39y = 600.
(d) Find all x, y ∈N such that 12x + 39y = 400.

Exercise 8.7. Find all integer solutions to the equation 19x + 30y = 1.

Exercise 8.8. Find all positive integer solutions to the equation 19x + 30y = 800.

Exercise 8.9. Find a, b ∈N such that

a
14

+
b
9
=

101
126

.

Exercise 8.10. A toy store sells small teddy bears for $5 and large teddy bears for $8. I walk into
the store with n dollars, but find that no matter how many teddy bears I choose to buy, I will
have some money left over. What is the largest possible value for n?

Exercise 8.11. Prove that there are no integer solutions x, y, z to the equation

15x− 27y + 42z = 904.

Exercise 8.12. Without finding actual specific values for x, y, z, prove that the equation

120x + 102y + 425z = 1999,

has integer solutions x, y, z.

Exercise 8.13. Find integer solutions x, y, z to the equation

12x + 70y + 65z = 1.

Exercise 8.14. A toy store sells small dolls for $6, medium-sized dolls for $10, and large dolls for
$15. Suppose that I have $425 exactly.
(a) Show that if I spend all my money then I must have bought an odd number of large dolls.
(b) If I buy exactly 7 small dolls and as many of the others as I can, how much money will I have
left over? (Assume I have spent as much money as possible.)
(c) Suppose instead that I walk into the store with n dollars, but find that no matter how many
dolls I choose to buy, I will have some money left over. What is the largest possible value for n?

Exercise 8.15. A candy store sells jelly beans for 6 cents each and gum balls for 25 cents each. If
I spend exactly 10 dollars in the store, what the largest total number of candies I could buy?

Exercise 8.16. Use the matrix row reduction method to solve the Diophantine equations:

(a) 22x + 17y = 1. (b) 576x + 84y = 12.
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Exercise 8.17. Adapt the matrix row reduction method to solve the Diophantine equations:

(a) 25x + 9y = 4. (b) 28x + 26y + 91z = 17.

Hint: For part (b) set up and row reduce a suitable 3× 4 matrix. It is permissible to multiply any
row by a non-zero integer if this is helpful, but non-integer fractions should never appear at any
step in your computations.

Exercise 8.18. Adapt the matrix row reduction method to solve the system of simultaneous Dio-
phantine equations:

3x + 4y + 7z = 5

2x + y− 8z = 1

Hint: Set up and row reduce a suitable 3× 5 matrix. It is permissible to multiply any row by a
non-zero integer if this is helpful, but non-integer fractions should never appear at any step in
your computations.
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A positive integer n > 1 is prime if it has no positive factors except itself and
1. The number 1 is called a unit.1 All other positive integers are said to be
composite.

For example, 2, 3, 5, and 7 are prime, while 4, 6, 8, and 9 are composite.

§

A negative integer n is said to be prime (respectively unit, composite) if |n| is
prime (respectively unit, composite).

For example, −3 is prime, since | − 3| = 3 is a prime positive integer.

Zero is a composite number.

§

Proposition 9.1. Every integer n > 1 is divisible by at least one prime number.

Proof. We use the well-ordering principle. Let S be the set of natural numbers
greater than 1 that have no prime factors. We will show that S is the empty set.

If S is not empty, then S has a minimal element m. Since m|m and has no prime
factors, m cannot be prime. Therefore, m is composite, so that m = ab, where
1 < a < m and 1 < b < m. Since a < m and m is the minimum of S, it
follows that a /∈ S. From the definition of S it then follows that a has a prime
factor p. Since p|a and a|m, we also have p|m, contradicting the fact that m ∈ S.
Therefore, the set S has no such minimum and must be empty. q

One way to determine if a number n is prime is to try division by the numbers
2, 3, 4, . . . , n − 1. If every division fails (leaves a non-zero remainder) then n
has no factors besides itself and 1, so that n is prime. This approach certainly
works, but is also quite tedious, since we must perform n − 2 divisions. If
n > 1012, for example, this could take a long time, even on a computer. One
easy improvement is to notice that if d|n and d 6= n then d ≤ n

2 . This halves
the number of trials we need to make. Since a composite number must have
a proper prime factor, it is also acceptable if we skip trial divisions by even
numbers greater than 2. This reduces the number of necessary divisions to

1The number 1 is singled out in this way, because 1 is the only positive integer whose reciprocal
is also an integer. For the same reason, the units in Z consist of the numbers 1 and −1.

44
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approximately n
4 . While additional similar considerations (avoiding successive

multiples of 3 and 5, for example) reduce the necessary labor a bit more, the
prospect of verifying primality for the number

n = 837514498321

is still daunting. For example, by testing divisibility only by 2, by 3, and by sub-
sequent numbers of the form 6k + 1 and 6k + 5 (thereby avoiding even numbers
and numbers divisible by 3) up to n

3 , we are still required to test on the order of

837514498321
9

≈ 1011

possible cases!

The following theorem is a big help.

Theorem 9.2. Let n > 1 be a positive integer. Either n is prime, or there exists a prime
number p ≤

√
n such that p|n.

Proof. Suppose that n is composite, so that n = ab where 1 < a ≤ b < n. If
a >
√

n then b ≥ a >
√

n so that

n = ab >
√

n
√

n = n,

a contradiction. It follows that 1 < a ≤
√

n. Since a has a prime factor p ≤ a, it
follows that p|n and p ≤

√
n. q

Theorem 9.2 implies that, if the number 837514498321 is composite, it has a
prime factor

p ≤ b
√

837514498321c = 915158.

A short program on a personal computer can now verify primality in a few
seconds.

While Theorem 9.2 provides a dramatically improved algorithm for primality
testing, modern cryptographic applications (which may use prime numbers that
are hundreds of digits long) require even faster methods. We will return to this
topic in Section 31.

§

Proposition 9.1 is really only the beginning. In fact, we can prove a much
stronger result.

Theorem 9.3 (The Fundamental Theorem of Arithmetic). If n > 1 then there are
unique primes p1 < · · · < pk and integers a1, . . . , ak > 0 such that

n = pa1
1 · · · p

ak
k .
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The important point is not only that n factors into primes, but that it does so in
exactly one way (uniqueness). Before we prove Theorem 9.3, here is a fundamen-
tal Lemma, a special case of Theorem 7.2:

Lemma 9.4. Let p be a prime integer. If p|ab then p|a or p|b.

More generally, if p|b1b2 · · · bk then p|bi for some i.

Proof. Suppose that p|ab. Recall that the only divisors of p are 1 and p. If p 6 | a,
then gcd(p, a) = 1. It follows from Theorem 7.2 that p|b.

The more general case follows by induction on k ≥ 2. q

We are now ready to prove the Fundamental Theorem of Arithmetic.

Proof of Theorem 9.3. Let S be the set of integers n > 1 that violate Theorem 9.3.
If S is not empty, then S has a minimal element m.

If m is prime, then m is its own prime factorization, and can be factored no other
way, which contradicts m ∈ S.

If m is composite, then m = st for integers s, t, such that 1 < s < m and
1 < t < m. By the minimality of m, both s and t satisfy Theorem 9.3 and are
both products of primes. Therefore, m = st is also a product of primes.

We have shown that every positive integer except 1 is a product of primes. The
only way the minimal element m ∈ S can violate the theorem is by having two
or more different prime factorizations. Suppose this happens.2 This means that

m = pa1
1 · · · p

ak
k = qb1

1 · · · q
bs
s , (9.1)

where p1 < · · · < pk and q1 < · · · < qs are primes. Since p1 is prime and p1|m,
it follows from Lemma 9.4 that p1|qj for some j. Since p1 and qj are both prime,
it follows that p1 = qj. Let N = m/p1, so that

N = pa1−1
1 · · · pak

k = qb1
1 · · · q

bj−1
j · · · qbs

s .

Since 1 < N < m, the minimality of m in S implies that these factorizations of N
into prime powers must be identical, so that k = s, and each pi = qi, and each
ai = bi. But this also implies that the factorizations of m in (9.1) are identical,
contradicting our original choice. It follows that S is the empty set, so that every
n > 1 has a unique prime factorization. q

If n is a non-zero integer and p is prime, we write

pk||n
2Recall the general paradigm for proving uniqueness in mathematics: suppose that there are

two, and prove that those two must be equal.
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when pk|n and pk+1 6 | n. In other words, this notation indicates that k is the
highest power of p that divides n. For example, 51||40 and 23||40, since 40 =
8 · 5 = 23 · 51.

§

Theorem 9.3 provides an easy way to express the gcd and lcm of two numbers
n, m > 1 once we have their factorizations into primes. Specifically, if

n = pa1
1 · · · p

ak
k and m = pb1

1 · · · p
bk
k ,

where each ai, bi ≥ 0, then

gcd(n, m) = pmin{a1,b1}
1 · · · pmin{ak ,bk}

k

and

lcm(m, n) = pmax{a1,b1}
1 · · · pmax{ak ,bk}

k .

In practice, however, it is not computationally feasible to factor a large integer
into prime powers. For this reason, the gcd (and lcm) are typically obtained
using Euclid’s algorithm, which does not require any information about the
factorizations of n and m.

§

Given that every integer n is a product of primes, it would make sense (from a
number theoretic perspective) to enumerate these basic building blocks of the
integers as best we can. The first observation along these lines, made by Euclid3

over 2000 years ago, is that the list of primes is infinite.

Theorem 9.5. There are infinitely many distinct prime integers.

Proof. Suppose that there are only a finite number of prime integers, say

p1 < p2 < · · · < pm,

where m is the total number of primes. Let N = (p1 p2 · · · pm) + 1. Since N > 1
there is a prime p such that p|N, so that N = pk for some integer k ≥ 1. Since p
is prime, we have p = pi for some pi in the complete list above. It follows that
N = pik, so that

1 = N − p1 p2 · · · pi · · · pm = pi[k− (p1 · · · pi−1 pi+1 · · · pm)].

In other words, pi|1, which is impossible. It follows that p cannot be on the list
of primes above, and no such finite list is ever complete. q

3Euclid was a Greek mathematician active during the 3rd century BC.
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Notice that every prime p > 2 is odd,4 so that every such prime has the form
4n + 1 or 4n + 3. A small variation of the previous proof can be used to show
that there are infinitely many primes of the form 4n + 3, as well as other special
forms (see Exercises 9.13 and 9.14). A slightly more complicated variation shows
that there are also infinitely many primes of the form 4n + 1 (see Exercise 22.15).

Dirichlet’s theorem5 asserts that, for every relatively prime pair a, b ∈ Z, the
arithmetic progression

{a + tb | t = 0, 1, 2, 3, . . .}

contains an infinite number of primes. A proof of this deep and difficult theorem
can be found in [3]. However, the special case of Dirichlet’s Theorem in which
a = 1 and b is a prime has an elementary proof (see Exercise 20.17).

§

Here is a list of the positive integer primes less than 1000:

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997

Notice that primes often come in pairs p, p + 2. These are called twin primes.
Examples include

{3, 5} {5, 7} {11, 13} {17, 19} {41, 43} {857, 859}.

The Twin Primes Conjecture asserts that there are infinitely many twin prime
pairs. Although there has been substantial progress on this question in recent

4It has been pointed out that, since 2 is the only prime number that is also an even number,
this makes 2 a very odd prime indeed!

5Discovered by Peter Gustav Lejeune Dirichlet (1805–1859).
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years,6 the conjecture remains open.

Cousin primes are prime pairs of the form p, p + 4, and sexy primes are prime
pairs of the form p, p + 6.

§

Here is another simple assertion that, even after centuries of study, no one has
been able to verify or disprove.

Goldbach’s conjecture: Every even number greater than 2 is the sum of two primes.

Settle this conjecture, and become world-famous overnight!

§

Mersenne primes are primes of the form p = 2n − 1 for some integer n. Examples
include

3 = 22 − 1 7 = 23 − 1 31 = 25 − 1 127 = 27 − 1.

It is not difficult to show (using algebraic identities) that n must be prime in
order for p to be prime (see Exercise 9.32). On the other hand, this provides no
guarantee. For example,

211 − 1 = 2047 = 23 · 89.

The largest known Mersenne prime is

277,232,917 − 1,

the 50th discovered so far, having 23,249,425 digits.7 It is not known if there are
infinitely many Mersenne primes.

§

Fermat primes are primes of the form p = 22n
+ 1 for some integer n. Examples

include

3 = 220
+ 1 5 = 221

+ 1 17 = 222
+ 1 257 = 223

+ 1 65537 = 224
+ 1.

However,
225

+ 1 = 232 + 1 = 4294967297 = 6700417 · 641,
6In 2014 it was shown that there are infinitely many pairs of primes that differ by some positive

integer N, where N ≤ 246. For the twin primes conjecture to be true, this assertion must hold for
N = 2.

7As of January 2018.



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

50 9 Prime numbers and unique factorization

is not prime. In fact, no other Fermat primes have been found.

§

Once the infinitude of primes has been established, it is natural to ask how
the primes are distributed. For example, Bertrand’s postulate (later proved by
Chebyshev)8 asserts that, if n > 1, then there is at least one prime number p
such that n < p < 2n.

Legendre made a related conjecture: If n > 1 then there is at least one prime
number p such that n2 < p < (n + 1)2. This conjecture remains open!

More generally still, define π(n) to be the number of positive prime integers
p ≤ n. For example, π(10) = 4, since there are 4 primes p ≤ 10, namely
2, 3, 5, 7. Unfortunately no simple formula has been found for π(n). However,
some asymptotic results are known. For example, it follows from Theorem 9.5
that limn→∞ π(n) = ∞. This leads to the question of how fast π(n) grows. The
Prime Number Theorem answers this question in part with the assertion that

lim
n→∞

π(n)
n

ln n
= 1.

In other words, for large values of n, we have the approximation:

π(n) ≈ n
ln n

.

Said differently,
π(n)

n
≈ 1

ln n
for large values of n. This means that, if n is a large positive integer, and if a
random number is chosen from the list {1, 2, . . . , n}, the probability of picking a
prime number is about 1

ln n .

The proofs of these and other distribution theorems for primes can be found
in [3]. A better understanding of how primes are distributed over the integers
remains a principal goal of modern number theory research.

§

Exercise 9.1. Prove that there are infinitely many composite numbers.

Exercise 9.2. Suppose that p is an odd prime. What remainder can occur if p is divided by 4? By
6? By 8?

Exercise 9.3. Prove that there is a positive integer N such that N, N + 1, . . . , N + 999 are all
composite.

Exercise 9.4. Express each of the following integers as a product of prime powers:

8Pafnuty Lvovich Chebyshev (1821–1894) was a Russian mathematician also known for his
work in modern analysis and probability theory.
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(a) 99

(b) 101

(c) 343

(d) 999

(e) 1331

(f) 1001

(g) 999999

(h) 2560000

(i) 10!

Exercise 9.5.
(a) Which integers n > 0 have exactly 2 positive divisors?
(b) Which integers n > 0 have exactly 3 positive divisors?
(c) Which integers n > 0 have exactly 4 positive divisors?

Exercise 9.6.
(a) If 3000! is written out in decimal digits, how many zeroes lie at the end?
(b) If 2k||3000! then what is k?

Recall that, for non-negative integers n and k the (n, k)-binomial coefficient is given by(
n
k

)
=

n!
k!(n− k)!

.

Exercise 9.7.
(a) Prove that, if p is prime and 1 ≤ k ≤ p− 1, then (p

k) is divisible by p.
(b) Prove that, if n > 2 is even, then (n

2) is not divisible by n.

Exercise 9.8. Prove that if a3|b2 then a|b.

Exercise 9.9. Use Theorem 9.3 to give another proof that gcd(a, b) · lcm(a, b) = ab.

Exercise 9.10. Suppose that a, b ∈N. When is lcm(a, b) a prime number?

Exercise 9.11. What are the possible values of lcm(n!, n + 1)?

Exercise 9.12. Suppose that a, b ∈N and that gcd(a, b) = 1.
What are the possible values of lcm(a + b, a− b)?

Exercise 9.13. Prove that there are infinitely many prime numbers of the form 4n + 3.
Hint: Suppose there are finitely many. Omitting 3, multiply the rest of them together to obtain an
integer N. Then consider the number 4N + 3. Can all of its prime factors be of the form 4n + 1?

Exercise 9.14. Prove that there are infinitely many prime numbers of the form 3n + 2.
Hint: Adapt the hint for Exercise 9.13.

Exercise 9.15. Prove that there are infinitely many prime numbers of the form 6n + 5.

Exercise 9.16. Prove that if p is prime then
√

p is irrational.

A positive integer n is said to be a perfect square if n = k2 for some integer k. An integer n is
square-free if n is not divisible by any perfect square other than 12 = 1.

Exercise 9.17. Prove that if n > 1 is square-free, then the number of positive divisors of n must
be a power of 2.

Exercise 9.18. Suppose that n is a perfect square. Prove that if p is prime and pk||n, then k is even.

Exercise 9.19. Use Bertrand’s postulate to prove that, if n > 1, then n! is never a perfect square.
Hint: Let p be the largest prime such that p ≤ n. How many times does p divide n!?
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Exercise 9.20. Suppose that n ∈ N has the property that whenever p is prime and p|n, we have
p2|n. Prove or disprove the assertion that n must be a perfect square.

Exercise 9.21. Suppose that a positive integer n is a not a perfect square. Prove that
√

n is
irrational.
Hint: First prove that some prime p divides n an odd number of times. Then adapt the proof that√

2 is irrational, making use of p where necessary.

Exercise 9.22. Adapt the previous exercise to state and prove a theorem about the kth root of an
integer, where k ∈ {3, 4, 5 . . .}.

Exercise 9.23. Suppose that a and b are positive integers with b > 1, such that gcd(a, b) = 1.
Prove that 10

a
b is irrational.

Exercise 9.24. Prove that log10 2 is irrational.

Exercise 9.25. Suppose that n > 1 is an integer. Prove that log10 n is rational if and only if n = 10k

for some positive integer k.

Exercise 9.26. Show that there are no triplets of twin primes p, p + 2, p + 4 except 3, 5, 7.

Exercise 9.27. Find all triplets of primes p, q, r such that

r− q, r− p, q− p

are all primes.

Exercise 9.28. Show that there are no triplets of cousin primes p, p + 4, p + 8 except 3, 7, 11.

Exercise 9.29. Show that there are no 5-tuples of sexy primes p, p + 6, p + 12, p + 18, p + 24 except
5, 11, 17, 23, 29.

Exercise 9.30. Prove that Goldbach is correct if and only if every odd number greater than 5 is
the sum of three primes.

Exercise 9.31. Prove that every integer greater than 11 is the sum of two distinct positive com-
posite numbers.

Exercise 9.32. Suppose that a, n ∈ N, where n > 1. Prove that if an − 1 is a prime number, then
a = 2 and n is prime.
Hint: The geometric sum formula is helpful here.

Exercise 9.33. Prove that if k is not a power of 2 then 2k + 1 is composite.
Hint: Try factoring xk + 1.

Exercise 9.34. Suppose that n is an integer.
(a) For what values of n is n2 − 1 prime?
(b) For what values of n is n2 − 2n− 3 prime?

Exercise 9.35. Prove that if n > 1 then n5 + n4 + 1 is composite.

Exercise 9.36. Prove that if n > 1 then 1 + 1
2 + 1

3 + · · ·+ 1
n is not an integer.

Hint: Count the twos.
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Modular arithmetic is an arithmetic of remainders. The idea is to replace in-
tegers with their remainders after division by some fixed value m. The next
definition provides a useful way to express this idea.

Definition 10.1. Let m > 1 be an integer. For a, b ∈ Z we say that

b ≡ a mod m

if m|(b− a).

In plain English, we say: “b is congruent to a modulo m.” The term modulo is
Latin for by the modulus or by the small measure.

Observe that a ≡ 0 mod m if and only if m|a.

For example, we have

100 ≡ 0 mod 4
19 ≡ 5 mod 7

100 ≡ 9 mod 13
−10 ≡ 2 mod 3

§

Notice that n ≡ 0 mod 2 whenever n is even, and that n ≡ 1 mod 2 whenever n
is odd.

§

If m 6= 0 and b ∈ Z, then we can apply division with remainder (Theorem 4.2)
to write

b = mq + r,

where 0 ≤ r < m. Moreover, Theorem 4.2 tells us that r is unique in the list
{0, . . . , m − 1}. In the language of modular arithmetic, we can rewrite Theo-
rem 4.2 as follows.

Theorem 10.2 (Division with remainder (modular arithmetic version)).
Let m, b ∈ Z, where m > 1. There exists a unique r ∈ {0, 1, . . . , m− 1} such that

b ≡ r mod m.

53
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For example, every integer n is congruent to 0, 1, or 2 modulo 3, depending on
its remainder after division by 3.

§

Congruence mod m is an equivalence relation. More specifically, we have the
following.

Proposition 10.3. For a, b, c ∈ Z and an integer m > 1,

• a ≡ a mod m.

• If a ≡ b mod m then b ≡ a mod m.

• If a ≡ b mod m and b ≡ c mod m then a ≡ c mod m.

The proof is an exercise. (See Exercise 10.2.)

Congruence mod m is also compatible with addition and multiplication. This is
expressed more precisely by the following theorem.

Theorem 10.4. Let a, a′, b, b′ ∈ Z, and let m > 1 be an integer. If a ≡ a′ mod m and
b ≡ b′ mod m, then

• a + b ≡ a′ + b′ mod m.

• a− b ≡ a′ − b′ mod m.

• ab ≡ a′b′ mod m.

Note well the absence of division in Theorem 10.4. Division in a modulus is a
more complicated matter, to be addressed in detail later on.

Proof of Theorem 10.4. The proof that a± b ≡ a′ ± b′ mod m is left as an exercise
(see Exercise 10.3).

To prove that ab ≡ a′b′ mod m, observe that, since a ≡ a′ and b ≡ b′ we have
m|(a− a′), and m|(b− b′). In other words, there exist integers k, l such that

a− a′ = mk and b− b′ = ml.

It follows that

ab− a′b′ = ab− ab′ + ab′ − a′b′

= a(b− b′) + (a− a′)b′

= aml + mkb′ = m(al + kb′),

so that m|(ab− a′b′). q
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Theorem 10.4 is a helpful tool for faster computation. For example, since 100 ≡ 0
mod 4, it follows that

73587459 = 735874 · 100 + 59 ≡ 735874 · 0 + 59 ≡ 59 ≡ 3 mod 4.

Continuing with similar reasoning, we have

(73587459)5 − 4781 · 601 ≡ 35 − 1 · 1 ≡ 243− 1 ≡ 3− 1 ≡ 2 mod 4.

This sort of computation is much easier than explicitly computing (73587459)5

and then dividing by 4, etc.

§

Large exponents are more easily computed by the method of repeated squares.
To illustrate, suppose we want to compute 358 mod 19. Observe that 58 has the
binary expression (111010)2; that is,

58 = 2 + 8 + 16 + 32.

By repeated squaring, we can quickly compile a list of exponentials to powers
of 2 mod 19:

32 ≡ 9 mod 19

34 ≡ 81 ≡ 5 mod 19

38 ≡ 25 ≡ 6 mod 19

316 ≡ 36 ≡ −2 mod 19

332 ≡ 4 mod 19

It now follows that

358 ≡ 32 · 38 · 316 · 332 ≡ 9 · 6 · (−2) · 4 ≡ 5 mod 19.

This method is much faster than performing 57 multiplications by 3.

§

For k = 0, 1, . . . , m− 1, let

〈k〉m = {n ∈ Z | n ≡ k mod m}.

In other words, the sets 〈0〉m, 〈1〉m, . . . , 〈m − 1〉m are the m equivalence classes
of integers modulo m. Every integer n ∈ Z is an element of exactly one 〈k〉m,
determined by the remainder k upon division of n by m. For example,

〈3〉m = {. . . , 3− 2m, 3−m, 3, 3 + m, 3 + 2m, 3 + 3m, 3 + 4m, . . .}.
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For a more specific example, if m = 7 then

〈3〉7 = {. . . ,−11,−4, 3, 10, 17, 24, 31, . . .}.

Denote by Zm the set of equivalence classes of integers mod m. That is,

Zm = {〈0〉m, 〈1〉m, . . . , 〈m− 1〉m}.

We have seen that if a ∈ 〈k〉m and b ∈ 〈l〉m then

a + b ∈ 〈k + l〉m and ab ∈ 〈kl〉m,

by Theorem 10.4. This allows us to define an arithmetic on the set Zm itself, by
defining

〈k〉m + 〈l〉m = 〈k + l〉m and 〈k〉m〈l〉m = 〈kl〉m.

This arithmetic on equivalence classes mod m is called modular arithmetic.

For simplicity of notation, when doing arithmetic mod m we dispense with the
〈k〉m notation and simply write “k mod m”. To help remember that we are doing
modular arithmetic (rather than ordinary integer arithmetic) we also typically
replace the equal sign ‘=’ with the equivalence symbol ‘≡’. For example, if we
are working with arithmetic mod 7, the cumbersome notation

〈5〉7 + 〈4〉7 = 〈2〉7
is replaced with the simpler expression

5 + 4 ≡ 2 mod 7.

In practice, arithmetic mod m is the result of doing ordinary arithmetic of in-
tegers, along with the added property that the number m is equivalent to zero
(along with whatever consequences that leads to).

§

So far we have carefully avoided division in the context of modular arithmetic.
Indeed, a naive approach to division in modular arithmetic can lead to trouble.
For example,

2 · 8 ≡ 2 · 2 mod 12

but
8 6≡ 2 mod 12.

Moreover,
2 · 6 ≡ 0 mod 12,

while 2 6≡ 0 mod 12 and 6 6≡ 0 mod 12. In other words, it is possible for the
product of non-zero values to be zero mod 12. Examples of this phenomenon
occur in every composite modulus.

This disturbing state of affairs is mitigated in part by the following.
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Theorem 10.5 (Cancellation Law).
If ac ≡ bc mod m and gcd(m, c) = 1, then a ≡ b mod m.

Proof. If ac ≡ bc mod m, then m|(ac− bc), so that m|(a− b)c. Since gcd(m, c) = 1,
it follows from Theorem 7.2 that m|(a− b), so that a ≡ b mod m. q

The cancellation law suggests that being relatively prime to the modulus m plays
a role in division. To make this idea even more precise, let’s reformulate a special
case of Theorem 6.3 in the language of modular arithmetic.

Theorem 10.6. The equation
ax ≡ b mod m

has a solution if and only if gcd(a, m)|b.

Proof. Let d = gcd(a, m). The equation ax ≡ b mod m is equivalent to the
assertion that

ax + my = b

for some integers x, y. These integers exist if and only if d|b, by Theorem 8.1. q

The next corollary emphasizes an important special case.

Corollary 10.7. The equation

ax ≡ 1 mod m

has a solution if and only if gcd(a, m) = 1.

In this case we denote x = a−1 and say that a is a unit mod m, with inverse a−1.

Corollary 10.8. If p is prime, and if p 6 | n, then there exists a ∈ {1, 2, . . . , p− 1} such
that

an ≡ 1 mod p.

Corollary 10.8 is an immediate consequence of Corollary 10.7, since gcd(p, n) =
1 whenever p 6 | n. It is worthy of special note, because it tells us that every
non-zero value modulo a prime p is a unit mod p.

§

Sometimes the easiest way to find inverses or to solve equations mod m is by
astute guessing:

Example: 3−1 ≡ 2 mod 5, since 3 · 2 ≡ 1 mod 5. Similarly 2−1 ≡ 3 mod 5.
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Example: To solve 8x ≡ 3 mod 11, first notice that 7 · 8 = 56 ≡ 1 mod 11. It
follows that x ≡ 7 · 3 ≡ 21 ≡ 10 mod 11.

Example: The equation 24x ≡ 2 mod 243 has no solution, since 3|24 and 3|243,
while 3 6 | 2.

However, sometimes it’s best to use an algorithm:

Example: To solve 25x ≡ 2 mod 243, first use Euclid’s algorithm to find a, b such
that 25a + 243b = 1. This yields in the solution

25 · 175 + 243 · (−18) = 1,

so that
25 · 175 ≡ 1 mod 243.

It follows that 175 ≡ 25−1 mod 243. We can now multiply both sides of the
original equation by 175 to reveal that x ≡ 2 · 175 ≡ 350 ≡ 107.

§

If b is not a unit modulo m (that is, if b has no inverse mod m), then b is called
a zero divisor mod m. The reason for this terminology is revealed in the next
proposition.

Proposition 10.9. Suppose that m > 1, and that m 6 | b. The following are equivalent.

(i) b is a zero divisor mod m.

(ii) b has no inverse mod m.

(iii) There exists a ∈ Z, such that m 6 | a and ab ≡ 0 mod m.

Proof. We prove that (i)⇔ (ii)⇔ (iii).

The assertions of (i) and (ii) are equivalent by the definition of zero divisor.

Suppose (ii) holds, so that b has no inverse mod m. It then follows from Corol-
lary 10.7 that gcd(b, m) = d > 1. In other words, m = ad and b = sd, where
d, a, s > 1. Since 1 < a < m, we have a 6≡ 0 mod m. Moreover,

ab = asd = ms ≡ 0 mod m,

so that (iii) follows.

Suppose that (iii) holds, so there exists a ∈ Z, such that m 6 | a and ab ≡ 0 mod
m. If b has an inverse, then bb−1 ≡ 1, so that

0 ≡ 0 · b−1 ≡ (ab)b−1 ≡ a(bb−1) ≡ a mod m,

contradicting m 6 | a. Therefore, b has no inverse, and (ii) follows. q
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For example, 3 is a zero divisor mod 12, since 3 · 4 ≡ 0 mod 12, while 12 6 | 4.

The special case of when m is a prime is so important that we repeat (more or
less) this special case with its own separate theorem.

Theorem 10.10. Let p be prime. If ab ≡ 0 mod p, then either a ≡ 0 or b ≡ 0 mod p.

In other words, there are no zero divisors in a prime modulus except 0.

§

Exercise 10.1. Perform the following modular arithmetic computations. In each case, find the
smallest positive integer that satisfies the given relation.

(a) 66577689 mod 10
(b) 66577689 mod 100
(c) (4673)(536) + 77 mod 3
(d) (−5553)(271) + 68 mod 5

(e) 6! mod 3
(f) 6! mod 7
(g) 6! mod 10
(h) 5579916 mod 4

Exercise 10.2. Use Definition 10.1 to prove Proposition 10.3.

Exercise 10.3. Prove the first two parts of Theorem 10.4: If a ≡ a′ mod m and b ≡ b′ mod m,
then

a + b ≡ a′ + b′ mod m and and a− b ≡ a′ − b′ mod m.

Exercise 10.4. Why don’t we talk about mod 1?

Exercise 10.5. Explain why Theorem 10.10 follows from Proposition 10.9.

Exercise 10.6. Let a, x, y, m ∈ Z, where a 6= 0 and m > 1.
(a) Prove that

ax ≡ ay mod am ⇐⇒ x ≡ y mod m.

(b) Use part (a) to find all values of x mod 30 such that 12x ≡ 18 mod 30.

Exercise 10.7. Prove that n is an odd number if and only if n2 ≡ 1 mod 4.

Exercise 10.8. Prove that n is an odd number if and only if n2 ≡ 1 mod 8.

Exercise 10.9. When is n2 ≡ 2 mod 3?

Exercise 10.10. Prove that if n is an integer then n3 ≡ n mod 3.

Exercise 10.11. Let n ∈ Z.
(a) Prove that n3 ∈ {0, 1,−1} modulo 7.
(b) Prove that 70000000003 is not a perfect cube.
(c) Prove that 70000000003 can neither be written as a sum of 2 perfect cubes, nor as a difference
of 2 perfect cubes.

Exercise 10.12. Prove there are no integers x, y ∈ Z such that x2 + 5y3 = 2.

Exercise 10.13. Find a, m ∈ Z so that a2 ≡ 0 mod m, but a 6≡ 0 mod m. Can you find an example
where m is not a perfect square?
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60 10 Modular arithmetic

Exercise 10.14. Find a, m ∈ Z so that a3 ≡ 0 mod m, but a2 6≡ 0 mod m. Can you find an example
where m is not a perfect cube?

Exercise 10.15. Let n = 8800 + 5500 + 4400 + 3300.
(a) Prove that n is neither a perfect square nor a perfect cube.
(b) Can n be the kth power of an integer for any integer k > 1?

Exercise 10.16. By repeated squaring and reduction mod 23 compute the values of 52, 54, 58, 516,
532, 564 mod 23, and then use this information to compute 583 mod 23.

Exercise 10.17. Suppose n = a2 + b2, where a and b are integers.
(a) What are the possible values of n mod 4?
(b) Can the number 20202043 ever be expressed as a sum of two integer squares? Why or why
not?

Exercise 10.18. Suppose that p ∈N is prime.
(a) Prove that if n = 2p−1(2p − 1), then the decimal expression for n must end in the digit 6 or
the digit 8.
(b) Prove that if n = 2p−1(2p − 1), and if the decimal expression for n does not end in the digit 6,
then it must end with the digits 28.

Exercise 10.19. Suppose that x and y are integers. Prove that, if 2x + 5y is divisible by 23, then
7x + 6y must also be divisible by 23.

Exercise 10.20. What are units mod 15? What are the zero divisors?

Exercise 10.21. For each of the following, solve for x if possible, or explain why no solution exists.

(a) 3x ≡ 1 mod 16
(b) 4x ≡ 3 mod 19
(c) 4x ≡ 3 mod 18
(d) 4x ≡ 2 mod 18

(e) 253x + 47 ≡ 900 mod 7
(f) x2 ≡ 3 mod 13
(g) x2 + 1 ≡ 0 mod 2
(h) x2 + 1 ≡ 0 mod 3

Exercise 10.22. Compute the first few powers of 10 mod 3. Use the results to explain why

8450326123897 ≡ 8 + 4 + 5 + 0 + 3 + 2 + 6 + 1 + 2 + 3 + 8 + 9 + 7 mod 3.

What happens mod 9? mod 11?

Exercise 10.23. For each of the following, solve for x if possible, or explain why no solution exists.

(a) 100x ≡ 1 mod 77
(b) 25x ≡ 31 mod 63

(c) 18x ≡ 5 mod 42
(d) 18x ≡ 6 mod 42

Exercise 10.24. (a) Prove that, if p is a positive prime and 1 ≤ k ≤ p− 1, then(
p
k

)
≡ 0 mod p.

(b) Show by example that (a) may no longer hold if p is not prime.
(c) Combine part (a) with the Binomial Theorem 3.2 to prove that, if p is prime, then

(x + y)p ≡ xp + yp mod p,

for all x and y.
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Exercise 10.25. Prove that, if k is a positive integer, then

(2k + 1)2 ≡ (2k − 1)2 ≡ 1 mod 2k+1.

Exercise 10.26. Recall the Fibonacci sequence {Fn} of Exercise 2.7. Suppose that n ≥ k ≥ 3.
(a) Prove that Fn = FkFn−k+1 + Fk−1Fn−k.
(b) Combine the identity in part (a) with Exercise 6.8 to show that Fn ≡ 0 mod Fk if and only if
Fn−k ≡ 0 mod Fk.
(c) Use part (b) and division with remainder to prove that Fk|Fn if and only if k|n.

Exercise 10.27. Can a power of two ever end in the digits “...324”?

Exercise 10.28. Prove that, if n > 1 is an integer, then 3n + 1 is not divisible 2n.†

Exercise 10.29. For which n ∈N is the number n! + 5 a perfect cube?

Exercise 10.30. For each of the following, solve for x if possible, or explain why no solution exists.

(a) x2 + x + 1 ≡ 0 mod 2
(b) x2 + x + 1 ≡ 0 mod 3
(c) x2 − x + 3 ≡ 0 mod 5

(d) 8x2 − 6x + 43 ≡ 0 mod 7
(e) x2 − 1 ≡ 0 mod 8
(f) 9x2 − 10 ≡ 0 mod 8

Exercise 10.31. For which integers n is 2n + 5n − 14 a prime number?

Exercise 10.32. Let m, n ∈N, and suppose that m > 2.
(a) Prove that 3m − 2n 6= −1.
(b) Prove that 3m − 2n 6= 1.∗

†From the 1911 Eötvös Competition [25].
∗Parts (a) and (b) together can be stated as follows: the only instances of pairs (2n, 3m) where

2n and 3m are within 1 of each other are the pairs (1, 1), (2, 1), (2, 3), (4, 3), and (8, 9). This
theorem is attributed to Levi ben Gershon (1288–1344), also known as Gersonides, a medieval
mathematician, astronomer, and Jewish philosopher. It is a special case of Catalan’s conjecture:
If m, n ∈ N with m, n > 1, then the equation xn − ym = 1 has no integer solutions besides
32 − 23 = 1. Conjectured by Eugène Catalan (1814–1894) in 1844, this assertion was proved by
Preda Mihăilescu in 2002 [18].
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A farmer has a basket of apples. If he puts the apples into sacks of 8 apples
each, there are 3 apples left over. If he puts the apples into crates of 25 apples
each, there are 7 apples left over. How many apples does the farmer have?

A moment of thought reveals that this problem does not have a unique answer.
On the other hand, there are certainly some stringent conditions being set on
the number A of apples the farmer could have. In particular, we know that

A ≡ 3 mod 8 and A ≡ 7 mod 25.

Notice that 200 ≡ 0 mod 8 as well as mod 25. This means that if A is a solution
to the problem, then A + 200 is another solution, as is A + 400, A + 600, and so
on. (If it were possible to have a negative number of apples, say by owing a debt
of apples to the farmer next door, then A− 200 is also a solution.)

The previous observation suggests we look for an initial answer between 0 and
199. Enlightened trial and error leads to the possibility that the farmer has 107

apples. So maybe A = 107. If not, then at least we can say that

A ≡ 107 mod 8 and A ≡ 107 mod 25,

so that A− 107 is divisible by both 8 and 25. Since gcd(8, 25) = 1, this means
that A− 107 is divisible by 8 · 25 = 200. In other words, the number of apples A
must be an integer such that

A ≡ 107 mod 200.

In the absence of more information, this is the most we can know for certain
about the number A.

This situation is summarized by the following theorem, historically attributed
to the mathematicians of ancient China.

Theorem 11.1 (Chinese remainder theorem). If m1, . . . , mk are pairwise relatively
prime,1 and a1, . . . , ak ∈ Z, there is a unique value x mod (m1 · · ·mk) such that

x ≡ a1 mod m1

x ≡ a2 mod m2

... (11.1)
x ≡ ak mod mk

simultaneously.
1That is, gcd(mi, mj) = 1 for every i 6= j.
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11 The Chinese remainder theorem 63

Proof. For j = 1, . . . , k, denote

Mi = m1 · · ·mi−1mi+1 · · ·mk;

that is, let Mi be the product of all the relevant moduli except mi. Since the mi
are pairwise relatively prime, we have gcd(mi, Mi) = 1. It follows that there is
an integer yi such that

Miyi ≡ 1 mod mi,

for each i. To solve the system of equivalences (11.1), set

x = a1M1y1 + a2M2y2 + · · ·+ ak Mkyk.

Since m1|Mi for each i > 1, while M1y1 ≡ 1 mod m1, it follows that

x ≡ a1(1) + 0 + · · ·+ 0 ≡ a1 mod m1,

and, similarly, x ≡ ai mod mi for each i. We have shown that a solution x exists.

Next, suppose that z is another solution to the given system of equivalences.
This implies that z ≡ x ≡ ai mod mi for each i, so that

mi|(z− x)

for each i. Since the mi are pairwise relatively prime, it follows from Proposi-
tion 7.3 that the product

m1m2 · · ·mk|(z− x),

so that z ≡ x mod m1 · · ·mk. q

In practice there are two methods to solve a Chinese remainder problem, as the
next example illustrates.

Example: Find all integers x such that

x ≡ 3 mod 4
x ≡ 2 mod 5
x ≡ 10 mod 13

are simultaneously satisfied.

Solution #1: Following the proof of the theorem, set M = 4 · 5 · 13 = 260,
and set

M1 = 5 · 13 = 65 M2 = 4 · 13 = 52 M3 = 4 · 5 = 20.

We now solve for integers y1, y2, and y3 so that

65y1 ≡ 1 mod 4 52y2 ≡ 1 mod 5 20y3 ≡ 1 mod 13.
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After simplification in each modulus, these identities become

y1 ≡ 1 mod 4 2y2 ≡ 1 mod 5 7y3 ≡ 1 mod 13.

A moment of consideration yields the integer solutions

y1 = 1, y2 = 3, y3 = 2,

so that

x ≡ 3 · 65 · 1 + 2 · 52 · 3 + 10 · 20 · 2 ≡ 907 mod 260.

Reducing mod 260 then yields the solution

x ≡ 127 mod 260.

Solution #2: An alternative approach2 is to solve the problem one identity
at a time. To begin, we have x ≡ 3 mod 4, so that

x = 3 + 4r

for some integer r. Next, we are told that x ≡ 2 mod 5, so that

3 + 4r ≡ 2 mod 5,

which implies that
4r ≡ −1 ≡ 4 mod 5,

so that r ≡ 1 mod 5. In other words, r = 1 + 5s for some s ∈ Z. Putting
these results together, we have

x = 3 + 4r = 3 + 4(1 + 5s) = 7 + 20s.

Notice that we have now simultaneously solved the first two identities,
since

7 ≡ 3 mod 4 and 7 ≡ 2 mod 5.

Continuing, the last condition on x tells us that

x = 7 + 20s ≡ 10 mod 13,

so that
7s ≡ 3 mod 13,

which implies that s ≡ 6 mod 13. In other words, s = 6 + 13t for some
t ∈ Z. Combining this with the previous results, we obtain

x = 7 + 20s = 7 + 20(6 + 13t) = 127 + 260t,

so that
x ≡ 127 mod 260.

2My experience has been that most students prefer this next method.
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§

The relatively prime condition on the moduli m1, . . . , mk is necessary to assure
the existence of a solution. For example, there is no integer x such that

x ≡ 3 mod 4
x ≡ 2 mod 6.

Indeed, the first condition implies that x is odd, while the second implies that
x is even. The discrepancy mod 2 is no coincidence, since gcd(4, 6) = 2, so that
Theorem 11.1 cannot be applied.

On the other hand, the simultaneous system

x ≡ 3 mod 4
x ≡ 5 mod 6.

does have solutions mod 24, namely, x ≡ 11 and x ≡ 23. Notice that these
two different solutions are congruent mod 12 = lcm(4, 6). These examples are
special cases of the following.

Proposition 11.2. Let m1, m2 > 1 be integers, and let a1, a2 ∈ Z. Let d = gcd(m1, m2).

If d|(a1 − a2), then the equations

x ≡ a1 mod m1

x ≡ a2 mod m2 (11.2)

have a unique simultaneous solution x mod lcm(m1, m2).

If d 6 | (a1 − a2) then (11.2) has no simultaneous solution.

§

Exercise 11.1. If we divide n by 3, we have 2 left over. If we divide the same number n by 17, we
have 9 leftover. What are the possible values for n?

Exercise 11.2. Find all integers x such that

x ≡ 2 mod 7
x ≡ 3 mod 9

simultaneously hold.

Exercise 11.3. Find all integers x such that

x ≡ 4 mod 5
x ≡ 1 mod 7
x ≡ 8 mod 41

all simultaneously hold.
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Exercise 11.4. Find the largest negative integer x satisfying the modular identities in Exer-
cise 11.3.

Exercise 11.5. Find the smallest positive integer x such that

x ≡ 1 mod 2
x ≡ 2 mod 3
x ≡ 3 mod 5
x ≡ 5 mod 7

all simultaneously hold.

Exercise 11.6. Explain why the equations

x ≡ 9 mod 15
x ≡ 14 mod 21

have no simultaneous solution.

Exercise 11.7. Prove Proposition 11.2.

Exercise 11.8 (Exploratory Exercise). How does Proposition 11.2 generalize to 3 or more modular
arithmetic equations?

Exercise 11.9. Find all integers x such that

x ≡ 8 mod 15
x ≡ 14 mod 21

simultaneously hold.

Exercise 11.10. Find all integers x such that

x ≡ 1 mod 5

x2 ≡ 3 mod 11

simultaneously hold.

Exercise 11.11. Find all integers x such that

x2 − x + 3 ≡ 0 mod 5
x2 ≡ 1 mod 13

simultaneously hold.

Exercise 11.12. Find 3 consecutive integers that are each divisible by some perfect square greater
than 1.



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

12 Divisibility tests

A divisibility test is a quick test to determine if an integer a is divisible by an-
other integer m. The test should be easier to apply than the actual process of
dividing m by a (with possible remainder), or we would just do that! A divis-
ibility test may offer a shortcut to the yes/no question of divisibility, without
necessarily supplying a quotient or a remainder. Sometimes, however, a test
will also provide us with a value for a mod m.

The simplest example is one you undoubtedly know already: An integer is even
(divisible by 2) iff∗ its last digit is even. To see why this holds, recall that a
positive integer n has decimal digits d0, d1, . . . , dk ∈ {0, 1, 2, . . . , 9} when

n = 10kdk + 10k−1dk−1 + · · ·+ 102d2 + 10d1 + d0, (12.1)

where d0 is the final digit. Since 10 ≡ 0 mod 2, it immediately follows that
n ≡ d0 mod 2, so that the final digit determines whether n is even or odd.

It might seem like we are making too much out of an obvious fact. But the proof
is useful in that it reveals immediate generalizations. For example, since 100 ≡ 0
mod 4, a similar argument using the expansion (12.1) implies that a number is
congruent mod 4 to the number formed by its last two digits. More generally,
since 10m = 2m5m, we have divisibility tests for all powers of 2 and 5:

• A number is divisible by 2m iff the number formed by its last m decimal
digits is divisible by 2m.

• A number is divisible by 5m iff the number formed by its last m decimal
digits is divisible by 5m.

For example, one can see at a glance that the number 229811340 is divisible by
2 and 4 (because 4|40), but is not divisible by 8 (since 8 6 | 340). Similarly, this
number is divisible by 5, but not by 25.

The expansion (12.1) is also used to derive divisibility tests for 3, 9, and 11, using
the fact that 10 ≡ 1 mod 3 and mod 9, while 10 ≡ −1 mod 11.

• A number n is always congruent to the sum of its decimal digits mod 3
and mod 9.

• A number n is always congruent to the alternating sum of its decimal
digits mod 11.

∗“iff” is shorthand for “if and only if”.

67
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To understand the first assertion, observe that

10k ≡ 1k ≡ 1 mod 3
(
or mod 9

)
,

for all integer exponents k. Combining this with (12.1) yields

n ≡ dk + dk−1 + · · ·+ d2 + d1 + d0 mod 3,

and similarly mod 9.

For the mod 11 test, combine the fact that

10k ≡ (−1)k mod 11,

with (12.1) to obtain

n ≡ d0 − d1 + d2 − · · ·+ (−1)kdk mod 11.

Note that this alternating sum begins with the last digit d0 in order to avoid a
possible sign error.

For example, the number 229811340 satisfies

229811340 ≡ 2 + 2 + 9 + 8 + 1 + 1 + 3 + 4 + 0 = 30 ≡ 3 + 0 = 3 mod 9,

while

229811340 ≡ 0− 4 + 3− 1 + 1− 8 + 9− 2 + 2 = 0 mod 11.

§

Exercise 12.1. Find and prove a simple test for divisibility by 6.

Exercise 12.2. Use mental arithmetic (without writing on paper) to determine which of the fol-
lowing numbers is divisible by 3, by 4, by 6, by 9, and by 11.

(a) 41414

(b) 414414

(c) 41424

(d) 41404

(e) 10001

(f) 11001

(g) 11100

(h) 11010

(i) 4700000036

Exercise 12.3. Find and prove modular arithmetic shortcuts for mod 20, mod 250, and mod 1250,
in analogy to the methods for mod 2, 4, and 5 described in this section.

Exercise 12.4. Find and prove modular arithmetic shortcuts for mod 99, mod 999, and mod 101,
in analogy to the methods for mod 3, 9, and 11 described in this section.

Exercise 12.5. (a) Find a simple shortcut for reducing very large numbers mod 37.
Hint: What is 37 · 27?
(b) Use the method you found in part (a) to compute 229811340 mod 37.
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Exercise 12.6. For k = 1, 2, 3 . . . , let Ek denote the number whose decimal expansion consists of k
ones; that is, E1 = 1, E2 = 11, and so on, so that

Ek = 111 · · · 1︸ ︷︷ ︸
k digits, all ones

(a) Prove that Ek is divisible by 11 if and only if k is even.
(b) Prove that Ek is divisible by 3 if and only if 3|k.
(c) Prove that if Ek is prime then k is prime.
(d) Prove that if k is prime then Ek is sometimes prime and sometimes composite.

Exercise 12.7. Let n be a positive integer. Let a be the last digit of n expressed in decimal form.
Let b be the number formed from n by removing the last digit. (For example, if n = 3516 then
a = 6 and b = 351).

Prove that, for all n ∈N, we have 7|n if and only if 7|(b− 2a).

Exercise 12.8. Let n be a positive integer. Following the notation of the previous exercise, show
that n ≡ 3(b− 2a) mod 7.

Exercise 12.9. Use your solution to the previous two exercises regarding mod 7 to find analogous
tests for divisibility by mod 13, 17, 19 and 23.

Exercise 12.10. Prove that a positive integer n is congruent mod 15 to the sum of the digits of its
hexadecimal expansion.

Exercise 12.11. Let n be a positive integer.
(a) Invent a simple method for computing n mod 3 when n is given as a binary expansion.

(b) Use your answer to part (a) to compute the value of the binary numbers 1111001000 and
1011011101111 mod 3.

Exercise 12.12. Let n be a positive integer.
(a) Invent a simple method to compute n mod 7 when n is given as an octal expansion.

(b) Use your answer to part (a) to compute the value of the octal number (4156332)8 mod 7.

(c) Use your answer to part (a) to compute the value mod 7 of the binary expansions from Exer-
cise 12.11

Exercise 12.13. Let m be a 5-digit positive whole number whose decimal expansion has the form

m = 5aba4

where a and b are decimal digits.

Suppose that 33|m and that m is not divisible by 4.

What is m = ?
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Checksums and checkdigits are used to detect errors in transmission and copy-
ing.

When a stream of bits (b1, b2, . . . , bn) is transmitted,1 include an extra parity bit,

bn+1 ≡ b1 + b2 + · · ·+ bn mod 2.

The recipient compares the mod 2 sum of first n bits received with the parity bit.
If the results do not match, there are an odd number of errors in the transmis-
sion. This is an effective checksum when errors are expected to be uncommon
and distributed randomly.

More generally, given an integer x expressed in binary, the even parity bit e(x) is
obtained by summing the bits of each x (that is, counting the 1’s that appear in
the binary expression of x), and returning the value of this sum modulo 2. So
the e(x) = 0 if x has even number of 1s in its binary expression and e(x) = 1 if
x has an odd number of 1s in its binary expression. For example, the (decimal)
integer 23 has the representation

10111

in binary, so e(23) ≡ 1 + 0 + 1 + 1 + 1 ≡ 0 mod 2.

In Section 29 even parity bits will play an important role in pseudorandom
number generation.

§

International Standard Book Number (ISBN) codes are used in the labelling of
retail books to facilitate easy identification via barcode scanners (for example).
ISBN codes include check-digits in order to detect read errors by scanners and
copy errors by humans.

An ISBN-10 code is a sequence of values a1, . . . , a10, c, where each ai is a decimal
digit, and where the symbol c ∈ {0, 1, . . . , 9, X} is a check-digit satisfying the
rule

a1 + 2a2 + 3a3 + · · ·+ 9a9 + 10c ≡ 0 mod 11.

The value c = X is used to represent the value of 10 mod 11. An ISBN-10 code
is often printed with dashes, which are ignored in the checksum calculation.

1A bit is a single binary digit, either 0 or 1.
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For example, the code 0-321-69394-5 is a valid ISBN-10 code, whereas 0-321-
69934-5 contains an error. Similarly, the code 0-321-69399-X is a valid ISBN-10
code.

§

An ISBN-13 code is a sequence of values a1, . . . , a12, c, where each of the ai are
decimal digits, and where the number c is a check-digit satisfying the rule

c ≡ a1 + 3a2 + a3 + 3a4 + · · ·+ a11 + 3a12 mod 10,

where coefficients 1 and 3 alternate in the sum.

For example, the code 978-0-321-69394-9 is a valid ISBN-13 code, whereas 978-
0-324-69394-9 contains an error.

§

Another common example of a check digit is the final digit in a Universal Prod-
uct Code (UPC). A UPC-A number is the 12-digit number seen at the base of the
UPC barcode printed on many retail packages. To compute the check digit for
the UPC-A coding system, denote the first 11 digits of the UPC by a1, a2, . . . , a11.
The final check digit c is given by the formula

c ≡ −3(a1 + a3 + a5 + a7 + a9 + a11)− (a2 + a4 + a6 + a8 + a10) mod 10.

For example, the code 3-40034-21778-5 is a valid UPC-A code, whereas 3-40134-
21778-5 contains an error.

§

Exercise 13.1. Suppose we express the non-negative integers 0, 1, 2, 3, . . . in binary notation:

0, 1, 10, 11, 100, 101, 110, 111, 1000, . . .

and then compute the even parity bit e(x) of each integer in this list. The result is an infinite
sequence {en}∞

n=0 of bits.
(a) What are the even parity bits e0, e1, . . . , e16 of the first 17 non-negative integers? Do you see a
pattern?
(b) Prove that the sequence {en} never has 3 consecutive zeroes and never has 3 consecutive ones.

Exercise 13.2. For integers x ≥ 0 (expressed in binary), prove or disprove:

(a) e(2x) = e(x).
(b) e(x + 1) = e(x) + 1.
(c) e(2x + 1) = e(x) + 1.

(d) e(2x) = 1.
(e) e(2x − 1) = 0.
(f) e(2x + 1) = 0.

Exercise 13.3. Show that the check-digit c of the ISBN-10 code satisfies

c ≡
9

∑
i=1

iai mod 11.
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Exercise 13.4. Show that a valid ISBN-10 code satisfies

10a1 + 9a2 + 8a3 + · · ·+ 2a9 + c ≡ 0 mod 11.

Exercise 13.5. What is the check-digit of an ISBN-10 code having the form 6-519-20700-2?

Exercise 13.6. What is the missing digit of the ISBN-10 code 3-888-12342-3?

Exercise 13.7. Show that the check-digit of an ISBN-10 code will detect an error if any two digits
in a valid code are exchanged, or if any single digit has the wrong value.

Exercise 13.8. What is the check-digit of an ISBN-13 code having the form 800-6-452-83813-2?

Exercise 13.9. What is the missing digit of the ISBN-13 code 020-1-666-22231-7?

Exercise 13.10. Show that the check-digit of an ISBN-13 code will detect an error if exactly one
digit has the wrong value.

Exercise 13.11. Show that the check-digit of an ISBN-13 code might not detect an error if two
adjacent digits in a valid code are exchanged.

Exercise 13.12. What is the check-digit of a UPC-A code having the form 3-80882-20070-2?

Exercise 13.13. What is the missing digit of the UPC-A code 1-41414-14142-8?

Exercise 13.14. Show that the check-digit of a UPC-A code will detect an error if exactly one digit
has the wrong value.

Exercise 13.15. Show that the check-digit of a UPC-A code might not detect an error if two
adjacent digits in a valid code are exchanged.



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

14 Pollard’s Rho

This next application of modular arithmetic provides a way to factor large inte-
gers more efficiently than the trial division method of Section 9.

Given a positive integer n, how can we find its prime factorization? The first
step is to determine whether n itself is prime. Methods for doing this efficiently
will be described in Section 31. If we know that n is composite, the next step is
to find a prime factor p of n. Writing n = pn′ we can then iterate by factoring
n′, until the original integer n is completely factored.

The difficult step is finding a prime p that divides n. The naive approach from
Section 9 was to use trial division of n by the sequence of primes

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

until a prime factor is found. By Theorem 9.2 a composite number n is divisible
by some prime p ≤

√
n, so this trial division process will require at most

√
n

steps.

The method of trial division has obvious defects. First, it requires us to compile
a complete list of primes p ≤

√
n. We can get around this problem by per-

forming trial division by all integers (or, say, all odd integers after 2) up to
√

n,
without worrying about which is prime. But this still leaves a procedure of great
inefficiency. For example, if n is a 13 digit number, then

√
n is on the order of

106, possibly requiring millions of trial divisions. If n has more than 24 digits,
then this procedure may require trillions of trial divisions.

Faster methods of factoring integers have been developed. In the 1970s John
Pollard discovered an especially simple and beautiful stochastic algorithm for
finding prime factors of a large composite integer [22]. This algorithm, known
as Pollard’s Rho, is implemented as follows:

Let f (x) be a quadratic polynomial (such as f (x) = x2 + 1).
Set x0 = y0 = 2.
For i ≥ 1, let xi = f (xi−1) mod n, let yi = f ( f (yi−1)) mod n,
and let di = gcd(xi − yi, n).

• If di = 1, then continue to step i + 1.
• If di = n, then the algorithm fails (see below).
• If 1 < di < n, then the algorithm returns d = di, a proper divisor

of n.

Observe that, at each step of the sequence above, we have yi = x2i. Pollard’s Rho
computes gcd(xi− x2i, n) for i = 1, 2, . . . until either a proper factor of n appears,

73
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or x2i ≡ xi mod n. In the latter case, the algorithm fails and should be restarted
using a different choice of quadratic function f (x), such as f (x) = x2 − 1.

Pollard’s Rho assumes that n is a composite number. A primality test (such as the
Miller-Rabin test; see Section 31) should always be used before Pollard’s Rho is
applied, and primality should also be checked every time a factor of n has been
isolated.

If the algorithm succeeds in returning a proper divisor d of n, we have n = dn′

for some integers d, n′ < n. After testing d and n′ for primality, we can now
iterate the procedure on d and n′ until n is factored completely into primes.

§

While Pollard’s Rho is usually used for large integers and implemented on a
computer, the following step-by-step example with n = 1219 illustrates the re-
markable efficiency of this algorithm. In this example we use f (x) = x2 + 1.
Keep in mind that all computations are done mod 1219. The results of each step
appear in the following table.

i xi yi xi − yi gcd(xi − yi, 1219)
0 2 2 0 1219
1 5 26 21 1
2 26 1205 1197 1
3 677 1021 344 1
4 1205 1021 1035 23 (Success!)
5 197
6 1021
7 197
8 1021

(14.1)

As seen in the table 14.1 above, the sequence xi begins to cycle mod 1219 at x5
with a period of 2. The cycling mod 23 is revealed the at step 4, where the gcd
of 23 appears. It follows that 23|1219. After one more integer division we find
the prime factorization 1219 = 23 · 53.

In practice the algorithm would have terminated at i = 4 in 14.1. The values
of xi are shown here through i = 8 for illustrative purposes only. Notice that
yi = x2i for each i.

§

Suppose that n is a composite integer whose smallest prime factor is p. In
the analysis that follows we will show that Pollard’s Rho typically finds p (or
some other non-trivial factor of n) after approximately

√
p steps. Since p ≤

√
n,

Pollard’s Rho can often be used to find a factor of a composite number n after
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approximately 4
√

n steps, a dramatic improvement over earlier methods. For
example, if n has 13 digits, then Pollard’s Rho should find a factor of n after
only few thousand steps, rather than the millions required by the method of
trial division.

§

While Pollard’s Rho is easy to describe and to implement, it is not obvious why
this algorithm finds a factor as quickly as it does. The following non-rigorous
analysis assumes some knowledge of probability theory.

Suppose we select k items uniformly at random from a list of n distinct items
with replacement (so that the same item may be selected multiple times). Let P
denote probability that the k items selected are all different from one another;
i.e., that no item is selected more than once. A classical result known as the
Birthday Problem [28, p. 147] asserts that, if k is much smaller than n, then

P ≈ 1− e−
k2
2n ,

where e = 2.718 . . . is Euler’s famous constant.1

In the classic example, let n = 365, the number of days in a typical year, and let
k be the number of randomly chosen people from a population. If k ≥ 23 then
P ≥ 0.5, so that there is a better than 50% chance that at least two people chosen
have the same birthday. If k ≥ 58 then this probability rises to almost 99%! More
generally, if k > 2

√
n then P ≥ 0.86, while if k > 4

√
n then P > 0.999.

Let us suppose (for the moment) that the sequence xi generated by Pollard’s
Rho is a uniformly random sequence of integers when reduced mod p, where p
is the smallest prime dividing n. The solution to the Birthday Problem asserts
that, if we examine the sequence out to i ≥ 4

√
p, then we are more than 99.9%

likely to find a repeated value mod p.

Recall that xi+1 = f (xi). It follows that, whenever xi = xj, we also have f (xi) =
f (xj), so that xi+1 = xj+1 and so on. In other words, once xi = xi+u for some u,
the sequence will be forever periodic with period length u.

With this in mind, let s denote the first index of x such that xs = xs+u. There
is no reason to expect that Pollard’s Rho will find s, since the algorithm only
compares xi with x2i. Amazingly, however, this turns out to be good enough in
practice.2 To see why, notice that

xi ≡ x2i iff i ≥ s and 2i = i + uk for some k
iff i ≥ s and i = uk for some k
iff i ≥ s and i ≡ 0 mod u

1A better estimate is P ≈ 1− e−
k(k−1)

2n , but either will serve our purposes here.
2This phenomenon is known as Floyd cycle detection and is used to improve the efficiency of

many advanced factorization algorithms [16].



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

76 14 Pollard’s Rho

This means that Pollard’s Rho will detect the cycle when i ≥ s and i ≡ 0 mod u.
To see how soon this happens, use division with remainder:

s = uq + r,

where 0 ≤ r < u, and then set i = s− r + u. Evidently i > s and

i = (s− r) + u = uq + u ≡ 0 mod u.

It follows that Pollard’s Rho finds a pair x2i ≡ xi mod p no later than

i = s− r + u ≤ s + u.

Since xs+u is the first repeated value in the sequence {xi mod p}, this will occur
with moderate probability if i ≥ √p, and with very high probability if i ≥ 4

√
p.

Since a composite integer n always has a prime factor p ≤
√

n, Pollard’s Rho is
highly likely to find a proper factor of n after 4 4

√
n steps, with a decent proba-

bility of success even after only 4
√

n steps. This is much faster than the
√

n steps
that may be needed using the method of trial division.

There are some obvious objections to this analysis. One objection is that we are
comparing apples and oranges: Trial by division does one division at each step,
while Pollard’s Rho requires a gcd computation at each step (along with some
quadratic computations). However, Euclid’s algorithm provides a very efficient
means of computing the gcd (on the order of log(n) divisions), rendering this
point moot for larger values of n.

A more serious objection is that the solution to the Birthday Problem applies
to uniformly random selections, while the sequence xi is generated by a deter-
ministic (though arguably pseudorandom) formula. While this turns out not to
matter in practice, it renders the precise stochastic mechanism behind Pollard’s
Rho a bit mysterious. Indeed, this mechanism remains a topic of current re-
search. In the meantime, a more detailed stochastic analysis of Pollard’s Rho
can be found in [6, p.426-432].

§

More sophisticated methods of factoring integers have also been discovered,
including Fermat factorization, the continued fraction method, the quadratic sieve,
and various number field sieves. These algorithms lie beyond the scope of this
book, but are explained in [6, 10, 30], for example.

There are still no integer factorization algorithms that run in polynomial time
relative to the number of digits of n, although advances in quantum computing
may change this someday [29].

§
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Exercise 14.1. Use Pollard’s Rho to factor the number 111 by hand. Remember that all computa-
tions take place mod 111.

Exercise 14.2. Use Pollard’s Rho to factor the number 1333, constructing a table with columns for
i, xi, yi, xi − yi, and gcd(xi − yi, 1333) as in the example of 14.1. Remember that all computations
take place mod 1333. This can be done by hand in a few minutes with a hand-held calculator.
How many steps does your procedure require? How does this compare to factoring 1333 using
trial by division?

Exercise 14.3. Use Pollard’s Rho to factor the number 2279, as in Exercise 14.2. How many steps
does your procedure require? How does this compare to factoring 2279 using trial by division?
Hint: You should notice a definite pattern in the xi after 7 or 8 steps.

Exercise 14.4. Pollard’s Rho should only be applied to an integer n that is known to be composite.
What happens of you apply Pollard’s Rho to a prime?

Exercise 14.5 (Project Exercise). Write a program in a computer language of your choice to factor
integers using the method of trial division. Use your program to factor the following composite
numbers

4056187

8165104431

64227559510527 (14.2)

171684933869539

82079243425409089

Note how long it takes your program to factor each number.3

Exercise 14.6 (Project Exercise). Write a program in a computer language of your choice to find a
proper factor of a composite integer using Pollard’s Rho. Use your program to find proper factors
of the numbers in the list (14.2) from the previous exercise. Note how long it takes your program
to find a proper factor of each number. How do these times compare to those in Exercise 14.5?

Then use your program to find a proper factor of 12193263122374638001.

3If your program takes too long to factor 82079243425409089, then just make note of that and
move on to Exercise 14.6.
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Recall from Corollary 10.8 that, if p is prime, then every residue except 0 is a
unit mod p. This fact has remarkable consequences, among them a fundamental
property of exponentials discovered by Fermat.1

Theorem 15.1 (Fermat’s Theorem). If p 6 | a then ap−1 ≡ 1 mod p.

Theorem 15.1 is sometimes known as Fermat’s Little Theorem, in order to distin-
guish it from the more famous Fermat’s Last Theorem.2

Proof. Consider the list of values

a, 2a, 3a, . . . , (p− 1)a mod p.

Since p 6 | a, the cancellation law implies each of these values is non-zero and
distinct mod p, for if ar ≡ as, then we can cancel a to obtain r ≡ s mod p. It
follows that the list above is the same as the list of values

1, 2, 3, . . . , (p− 1) mod p,

listed in a possibly different order. Therefore, multiplying all of the numbers in
the first list will give the same outcome mod p as multiplying all of the numbers
in the second list. That is to say,

ap−1(p− 1)! ≡ (p− 1)! mod p.

Applying the cancellation law once again, we have ap−1 ≡ 1 mod p. q

Corollary 15.2.

• If a ∈ Z then ap ≡ a mod p.

• If p 6 | a then a−1 ≡ ap−2 mod p.

This corollary follows readily from Fermat’s theorem (see Exercise 15.1).

§

1Pierre de Fermat (1601–1665) was the founder of modern number theory. For a short history
of his contributions, see [3, p. 5] or [33, p. 207-223].

2Fermat’s Last Theorem addresses the very difficult Diophantine equation an + bn = cn. See
the discussion of the equation (28.6) in Section 28.
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Everyone knows that a number has at most two square roots. Except when it
doesn’t! Consider, for example, the equation

x2 ≡ 1 mod 8.

Checking the possible values 1, 2, 3, . . . , 8 reveals that this equation has 4 distinct
solutions, namely, x = 1, 3, 5, 7.

This anomaly turns out to be a consequence of working in a composite modulus.
The next proposition shows that quadratic equations are more well-behaved
when the modulus is a prime number p.

Proposition 15.3. If p is an odd prime, and p 6 | a, then the equation

x2 ≡ a mod p

has either exactly two distinct roots or no solutions at all.

Before proving this proposition, consider the following question: Can it ever be
the case that a ≡ −a mod m? Of course this is true when a ≡ 0, but what if
a 6≡ 0? The answer is Yes. For example, 2 ≡ −2 mod 4. More generally, a ≡ −a
mod m holds if and only if 2a ≡ 0 mod m. If m is even, say m = 2k, then this
identity holds for a ≡ k (or −k) mod m. On the other hand, if m is odd, then
gcd(2, m) = 1, so that

a ≡ −a ⇔ 2a ≡ 0 ⇔ a ≡ 0 mod m,

since we can divide by 2 in this instance. In particular, if p is a odd prime
number then

a ≡ −a mod p ⇔ a ≡ 0 mod p.

Proof of Proposition 15.3. If there no solutions (can you think of an example?),
then we are done.

Suppose instead that there is a solution b, so that b2 ≡ a mod p. It follows that
(−b)2 ≡ b2 ≡ a as well, giving a second solution, since b 6≡ −b when p is odd.

Suppose that x is yet another (third?) solution. In this case we would have

x2 ≡ a ≡ b2 mod p

so that
x2 − b2 ≡ 0 mod p.

Factoring the difference of squares, we have

(x− b)(x + b) ≡ 0 mod p,

so that either x− b ≡ 0 or x + b ≡ 0 mod p, by Theorem 10.10. In other words,
x ≡ b or x ≡ −b; there are no other possibilities. q
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Proposition 15.3 explains the following famous curiousity regarding factorials
in a prime modulus.

Theorem 15.4 (Wilson’s Theorem). If p is prime, then (p− 1)! ≡ −1 mod p.

Proof. Consider the list of numbers {1, 2, . . . , p− 1}. Since no number on this list
is divisible by p, each of them has an inverse mod p. In other words, for each
number a in this list, there is a number a−1, also in the list, such that aa−1 ≡ 1
mod p.

But wait! Can any such number be its own inverse? Suppose a ≡ a−1 mod
p. In this case, multiply both sides by a to obtain a2 ≡ 1. By Proposition 15.3
the only possible cases are a ≡ 1 and a ≡ −1 ≡ p − 1. Therefore, for each
a ∈ {2, . . . , p − 2}, we have a 6≡ a−1. Since both a and a−1 appear in that list,
everything in this shorter list must cancel upon multiplication, so that

2 · 3 · · · (p− 2) ≡ 1 mod p.

It follows that

1 · 2 · 3 · · · (p− 2) · (p− 1) ≡ 1 · (p− 1) ≡ −1 mod p.

q

§

Exercise 15.1. Use Theorem 15.1 to prove Corollary 15.2.

Exercise 15.2. Compute 5843 mod 43.

Exercise 15.3. Compute 264 mod 19.

Exercise 15.4. Prove that, if m > 4 is composite, then (m− 1)! ≡ 0 mod m. What happens when
m = 4?

Exercise 15.5. Prove that, if p is prime, then (p− 2)! ≡ 1 mod p.

Exercise 15.6. Compute 76! mod 79.

Exercise 15.7. Use Wilson’s theorem to simplify 3 · 4 · · · 11 mod 13.

Exercise 15.8. For which values of k does the equation x2 ≡ k have a solution mod 4? mod 5?
mod 3? mod 7?

Exercise 15.9. List all quadratic equations mod 2. Which have solutions mod 2? Which have no
solutions?

Exercise 15.10. List all quadratic equations mod 3. Which have solutions mod 3? Which have no
solutions?
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Exercise 15.11. Suppose that n is a positive integer. Prove that

1n + 2n + 3n + 4n

is a multiple of 5 iff n is not a multiple of 4.†

Exercise 15.12. Prove that, if n > 1, then 3n−2n

n is not an integer.
Hint: Consider various cases. What happens if 2|n? If 3|n? What happens if n is a prime greater
than 3? A power of such a prime? A product of prime powers?

Exercise 15.13. For which values of n ∈N is 5n−3n

n an integer?

Exercise 15.14. Suppose that b > a are positive integers. For which values of n ∈ N is bn−an

n an
integer?

§

Recall that, for non-negative integers n and k the (n, k)-binomial coefficient is given by(
n
k

)
=

n!
k!(n− k)!

(15.1)

Exercise 15.15. Let p be a positive prime number. Use the results of Exercise 10.24
∗ to give an

induction proof of Fermat’s Theorem, by showing that xp ≡ x mod p for all integers x.

Exercise 15.16 (Exploratory Exercise). Recall that the binomial coefficients (15.1) form a famous
patterns when arranged as Pascal’s Triangle. What happens to the values in Pascal’s triangle
when binomial coefficients are computed mod 2? What happens modulo other primes? Or
modulo composite numbers?

†From the 1901 Eötvös Competition [24].
∗If you haven’t done Exercise 10.24, try to do it now, but be sure to solve Exercise 10.24 without

using Fermat’s Theorem.
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Recall that an integer k is a unit mod n if and only if gcd(k, n) = 1. For n > 1 let
Un denote the set of units mod n. For example,

U4 = {1, 3}, U5 = {1, 2, 3, 4}, U12 = {1, 5, 7, 11}.

Proposition 16.1. If u, v ∈ Un, then uv ∈ Un and u−1 ∈ Un.

Proposition 16.1 tells us that Un is closed under multiplication and inverses. In
other words, Un is a group1 under multiplication mod n.

Proof. If u is a unit mod n with inverse u−1, then uu−1 = 1, so that u = (u−1)−1.
It follows that u−1 ∈ Un as well. If u, v ∈ Un, with respective inverses u−1 and
v−1, then

(uv)(v−1u−1) = u(vv−1)u−1 = uu−1 = 1,

so that uv ∈ Un. q

Denote by φ(n) = |Un|, the number of units mod n. By convention we also
define φ(1) = 1. The function φ is sometimes called “Euler’s function”2 or the
“Euler Phi function”.3

From the examples above we see that

φ(4) = 2, φ(5) = 4, φ(12) = 4.

If we are careful to restrict our attention to the units mod n, we obtain the
following generalization of Fermat’s Theorem 15.1.

Theorem 16.2 (Euler’s Theorem). If gcd(a, n) = 1 then aφ(n) ≡ 1 mod n.

The proof is almost the same as that of Fermat’s Theorem.

Proof. Consider the list of all units:

u1, u2, . . . , uφ(n) mod n. (16.1)

1You don’t need to know group theory to enjoy classical number theory, but the two subjects
are closely related. See, for example, [4].

2Leonhard Euler (1707–1783) was a Swiss mathematician. The name “Euler” is pronounced
like the English word “oiler” and not like “yooler”. [Euclid was Greek and lived more than 1000

years before Euler. These names are not related.]
3Some texts may refer to φ as the “totient.”

82
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16 Units in Zn and Euler’s function 83

Multiply all of these units by the value a, to obtain a new list:

au1, au2, . . . , auφ(n) mod n. (16.2)

Since gcd(a, n) = 1, each aui is also a unit, by Proposition 16.1. Moreover, the
cancellation law implies each of these values is distinct mod n, for if ar ≡ as,
then we can cancel a to obtain r ≡ s mod n. It follows that the lists (16.1)
and (16.2) have the same values, possibly arranged in a different order. There-
fore, multiplying all of the numbers in the first list will give the same outcome
mod n as multiplying all of the numbers in the second list. That is to say,

u1u2 · · · uφ(n) ≡ aφ(n)u1u2 · · · uφ(n) mod n.

Applying the cancellation law once again, we have aφ(n) ≡ 1 mod n. q

§

If p is prime then the units mod p are the non-zero values {1, 2, . . . , p− 1} = Up,
so that

φ(p) = p− 1.

For this special case Euler’s Theorem 16.2 simply re-states Fermat’s Theorem 15.1.

§

For k ≥ 2, the units Upk consist of all values from 1, 2, . . . , pk − 1 that are not
divisible by p. The reader should use this observation to verify that

φ(pk) = pk − pk−1. (16.3)

In order to compute φ(n) for more general composite numbers n, the following
observation is helpful.

Proposition 16.3. Let m, n > 1. The following are equivalent:

• k is a unit mod mn

• k is a unit mod m and a unit mod n

Proof. Recall that k is unit mod mn iff gcd(k, mn) = 1. It is left to the reader
to show that gcd(k, mn) = 1 iff both gcd(k, n) = 1 and gcd(k, m) = 1 (see
Exercise 16.2). q

The next theorem makes the computation of φ(n) much easier, provided we
know the factorization of n.
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Theorem 16.4. If gcd(m, n) = 1 then φ(mn) = φ(m)φ(n).

Proof. Suppose that gcd(m, n) = 1. Consider the map

G : Umn → Um ×Un

given by
G(k) = (k mod m, k mod n).

We will show that the map G is a bijection,4 so that φ(mn) = φ(m)φ(n).

First, observe that G(k) is well-defined; that is, G(k) is indeed a pair of units
mod m and mod n by Proposition 16.3.

To show that G is one-to-one, suppose that G(k1) = G(k2). This means that k1 ≡
k2 mod m and that k1 ≡ k2 mod n. In other words, m|(k2 − k1) and n|(k2 − k1).
Since gcd(m, n) = 1, it follows from Proposition 7.3 that mn|(k2 − k1), so that
k1 ≡ k2 mod mn.

To show that G is onto, suppose that k1 is a unit mod m and that k2 is a unit
mod n. Since gcd(m, n) = 1, the Chinese remainder theorem implies that there
exists a unique value k mod mn such that k ≡ k1 mod m and k ≡ k2 mod n, so
that G(k) = (k1, k2).

Since G is a bijection between the finite sets Umn and Um ×Un, these sets must
have same number of elements, so that φ(mn) = φ(m)φ(n). q

The multiplicative property of φ given by Theorem 16.4 leads to a useful formula
for φ(n) in the case where we are able to factor n into powers of primes.

Proposition 16.5. If n = pa1
1 · · · p

ak
k , then

φ(n) = (pa1
1 − pa1−1

1 ) · · · (pak
k − pak−1

k ) = n
(

1− 1
p1

)
· · ·
(

1− 1
pk

)
.

Proof. Combine Theorem 16.4 with the identity 16.3. q

The final expression in the identity of Proposition 16.5 enables us to compute
φ(n) without knowing the powers ai of the primes in the factorization of n.

§

For n ∈N, the function φ satisfies the following identity:

∑
d|n

φ(d) = n. (16.4)

4A bijection is a function that is both one-to-one and onto; that is, an invertible function.
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For example, the divisors of the number 10 are 1, 2, 5, and 10, while

φ(1) + φ(2) + φ(5) + φ(10) = 1 + 1 + 4 + 4 = 10.

To prove the identity 16.4, first verify the case of n = p, a prime. More generally,
the left hand side of (16.4) gives a straightforward telescoping sum when n is a
power of a prime. The general formula for φ(n) together with some algebra can
be used to verify the remaining cases. (See Exercise 16.12.)

§

Functions f : N → N are called arithmetic5 functions. An arithmetic function is
said to be multiplicative if f (mn) = f (m) f (n) whenever gcd(m, n) = 1.

Theorem 16.4 asserts that φ is a multiplicative function. Simpler examples of
multiplicative functions include the functions of the form

f (n) = nk,

where k is a positive integer constant.

Theorem 16.6. If f : N→N is a multiplicative function, then

g(n) = ∑
d|n

f (d)

is also an multiplicative function.

Theorem 16.6 can be used to prove the identity 16.4, once the prime power case
is verified.

The proof of Theorem 16.6 uses the following lemma.

Lemma 16.7. If gcd(m, n) = 1 and d|mn then there are unique a|m and b|n such that
d = ab.

Proof. Let a = gcd(d, m), and let b = gcd(d, n). Clearly a|m and b|n. Since
gcd(m, n) = 1, it follows that gcd(a, b) = 1 as well.

Note that a|d and b|d. Since gcd(a, b) = 1, it follows that ab|d. Meanwhile, there
exist integers x and y so that

a = dx + my

as well as integers w and z so that

b = dw + nz,

so that
ab = d2xw + dnxz + dmyw + mnyz.

5Pronounced with an accent on the third syllable.
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Since d|mn, it now follows that d|ab. Since ab|d as well (shown earlier), we have
d = ab.

To prove uniqueness, suppose that d = a′b′ where a′|m and b′|n. Then a′b′ = ab.
Since a′|m and b|n, we have gcd(a′, b)| gcd(m, n) = 1, so that gcd(a′, b) = 1. It
follows that a′|a. By a similar and symmetrical argument a|a′. It follows that
a = a′ and b = b′. q

Exercise 16.13 asks you to use Lemma 16.7 to prove Theorem 16.6.

§

Since the functions 1 and n are multiplicative, it follows from Theorem 16.6 that

τ(n) = ∑
d|n

1 (the number of divisors of n),

σ(n) = ∑
d|n

n (the sum of the divisors of n),

are both multiplicative functions.

§

The Möbius function µ is defined by

µ(n) =


1 if n = 1

(−1)s if n = p1 p2 · · · ps (i.e., if n is square-free)
0 if n is not square-free

It is easy to verify from the definition above that µ is multiplicative. Moreover,
Theorem 16.6 has striking consequences when applied to µ (see Exercises 16.27

and 16.28).

§

Exercise 16.1. Find an example of units u, v mod m where u + v 6≡ 0 but u + v is still not a unit
mod m.

Exercise 16.2. Let m, n > 1. Prove that gcd(k, mn) = 1 iff both gcd(k, n) = 1 and gcd(k, m) = 1.

Exercise 16.3. Prove that if n > 2 then φ(n) is even.

Exercise 16.4. Prove that if a|b then φ(a)|φ(b).

Exercise 16.5. Suppose that n is odd and that 4 6 | φ(n). Prove that n = pk for some k ∈ N and
some prime p such that p ≡ 3 mod 4.

Exercise 16.6. For which integers n is φ(n) = 2? φ(n) = 4? φ(n) = 6?
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Exercise 16.7. How are the values of φ(n) and φ(2n) related?

Exercise 16.8. How are the values of φ(n) and φ(n2) related?

Exercise 16.9. Prove that, if n is composite and φ(n)|(n− 1), then n is a square-free product of at
least 3 distinct primes.

Exercise 16.10. Prove that φ(mn) > φ(m)φ(n) whenever gcd(m, n) > 1.

Exercise 16.11. An integer n between 1 and 1000000 is chosen uniformly6 at random. What is the
probability that n is relatively prime to 1000000?

Exercise 16.12. (a) Use Proposition 16.5 to prove the identity (16.4) for the special case in which
n = pk, a power of a prime number.
(b) Prove the identity (16.4) for any integer n.
Hint: Suppose n is factored into powers of distinct primes. Apply part (a) to these powers, and
then combine Theorem 16.4 with some algebra to finish the proof.

Exercise 16.13. Use Lemma 16.7 to prove Theorem 16.6.

Exercise 16.14. Use Theorems 16.4 and 16.6 to give another proof of the identity (16.4).

Exercise 16.15. Prove that, for all integers k ≥ 0, the arithmetic function f (n) = nk is multiplica-
tive.

Exercise 16.16. Prove directly (from the definitions) that the arithmetic functions τ, σ, and µ are
all multiplicative functions, without using Theorem 16.6.

Exercise 16.17. Let n = pa1
1 · · · p

ak
k (where p1 < · · · < pk are prime). Find a simple formula for

τ(n) in terms of the exponents ai.

Exercise 16.18. Let n = pa1
1 · · · p

ak
k (where p1 < · · · < pk are prime). Prove that

∑
d|n

τ(d) =
k

∏
i=1

(
ai + 2

2

)
.

Exercise 16.19. Let p ∈N be prime. Prove that

σ(pk) =
pk+1 − 1

p− 1
.

Exercise 16.20. Let n = 81000000. Without use of any electronic device, compute τ(n), σ(n), and
µ(n).
Hint: Use the multiplicative property, along with the results of Exercises 16.17 and 16.19.

Exercise 16.21. For which integers n is τ(n) = 2? τ(n) = 3? τ(n) = 4?

Exercise 16.22. For which integers n is τ(n) a power of 2?

Exercise 16.23. For which integers n is τ(n) odd?

Exercise 16.24. Prove that τ(mn) ≤ τ(m)τ(n) for all m, n ∈N. When does equality hold?

Exercise 16.25. Prove that if n > 2 is square-free then σ(n) is even.

6This means that each possible choice is equally likely.
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Exercise 16.26. A positive integer n is said to be perfect if n is the sum of its proper divisors. For
example, the number 6 is perfect, since 6 = 1+ 2+ 3, while 12 is not perfect, since 1+ 2+ 3+ 4+
6 = 16 6= 12.
(a) Show that the numbers 28 and 496 are perfect.
(b) Show that n is perfect if and only if σ(n) = 2n.
(c) Show that, if p and 2p − 1 are both prime, then 2p−1(2p − 1) is a perfect number.7

(d) Show that, if p is prime and k ∈N then pk is not perfect.8

Remark: Euler proved a partial converse of part (c); that is, every even perfect number has the
form given in part (c).9 Are there any odd perfect numbers? Nobody knows!

Exercise 16.27. Find a surprisingly simple formula for

∑
d|n

µ(d).

Exercise 16.28. Suppose that f is a multiplicative function on N and that

g(n) = ∑
d|n

f (d).

Use the result of Exercise 16.27 to prove the Möbius Inversion Formula:

f (n) = ∑
d|n

µ(n/d)g(d).

Exercise 16.29. Recall the function π(n) that counts the number of positive prime integers less
than or equal to n. Show that π(n) is not a multiplicative function.

Exercise 16.30. Compute 5686 mod 18.

Exercise 16.31. What are the last two (least significant) decimal digits of 31201?

Exercise 16.32. What are the last two (least significant) decimal digits of 21201?

Exercise 16.33. What are the last two (least significant) decimal digits of 780 + 807?

§

Knuth[15] introduced the following up-arrow notation for generating large integers. Define

a ↑ b = aa··
·a

where the value a appears b times in this exponential expression. For example,

a ↑ 4 = aaaa

= a(a(aa )).

Note carefully the order of operations: the exponentials are computed from the top down. For
example,

3 ↑ 4 = 3333

= 3327
= 37625597484987.

7Primes of the form 2p − 1 are the Mersenne primes described Section 9.
8This result can be extended further: an odd perfect number must have at least three distinct

prime factors [9, p. 13].
9Euler’s work on perfect numbers is surveyed in [9]. On a more elementary related note, see

Exercise 10.18.
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Next, define
a ↑↑ b = a ↑ a ↑ · · · ↑ a︸ ︷︷ ︸

b copies of a

= a ↑ (a ↑ (· · · ↑ a) · · · ),

noting once again the order of operations (from right to left). For example,

2 ↑↑ 3 = 2 ↑ 2 ↑ 2 = 2 ↑ (2 ↑ 2) = 2 ↑ 4 = 2222

= 65536.

More generally, for integers k ≥ 1 define

a ↑k b = a ↑↑ · · · ↑︸ ︷︷ ︸
k arrows

b = a ↑k−1 a ↑k−1 · · · ↑k−1 a︸ ︷︷ ︸
b copies of a

.

Exercise 16.34. Prove that 2 ↑k 2 = 4 for all k.

Exercise 16.35. Which is larger?
(a) 2 ↑↑↑ 3 or 4 ↑↑ 3?
(b) 3 ↑↑↑ 3 or 4 ↑↑ 4?

Exercise 16.36. Prove that, for a, b ∈N and b > 1, we have a ↑ b = aa↑(b−1).

Exercise 16.37. Suppose that a, b, n ∈N. True or False?
(a) If a ≡ b mod m then a ↑ n ≡ b ↑ n mod m.
(b) If a ≡ b mod m then n ↑ a ≡ n ↑ b mod m.
(c) If a ≡ b mod m then a ↑ a ≡ b ↑ b mod m.

Exercise 16.38. Compute:

(a) 3 ↑ 6 mod 4
(b) 4 ↑ 4 mod 9
(c) 2 ↑ 5 mod 5

(d) 5 ↑↑ 5 mod 10
(e) 3 ↑↑↑ 2 mod 7
(f) 10 ↑↑↑ 10 mod 12

Exercise 16.39. For which positive integers n does n ↑ n have 3 as its final digit?

Exercise 16.40. For which positive integers n does n ↑ n have 6 as its final digit?
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Cryptography is the science of secret codes; that is, of expressing information in
a way that is only meaningful to privileged viewers and can not be understood
by eavesdroppers. Cryptography usually relies on the use of a shared secret
or password (called the key), with which an encrypted message becomes easy
to read. For viewers without the key, the encrypted message should be very
difficult or impossible to read.

Cryptanalysis is the science of code breaking; that is, the decoding of crypto-
graphic messages by cleverly guessing the key or by exploiting weaknesses in
the code that allow one to read the message without knowing the key at all.
Cryptanalysis involves a blend of number theory, statistics, and computer pro-
gramming,1 along with whatever hints are made available from context and
social engineering.2

Information in its original form, readable by anyone, is called plaintext. Infor-
mation in encrypted form, readable only by someone who has the key, is called
ciphertext.

§

A famous ancient example of cryptography is the Caesar cipher, attributed to
Julius Caesar.3 The example described here is adapted slightly to English text.4

Given an alphabetic plaintext string:

MEET US NEXT MONDAY

shift each letter forward in the alphabet by 3 letters (wrapping around again if
necessary). The resulting ciphertext is

PHHW XV QHAW PRQGDB.

In practice one would remove spaces, since these give obvious clues to the struc-
ture of the message. The ciphertext then becomes

PHHWXVQHAWPRQGDB.
1Useful for brute force attacks that try every possible key.
2That is, persuading insiders to reveal information via deception or duress.
3See Suetonius, De Vita Caesarum, Divus Julius, Section 56. An English translation can be found

in [35, p. 150].
4Caesar wrote in Latin, whose classical alphabet conflated the symbols I = J and U = V and

omitted the symbol W.

90
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To decrypt a message, one simply reverses the process, shifting each letter of the
ciphertext backwards by 3 letters, restoring the original MEETUSNEXTMONDAY.

This cryptosystem uses modular arithmetic. Assigning values

A = 0, B = 1, C = 2, . . . , Z = 25, (17.1)

the Caesar cipher acts on each plaintext character p to produce a ciphertext
character c via the formula

c ≡ p + 3 mod 26.

This is not a secure cryptosystem. If an eavesdropper knows that the system uses
a shift of the alphabet, then a brute force attack will break the code easily, since
there are only 25 possible shifts to choose from (keeping in mind that a shift of
zero, or, equivalently, 26 letters, would leave the original text unencrypted).

A more secure approach might be to choose a random permutation5 of the letters
{A, B, C, . . . , Y, Z} instead of simply a shift. Again assigning values as in (17.1)
one might select a permutation such as

(1 4 25 17 18) (2 21)(3 14 0 9 10 13)(5 19 23 12 6)(7 20 11)(15 24 22 16 8)∗

This substitution cipher might seem more secure, since there are 26! ≈ 4 · 1026

permutations for a brute force attacker to try. However, this kind of encryption
is highly vulnerable to frequency analysis. For example, it is well known that the
most common letters in typical English text are E, T, A, . . . in that order. One
might then suspect that the most common character in the ciphertext represents
E, the next most common T, and so on. Variations on this sort of analysis will
quickly break any cipher based on a simple permutation of the alphabet.

§

During the Middle Ages, a variation of the Caesar cipher known as the Vigenère
cipher7 was regarded as far more secure. Instead of shifting each letter of the
plaintext by 3 steps, choose a finite sequence of numbers, say 17, 4, 3, then pro-
ceed to

• shift the 1st letter of the plaintext by 17 steps,

• shift the 2nd letter of the plaintext by 4 steps,

• shift the 3rd letter of the plaintext by 3 steps,

• shift the 4th letter of the plaintext by 17 steps,

• shift the 5th letter of the plaintext by 4 steps,

5A permutation is a rearrangement.
∗This cycle notation is read in the following way: 1→ 4→ 25→ 17→ 18→ 1, 2↔ 21, etc.
7Named for Blaise de Vigenère (1523-1596)
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• and so on, until the plaintext is exhausted.

Following the scheme above, in which we view the English alphabet as symbols
for the integers mod 26, we can remember the key (17, 4, 3) as the letter string
RED.

Example: Let’s encrypt the message “Rain expected tomorrow” using the pass-
word RED. A simple way to do this is to write out the plaintext with the password
repeated underneath, and then perform letter by letter ‘addition’ mod 26 using
the table in Figure 17.1:

RAINEXPECTEDTOMORROW

REDREDREDREDREDREDRE

IELEIAGIFKIGKSPFVUFA

The ciphertext IELEIAGIFKIGKSPFVUFA is then sent to the recipient, who uses the
secret password RED to decrypt by subtracting mod 26 (or, alternatively, by “en-
crypting” with the password JWX, since (R, E, D) + (J, W, X) ≡ (A, A, A)) to restore
the original plaintext.

In this way, Vigenère encryption can be thought of as a form of vector addi-
tion. The plaintext is broken into short vectors of letters the same length as
the password vector. The password vector is then added to each plaintext vec-
tor (by componentwise addition mod 26) to encrypt, and subtracted to decrypt.
This point to view leads to more elaborate vector encryption schemes (see Exer-
cise 17.11.)

The Vigenère cipher is more secure than the Caesar cipher in a number of ways.
First, the keyspace is much larger, since there are 26n possible choices for an n
letter password. Frequency analysis is also more difficult, especially when the
password is long relative to the length of the plaintext.

The primary weakness of the Vigenère cipher lies in the repetition of the pass-
word. This weakness can be mitigated or even eliminated altogether by replac-
ing a repeated key pattern, such as REDREDRED..., with a non-repeating stream of
password letters, either generated by some formula, or taken from a completely
random stream of letters.

For example, the Autokey cipher is a Vigenère-style cipher that uses a key stream
consisting of an initial password followed by the message itself:

RAINEXPECTEDTOMORROW

REDRAINEXPECTEDTOMOR

IELEEFCIZIIFMSPHFDCN

Alternatively, one might use pseudorandom number generator (see Section 29) to
produce a sequence of random-looking values mod 26 that would serve as a
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Figure 17.1: A Vigenère table for the English alphabet (addition mod 26).
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password stream.8 The generating method (with initial values) would be shared
by all members of the conversation and kept secret from everyone else.

Most secure of all is the One-Time Pad, which uses a truly random list of numbers
(mod 26 for an alphabetic cipher, mod 2 for encrypting a bit stream) to encrypt a
stream of plaintext. Each party must have a book or file containing the random
number list to be used. The numbers must be truly random,9 and any part of the
list used for encryption by either party must never be used again. If these conditions
are satisfied then the resulting ciphertext is provably secure: no eavesdropper
can decrypt the ciphertext without illicit access to the plaintext or the random
number pad.

Why is a one-time pad so secure? Suppose a 100 character message is picked
up to be analyzed. Imagine a superfast computer that checks all 26100 possible
passwords. When the computer finds legible English the message has been
decrypted, right? Wrong! Because of the truly random nature of the key, the
computer would have to consider every possible 100 character key, resulting
in every possible 100 character English text. As a result, there would be no
reason to conclude that ATTACK AT DAWN... is the correct decryption, rather
than ATTACK AT NOON... or RETURN TO BASE.... Randomness means that you
can never know when a guess is correct. Any lapse in randomness by the key
will ruin this quality, making a legible (English text) guess more plausible. This
is why the key pad must be truly random for perfect (theoretical) security.10

Outside of certain extreme diplomatic or military contexts, the one-time pad is
regarded as too inefficient (read “expensive”), because of the massive random
key streams that must be generated, shared, and maintained. A cost-effective
cryptosystem is one that is reasonably effective using a short password or key,
even if that key needs to be changed from time to time. At present, the most
commercially popular cryptosystem of this kind is the Advanced Encryption Stan-
dard (AES). AES typically uses a 256 bit key and a complicated succession of
transformations (including non-linear transformations that are, in theory, diffi-
cult to invert). A brute force decryption of AES ciphertext would require up to
2256 ≈ 1077 trials, which would defeat the resources of most attackers. A de-
tailed technical description of how AES operates lies beyond the scope of this
book, but can be found in [34], for example.

§

So far all of the cryptosystems described have been symmetric key cryptosystems.

8In modern applications both plaintext and ciphertext are stored and processed as bit streams,
that is, using only the values 0 and 1. Consequently, modern encryption usually involves arith-
metic mod 2 rather than mod 26.

9Finding a source of true randomness is another complicated issue, but let’s assume for the
moment that this ideal can be achieved.

10However, in real life applications, social engineering usually trumps even a theoretically per-
fect cryptosystem.
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This means that knowledge of the same password is necessary for both encryp-
tion and decryption of a message. Symmetric cryptosystems are powerful and
efficient, but leave users with the problem of how to share the password.

For example, suppose Alice and Bob want to transmit secret messages over a
long distance. In order to use AES, or any of the other ciphers described above,
they have to meet ahead of time to decide on a common secret password. They
can’t choose a password over their long distance communication link, because
it may be monitored. It’s a chicken-and-egg problem: they need a secret code in
order to choose and share the password for their secret code.

This is an especially serious problem in the case where Alice and Bob have never
met. And yet this is precisely the situation for a customer who wants to open
an account with a bank or retail site over the Internet. How can you open an
account and choose a secure password with a site that you have never done
business with before, while having confidence that your initial transaction is
protected from eavesdroppers?

The solution to this puzzle is a different kind of encryption, called public key
encryption, which uses different keys for encryption and decryption. Moreover
(and this is fundamental), knowing one of those two keys must not allow you
to guess the other one!

Suppose for the moment that this kind of encryption is possible. Alice will have
two keys for her own cryptosystem: eA (‘A’ for Alice), which she shares with the
world, say in a public database, and dA which she keeps secret. If Bob wants to
send her a private message, he sends her the message:

[
Hi Alice, It’s Bob. Let’s talk privately using the AES key: 3bH%jl@4rY!A;rx(

]
eA

(17.2)

where the notation [M]eA denotes a message M encrypted with a public key
eA. Alice receives this encrypted message and decrypts it with her private key
dA. She can then have a longer and more efficient exchange of information with
Bob using symmetric encryption with the secret key Bob suggested. Meanwhile,
anyone else who intercepts Bob’s initial encrypted message can’t read it: even
though they know eA (since it’s public), they don’t know dA, so they can’t de-
crypt the gibberish.

Public key encryption allows for authentication as well as secrecy. When Alice
receives the message (17.2), she knows that no one else can read it. But she does
not know if she is really talking to Bob. Anyone can write to her in this secret
manner claiming to be Bob. How can she authenticate the speaker’s identity?
One way is for her to respond with a message encrypted using Bob’s public key
eB and see if he is able to decrypt it. However, since authentication is so impor-
tant in general, this is usually accomplished all at once with a secure signature.
In other words, instead of the initial message (17.2), Bob would more likely send
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something of the form:[
Hi Alice, Here’s a message for you from Bob:[

Let’s talk privately using the AES key: 3bH%jl@4rY!A;rx(
]

dB

]
eA

Notice that Bob encrypted part of the inner message with his own private de-
cryption key dB. When Alice decrypts this message with her decryption key dA,
she sees:

Hi Alice, Here’s a message for you from Bob: <gibberish>

She then looks up Bob’s public key eB in the database available to everyone, and
uses eB to decrypt the gibberish. If this decryption attempt results in a legible
message, then she can be reasonably certain it was Bob who sent the original
message, since only Bob knows the key dB that partners with the public key eB.

§

All of this is wonderful in theory, but how can it be implemented in practice?
Does a cryptosystem exist that uses two keys in this way, so that knowledge of
one key doesn’t give away the other? This problem was open for some time,
but since the mid-20th century several workable public key cryptosystems have
been developed. The two most famous rely on classical number theoretic ideas
and are described below.

Before we proceed, however, one important note: All currently known public
key cryptosystems are less efficient11 for encrypting large data files than tradi-
tional symmetric encryption (such as AES). Moreover, public key systems are
regarded as less secure,12 since their security relies on algorithmic properties of
arithmetic (or abstract algebra) that are still not well understood. As a result,
public key cryptography is usually not used to encrypt long exchanges of in-
formation. Instead, a public key system is used only to begin a conversation,
in order to negotiate a secure shared secret key for AES or some other fast and
secure symmetric cryptosystem. On other words, use public key cryptosystems
for symmetric key exchange, and then exchange the bulk of all data with sym-
metric encryption.

§

Our first example of public key encryption is the Diffie-Hellman key exchange
using Zp exponentiation:

Choose a large prime p, and an element g ∈ Zp (preferably a primitive root).13

11That is, it takes even a fast computer significantly longer to encrypt and decrypt a file.
12That is, it may be easier for an eavesdropper to crack the code, especially when longer mes-

sages are encrypted, giving an attacker more data to work with.
13Primitive roots are discussed in Section 20.
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This information is public.

Alice chooses a secret exponent a ∈ {1, . . . , p− 1}.
Bob chooses a secret exponent b ∈ {1, . . . , p− 1}.

Alice publishes ga, and Bob publishes gb, all computed mod p.
Alice and Bob can each compute gab mod p, but no one else can do this, so gab

is their secret key.

The security of this approach depends on the assumption that, for a large prime
p, knowledge of ga and gb mod p (and g and p) does not allow for easy compu-
tation of gab. In other words, discrete logarithms are difficult to compute within
a feasible timeframe even on the fastest computers available.14

§

Perhaps the most famous and widely used public key exchange protocol is RSA
(named for its inventors: Ron Rivest, Adi Shamir, and Leonard Adelman).15 This
is a method of public key encryption whose security is built on the principle
(still true given current technology) that it is very easy to multiply a pair of
large (200+ digit) prime numbers together, while it is very difficult (even on the
fastest computers) to factor a large (400+ digit) composite number having no
small prime factors.

RSA is implemented as follows. Each person chooses two large prime integers
p 6= q. Set n = pq and choose a value e such that

gcd
(

e, (p− 1)(q− 1)
)
= 1. (17.3)

Note that φ(n) = (p− 1)(q− 1).

The pair (n, e) make up the public key.

Next, solve for d in the equation

ed ≡ 1 mod (p− 1)(q− 1).

The existence of d is guaranteed by the gcd condition (17.3). The value d is
private key, and all of the values

d, p, q, (p− 1)(q− 1)

are kept secret.

14In practical applications the values of p, a, and b, should be very large, with p > 10300 and
a, b > 10100.

15The RSA algorithm was discovered even earlier by Clifford Cocks, but his discovery was kept
secret by his employer, the British intelligence agency GCHQ, until 1998, many years after RSA
had been successfully commercialized by R, S, and A.
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In order to send a private message that only Bob can read, Alice looks up Bob’s
public key (nB, eB) in a public database. To send a plaintext value X to Bob with
security, Alice sends him the value

C ≡ XeB mod nB.

When Bob receives the message C, he can decrypt it with his private key by
computing

CdB ≡
(
XeB
)dB ≡ XeBdB ≡ X mod nB,

where the final congruence follows from Euler’s Theorem 16.2. He can then
respond to Alice using her public key, and so on.

The security of this algorithm lies in the difficulty of factoring n. Because n is
a product of very large primes, an eavesdropper cannot easily determine p and
q, and therefore cannot compute the value of d, even though the value of e is
public.16

Because of its inefficiency, and because overuse of an RSA key may reduce its
security over time, RSA is usually used only for key exchange and authentica-
tion. Alice will send a short message to Bob encrypted with RSA, suggesting a
shared password for using symmetric encryption for future transactions. Once
the shared password is agreed upon, all future communications can be per-
formed using a more efficient and more secure symmetric encryption method,
such as AES.

§

In order to implement RSA we must have a method of generating large prime
numbers (having several hundred digits). Since such large numbers are difficult
to factor, this motivates the question of how very large primes can be obtained.
Efficient methods for primality testing will be addressed in Section 31.

§

Exercise 17.1. Another simple cipher related to the Caesar cipher is ROT-13, which moves each
alphabetic letter exactly 13 steps forward along the alphabet. The following message describes a
cute feature of ROT-13:

QBVGGJVPRGBTRGGURBEVTVANYGRKGONPX

(a) What is the plaintext corresponding to the expression above?
(b) Explain how ROT-13 is actually a simple version of the Vigenère cipher. What is the password?

16Because effective attacks on RSA have been discovered in certain special cases, real-world
implementations should take extra precautions into account. See, for example, [10, p. 164-170].
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Exercise 17.2. Encrypt the message ATTACK AT DAWN using:
(a) Caesar cipher.
(b) Vigenère cipher with the password UML.

Exercise 17.3. A message is encrypted by a Vigenère cipher using a 5 letter password, but the
password has been forgotten. How many possible passwords are there?

Exercise 17.4. The Atbash cipher17 is a substitution cipher implemented as follows:

A↔ Z B↔ Y C↔ X · · · M↔ N

Like ROT-13 (see Exercise 17.1), this cipher is really just a visual disguise and offers no real secu-
rity.
(a) Decrypt the Atbash message: RGSRMPGSVIVULIVRZN.
(b) Number the English letters A-Z with respective integers 0-25. Using the corresponding arith-
metic mod 26, find a formula for the Atbash character A(x) given x mod 26.

Exercise 17.5. Philbert decides to make his encryption stronger by first encrypting his message
with the Vigenère password UBEL, and then encrypting it again with the password HBMS. Explain
why this double encryption scheme is no more secure than a single encryption.

Exercise 17.6. After realizing his error (see the previous exercise), Philbert decides to make his
encryption stronger by first encrypting his message with the Vigenère password UBEL, and then
encrypting it again with the password HBFMS. Show that this double encryption is indeed more
secure than a single encryption using either of those separate passwords alone.

Exercise 17.7. Eve discovered that Harold was exchanging secret messages with someone using
the Vigenère cipher. In his desk drawer she found the message:

KIAIASYSLUBUHRTCBNLXHZLOHCIDFGCMNXMGKINDTJRKOFWTFIFFKWCIRCHNLWACEQ

Eve thinks that Harold is having an affair, and she suspects that his lover may have begun the
message with the words “Dear Harold, ...” Use this guess to figure out what the message says.18

Exercise 17.8. The ciphertext FSSJCIVDFOIKCMHBTM was sent using the autokey cipher with pass-
word HEY. What was the original plaintext?

Exercise 17.9. The ciphertext VKTMTGJEYEVZIPGVCAAUIYWIK is sent using the autokey cipher. An
eavesdropper believes that the last words of the message are PROVESNOTHING. What is the original
plaintext? What is the key?

Exercise 17.10. Billy encrypted a message to Gilly using a one-time pad of random values they
have shared in advance. Unfortunately, Billy also sent a message yesterday using the same stream
of values from the one-time pad.

Eve has recorded both encrypted messages. She negates (multiplies by −1) the stream from
yesterday and then re-encrypts today’s ciphertext message with the result. This leaves Eve with
a new stream of characters. Why is this easier to ultimately decode (given sufficient computing
power) than a correctly implemented one-time pad message?

17Atbash first appeared in Biblical and Talmudic texts and was originally performed by ex-
changing letters of the 22 character Hebrew alphabet.

18This method of cryptanalysis is called a known plaintext attack. A better cryptosystem would
not allow Eve to guess the key using known plaintext.
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Exercise 17.11. An affine cipher is a generalization of the Vigenère cipher that uses matrix multi-
plication as well as vector addition.19

(a) Consider the encryption that takes each plaintext character x and returns a cipher text charac-
ter c(x) via the function

c(x) ≡ 3x + 14 mod 26

How is the word “hello” encrypted using this scheme?
(b) What is the formula for decrypting ciphertext characters from part (a)?
(c) Why is the alternative ciphertext function c(x) ≡ 4x + 14 mod 26 a really bad idea?
(d) Consider the encryption scheme that takes breaks plaintext “hello there” into pairs “he ll ot
he re” and then encrypts each pair xy, viewed as a vector with two coordinates, via the function

c(x, y) ≡
[

2 19
7 11

] [
x
y

]
+

[
12

5

]
mod 26

using matrix multiplication. How is the phrase “hello there” encrypted using this scheme?
(e) What is the secret key in part (d)?
(f) What is the formula for decrypting ciphertext character pairs from part (d)?
(g) Show that a matrix [

a b
c d

]
is acceptable for use in an affine cipher if and only if ad− bc 6≡ 0 mod 26.

Exercise 17.12. Alice wants to communicate with Bob using a common secret password. The
common password will be generated by a Diffie-Hellman key exchange using the prime p = 97
and base g = 21. Alice’s secret exponent is a = 46. Bob’s secret exponent is b = 63. What is their
common secret password value?∗

Exercise 17.13. Suppose p = 17 and q = 23 are used to construct an RSA public key with
encryption exponent e = 5. What is the corresponding decryption exponent d?

Exercise 17.14. To implement a public/private key pair for RSA, Alice chooses two large distinct
primes p and q, and then computes

n = pq = 17292864462617,

along with
(p− 1)(q− 1) = 17292856036560.

She then chooses an encryption exponent eA (co-prime to (p− 1)(q− 1)) and computes the de-
cryption exponent dA by solving

eAdA ≡ 1 mod 17292856036560.

By accident, however, she published as her public key the three values,

[n, eA, (p− 1)(q− 1)] = [17292864462617, eA, 17292856036560].

What are p and q? Show how your answer came from your knowledge of pq and (p− 1)(q− 1).

Hint: Find formulas for p and q in terms of pq and (p − 1)(q − 1). Then use a computer or
calculator to compute p and q.

19An affine cipher that is implemented with matrix multiplication only, using no translation
vector, is sometimes called a Hill cipher.
∗The numbers are kept small so that this problem can be solved without a calculator. In a real

life application the prime p and the secret exponents a and b would be very large integers.
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18 Lagrange’s root theorem

A function f (x) is a polynomial of degree n, where n ≥ 1, if f (x) has the form

f (x) = cnxn + cn−1xn + · · ·+ c1x + c0,

where cn 6= 0 (or, in the context of modular arithmetic, cn 6≡ 0). A constant
function is said to be a polynomial of degree 0.

A common first step toward factoring a polynomial is to look for roots of that
polynomial. The fact that roots of a polynomial yield linear factors is summa-
rized as follows.

Theorem 18.1 (Factor Theorem). Suppose that f (x) is a non-constant polynomial. If
f (r) = 0 for some value r then

f (x) = (x− r)g(x),

where deg(g) = deg( f )− 1.

Note the ambiguity in the statement of the previous theorem. We did not specify
if f is a polynomial over the real numbers, or over complex numbers, or in some
modulus. In fact, the theorem holds in all of these cases. Note carefully how
each step of the following proof is valid whether the coefficients of f (and the
value r) are real, or complex, or are values in some Zm (where the symbols = or
≡ are used as required in each context).

Proof. Suppose that f is a polynomial of degree n ≥ 1 and that f (r) = 0. The
polynomial f has a expression of the form

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0,

where an 6= 0. Since f (r) = 0, we have

0 = anrn + an−1rn−1 + · · ·+ a1r + a0.

Subtracting these two equations, we obtain

f (x) = an[xn − rn] + an−1[xn−1 − rn−1] + · · ·+ a1[x− r].

For each k, it follows from the geometric sum formula (3.2) that

xk − rk = (x− r)(xk−1 + rxk−2 + · · ·+ rk−2x + rk−1) = (x− r)gk(x),

where we denote the longer factor of each xk − rk by gk(x), a polynomial of
degree k− 1. It now follows that

f (x) = (x− r)[angn(x) + an−1gn−1(x) + · · ·+ a1] = (x− r)g(x),

where g(x) is a polynomial of degree n− 1. q

101
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In the next theorem we focus attention on the real (or complex) numbers only.

Theorem 18.2. Suppose that a0, . . . , an ∈ R (or C), where an 6= 0 and n ≥ 1. Then
the polynomial equation

anxn + an−1xn−1 + · · ·+ a1x + a0 = 0 (18.1)

has at most n roots over R (or C).

Proof. The theorem is trivial if n = 1, since the equation a1x + a0 = 0 has exactly
one root, namely, x = − a0

a1
.

Suppose that n ≥ 2 and that the theorem holds for polynomials of degree at
most n− 1. If the equation (18.1) has no roots at all, we are done. If, instead, a
root r exists, then the Factor Theorem 18.1 implies

anxn + an−1xn−1 + · · ·+ a1x + a0 = (x− r)g(x),

where g(x) has degree at most n− 1. By the induction assumption, g(x) has at
most n− 1 roots. Moreover, if s is any root of the equation (18.1), then

(s− r)g(s) = 0,

so that either s = r or g(s) = 0 (or both). Therefore, there are at most n possible
values for the root s. q

Notice that we never made explicit mention of R or C in the previous proof. The
same proof would work just as well mod m, except in two steps: For the case
of degree 1 it is necessary that a−1

1 exists mod m, and for the induction step we
would need to know that

(s− r)g(s) ≡ 0 implies that s ≡ r or g(s) ≡ 0.

This implication would not always hold in a composite modulus. However, it is
always true in a prime modulus. Therefore, the previous proof also verifies the
following theorem.1

Theorem 18.3 (Lagrange’s Root Theorem). Let p be a prime integer, and suppose
that a0, . . . , an ∈ Z, where an 6≡ 0 mod p. Then the polynomial equation

anxn + an−1xn−1 + · · ·+ a1x + a0 ≡ 0 mod p

has at most n roots mod p.

§

1Named for Joseph-Louis Lagrange (1736–1813).
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18 Lagrange’s root theorem 103

Exercise 18.1. Find all of the cube roots of 1 mod 4, as well as mod 5 and mod 7.

Exercise 18.2. Find all of the solutions to the equation x4 − 1 ≡ 0 mod 7, as well as mod 13.

Exercise 18.3. Show that the values 1, 25, 31, 34 are each solutions to the equation x4 − 1 ≡ 0 mod
39. Are there any more solutions?

Exercise 18.4. Let p 6= q be prime numbers. Prove that a quadratic equation has at most 4 distinct
solutions mod pq.
Hint: The Chinese remainder theorem is helpful here.

Exercise 18.5. Factor x2 + x + 1 mod 3.

Exercise 18.6. Factor x3 + 2x2 + 4 mod 5.

Exercise 18.7. Factor x4 − 1 into linear factors mod 5. Any surprises? What about x6 − 1 mod 7?

Exercise 18.8. Determine if each the following polynomials can be factored mod 2. If so, factor
them into their irreducible2 components.

(a) x2 + 1 mod 2
(b) x2 + x + 1 mod 2
(c) x3 + x2 + x + 1 mod 2

(d) x3 + x + 1 mod 2
(e) x4 + 1 mod 2
(f) x4 + x2 + 1 mod 2

2A polynomial is irreducible if it cannot be factored into polynomials of lower degree.
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19 Polynomial equations and Hensel’s lemma

In the Section 18 we considered polynomial equations mod p, where is p is
prime. In this case, Lagrange’s Theorem asserted that a polynomial of degree
n has at most n roots. However, we have also seen that polynomials can have
many more roots over composite moduli. For example, the equation

x2 − 1 ≡ 0 (19.1)

has 4 roots mod 8. Indeed, in spite of being a mere quadratic (degree 2) poly-
nomial equation, there are 8 solutions to (19.1) mod 24, and 16 solutions mod
120.

§

In order to characterize solutions to polynomial equations in a composite mod-
ulus, we first consider the case where the modulus is a prime power pk.

Evidently, if a number is divisible by pk+1, then it is also divisible by pk. This
observation implies the following proposition.

Proposition 19.1. Let p be a positive prime integer, and let k ∈ N. If f (r) ≡ 0 mod
pk+1 then f (r) ≡ 0 mod pk.

It follows that, in order to find roots of a polynomial equation f (x) ≡ 0 mod
pk+1, we should first find the roots mod pk. This leads in turn to the following
question: when does the converse of Proposition 19.1 hold? When does a root
of f (x) ≡ 0 mod pk “lift” to a solution mod pk+1? The answer, together with a
lifting algorithm, is given by the next theorem.1

Theorem 19.2 (Hensel’s Lemma). Let f (x) be a polynomial of positive degree, and
suppose that f (r) ≡ 0 mod pk, so that c = f (r)/pk is an integer.

• If f ′(r) 6≡ 0 mod p then

f (r + tpk) ≡ 0 mod pk+1

iff
t ≡ −c[ f ′(r)]−1 mod p.

1Named for German mathematician Kurt Hensel (1861–1941), who developed the theory of
p-adic numbers.

104
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19 Polynomial equations and Hensel’s lemma 105

• If f ′(r) ≡ 0 mod p and f (r) ≡ 0 mod pk+1, then

f (r + tpk) ≡ 0 mod pk+1 for all t.

• If f ′(r) ≡ 0 mod p and f (r) 6≡ 0 mod pk+1, then

f (r + tpk) 6≡ 0 mod pk+1 for all t.

Note that, in the first case of Hensel’s Lemma above, the value of c = f (r)/pk

is computed as an integer (not yet in a modulus), while [ f ′(r)]−1 is computed
mod p to produce a value from the list 0, 1, . . . , p− 1. The value r + tpk is then
computed mod pk+1.

Proof. Let f (x) be a polynomial of positive degree, and suppose that f (r) ≡ 0
mod pk, so that c = f (r)/pk is an integer.

For t ∈ Z, Taylor’s theorem asserts that

f (r+ pkt) = f (r)+ f ′(r)pkt+
f ′′(r)

2!
p2kt2 + additional terms divisible by pk+1 .

Note that, since f is a polynomial with integer coefficients, we have

n!| f (n)(r)

for each of the derivatives f (n) (see Exercise 19.9), so that

f (r + pkt) ≡ f (r) + f ′(r)pkt mod pk+1. (19.2)

It follows that

f (r + pkt) ≡ 0 mod pk+1 ⇔ f (r) + f ′(r)pkt ≡ 0 mod pk+1.

If f ′(r) 6≡ 0 mod p, then f ′(r) 6≡ 0 mod pk+1 as well, so that

f (r + pkt) ≡ 0 mod pk+1 ⇔ f (r) + f ′(r)pkt ≡ 0 mod pk+1.

⇔ cpk + f ′(r)pkt ≡ 0 mod pk+1.
⇔ c + f ′(r)t ≡ 0 mod p.

⇔ t ≡ −c[ f ′(r)]−1 mod p.

Meanwhile, if f ′(r) ≡ 0 mod p, then p| f ′(r), so that pk+1| f ′(r)pk. The iden-
tity (19.2) now becomes

f (r + pkt) ≡ f (r) mod pk+1,

so that f (r + pkt) is either always zero or never zero mod pk+1, depending on the
value of f (r). q
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Example: Find all solutions to the equation x2 ≡ 1 mod 8 and mod 16.

The unique solution to x2 − 1 ≡ 0 mod 2 is x ≡ 1. Setting f (x) = x2 − 1,
we have f ′(x) = 2x ≡ 0 mod 2.
Since f (1) ≡ 0 mod 4, it follows from Hensel’s Lemma (applying the case
of the zero derivative) that f (1) ≡ f (3) ≡ 0 mod 4.
Since f (1) ≡ f (3) ≡ 0 mod 8, it follows similarly that the solution x ≡ 1
lifts to solutions x ≡ 1 and 1 + 4 ≡ 5, while the solution x ≡ 3 lifts to
solutions x ≡ 3 and 3 + 4 ≡ 7, giving us four solutions x ≡ 1, 3, 5, 7 mod 8.
Since f (1) ≡ f (7) ≡ 0 mod 16, these roots mod 8 lift to solutions

1, 1 + 8 = 9, 7, 7 + 8 = 15

mod 16. However, since f (3) ≡ f (5) 6≡ 0 mod 16, these solution from mod
8 do not lift to solutions mod 16.

Example: Find all solutions to the equation x2 + x + 1 ≡ 0 mod 49.

The solutions to x2 + x + 1 ≡ 0 mod 7 are x ≡ 2 and x ≡ 4. Observe that

f (2) = 7 and f (4) = 21.

Since f ′(x) = 2x + 1, we also have

f ′(2) ≡ 5 and f ′(4) = 9 ≡ 2 mod 7,

so that
[ f ′(2)]−1 ≡ 3 and [ f ′(4)]−1 ≡ 4 mod 7.

To lift the solution x ≡ 2 mod 7 to a solution mod 49, set c = f (2)/7 = 1
and compute 2 + 7t, where

t ≡ −c[ f ′(2)]−1 ≡ −3 ≡ 4 mod 7,

so that x ≡ 2 + 7 · 4 ≡ 30 mod 49.
To lift the solution x ≡ 4 mod 7 to a solution mod 49, set c = f (4)/7 = 3
and compute 4 + 7t, where

t ≡ −c[ f ′(4)]−1 ≡ −3 · 4 ≡ −12 ≡ 2 mod 7,

so that x ≡ 4 + 7 · 2 ≡ 18 mod 49.
We conclude that the solutions to x2 + x + 1 ≡ 0 mod 49 are x ≡ 30 and
x ≡ 18.

§

A combination of Hensel’s Lemma 19.2 with the Chinese Remainder Theo-
rem 11.1 yields an algorithm for solving a polynomial equation modulo m, pro-
vided we have the factorization of m.

To solve the equation f (x) ≡ 0 mod m, where m has a prime power factorization

m = pk1
1 · · · p

ks
s ,

proceed with the following algorithm:
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Step 1: Find solutions to f (x) ≡ 0 mod pi for each i.
If there are no solutions mod pi for some i,
then there are no solutions mod m.
If there are solutions mod pi for every i,
proceed to the next step.

Step 2: Use Hensel’s Lemma 19.2 to lift the solutions mod pi to solutions mod pk
i ,

wherever possible.

Step 3: Use the Chinese Remainder Theorem 11.1 to combine values of x modulo
each pki

i in order to obtain corresponding solutions mod m.

Example: Find all solutions to the equation x2 + x + 1 ≡ 0 mod 637.

Since 637 = 49 · 13 we combine solutions to the equation mod 49 with
solutions mod 13 using the Chinese remainder theorem.
Recall from the example above that the solutions mod 49 are x ≡ 18 or 30.
By inspection we can determine that the solutions mod 13 are x ≡ 6 or 7.
Applying the Chinese remainder theorem to the 4 solution combinations,
we find that

(x mod 13, x mod 49) ⇒ (x mod 637)
(6, 18) ⇒ 214
(6, 30) ⇒ 422
(7, 18) ⇒ 410
(7, 30) ⇒ 618

so that x ≡ 214, 422, 410, or 618 mod 637.

§

Exercise 19.1. Find all solutions to the equation x2 + x + 3 ≡ 0

(a) mod 25.
(b) mod 125.

(c) mod 250.
(d) mod 375.

Exercise 19.2. Find all solutions to the equation x2 + x + 1 ≡ 0

(a) mod 13.
(b) mod 27.

(c) mod 39.
(d) mod 169.

Exercise 19.3. Find all solutions to the equation x4 + x + 23 ≡ 0
(a) mod 23.
(b) mod 25.
(c) mod 575.

Exercise 19.4. Find all solutions to the equation x2 − 4 ≡ 0
(a) mod 999.
(b) mod 1001.

Exercise 19.5. Prove that there are 16 distinct solutions to the equation (19.1) mod 120. Your proof
should explain the existence of these solutions without actually finding them.
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108 19 Polynomial equations and Hensel’s lemma

Exercise 19.6. Find a general formula for the solutions to the equation x2 ≡ 1 mod 2n, for n ≥ 3.

Exercise 19.7. Find a general formula for the solutions to the equation x3 ≡ 1 mod 3n, for n ≥ 2.

Exercise 19.8. (a) Let p be an odd prime and n ∈ N. Prove that x ≡ ±1 are the only solutions to
the equation x2 ≡ 1 mod pn.
(b) Let m > 1 be an odd integer with prime factorization

m = pa1
1 · · · p

ak
k .

Prove that the equation x2 ≡ 1 mod m has exactly 2k distinct solutions.

Exercise 19.9. Let f (x) be a polynomial function of x having integer coefficients, and let n be a
positive integer. Here are some steps leading to a proof that n!| f (n)(r) for any integer r.
(a) For m ∈N, use that fact that (m+n

n ) is an integer to show that n! divides the number

(m + 1)(m + 2) · · · (m + n).

(b) Suppose that g(x) = xk for some integer k ≥ 0. Show that n!|g(n)(0).
(c) Use part (b) to show that n!| f (n)(0).
(d) Apply part (c) to the function h(x) = f (x + r) to complete the proof.
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20 Primitive roots

Euler’s Theorem 16.2 tells us that, if u ∈ Un, then uφ(n) ≡ 1 mod n. However, it
is often the case that uk ≡ 1 for smaller exponents k. For example, it is always
true that

(n− 1)2 ≡ (−1)2 ≡ 1 mod n.

For u ∈ Un, define the order of u to be the smallest positive integer k such that
uk ≡ 1 mod n. This value is denoted ordn(u).

For example, if we compute the powers of 2 mod 7 we have

21 ≡ 2, 22 ≡ 4, 23 ≡ 1 mod 7,

so that ord7(2) = 3.

Proposition 20.1. Let α = ordn(u). For all m, um ≡ 1 mod n if and only if α|m.

Proof. If α|m then m = αk for some integer k, so that

um ≡ uαk ≡ (uα)k ≡ 1k ≡ 1 mod n.

To prove the converse, suppose that um ≡ 1. Write m = αq + r, where 0 ≤ r < α.
Since uα ≡ 1, we have

1 ≡ um ≡ uαq+r ≡ (uα)qur ≡ ur mod n.

If 0 < r < α, this violates the minimality of the order α. Therefore r = 0, and
α|m. q

By Euler’s Theorem, uφ(n) ≡ 1 mod n for every u ∈ Un. It follows from the
previous proposition that

ordn(u)|φ(n)

for all u ∈ Un.

In the discussion that follows we will often focus on arithmetic modulo a prime
p. In this case we know that ordp(u)|(p− 1) for all units u ∈ Up.

§

If we take the powers of 2 mod 5 we have

21 ≡ 2 22 ≡ 4 23 ≡ 3 24 ≡ 1 mod 5
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exhausting the units mod 5, so that ord5(2) = 4. In other words, 2 generates the
entire multiplicative group U5, which turns out to be a cyclic group. A similar
computation reveals that 3 generates the group U7; that is, ord7(3) = 6 = φ(7),
so that every unit is a power of 3 mod 7.

Definition 20.2. A unit r mod n is a primitive root if

Un = {1, r, r2, . . . , rφ(n)−1}.

In other words, r is a primitive root for n iff ordn(r) = φ(n). In this case, the
group Un is cyclic, with r as a generator.

For example, we have seen that

U5 = {1, 2, 22, 23}.

A few short computations also verify that

U7 = {1, 3, 32, 33, 34, 35}.

Some moduli have primitive roots, and some do not. We will show (eventually)
that every prime modulus p has at least one primitive root.

§

It is not always easy to find a primitive root, when they exist at all. However,
once we have found a primitive root r mod n, it is easy to find the others.

Proposition 20.3. If ordn(u) = α then uk has order α if and only if gcd(k, α) = 1.

Proof. Let d = gcd(k, α), and let β = ordn(uk). We need to show that β = α if
and only if d = 1.

If d > 1 then k = dx and α = dy, where x, y ∈ Z, and where 1 ≤ y < α. In this
case,

(uk)y ≡ uky ≡ udxy ≡ uαx ≡ (uα)x ≡ 1x ≡ 1 mod p.

The minimality of the order β now implies that β ≤ y < α.

Suppose instead that d = 1. Since β = ordn(uk), we have

ukβ = (uk)β = 1.

It follows from Proposition 20.1 that α|kβ. Since d = 1, the values α and k are
relatively prime, so that α|β.

Meanwhile,
(uk)α ≡ (uα)k ≡ 1k ≡ 1 mod p,

so that β|α, again by Proposition 20.1. It now follows that β = α. q



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

20 Primitive roots 111

Corollary 20.4. If Zn has a primitive root r, then the primitive roots for Zn are precisely
those units rk where gcd(k, φ(n)) = 1. In particular, there are φ(φ(n)) primitive roots
mod n.

Proof. If r is a primitive root mod n, then ordn(r) = φ(n). The previous propo-
sition then implies that ordn(rk) = φ(n) iff k is relatively prime to φ(n), giving
φ(φ(n)) distinct cases. Since every u ∈ Un has the form rk for some k (because r
is primitive), this exhausts all possibilities for primitive roots mod n. q

Assuming that there is at least one primitive root modulo a prime p (to be
shown in Section 21), it follows there are exactly φ(p− 1) = φ(φ(p)) primitive
roots modulo p.

For example, since φ(φ(13)) = φ(12) = 4, there are four primitive roots mod 13.
The reader can verify that 2 is primitive mod 13. It follows from Corollary 20.4
that the primitive roots mod 13 are

21, 25, 27, 211 ≡ 2, 6, 11, 7 (respectively) mod 13.

§

The following lemma is useful for generating elements of higher order, given
elements of smaller order.

Lemma 20.5 (Multiplicative Lemma). Suppose that ordn(a) = α and ordn(b) = β.
If gcd(α, β) = 1, then ordn(ab) = αβ.

Proof. Let γ = ordn(ab). Evidently

(ab)αβ = aαβbαβ = (aα)β(bβ)α = 1β1α = 1,

so that γ|αβ, by Proposition 20.1. Meanwhile,

1 = 1α = ((ab)γ)α = (ab)αγ = aαγbαγ = bαγ,

so that β|αγ, again by Proposition 20.1. Since gcd(α, β) = 1, it follows that
β|γ. By a similar and symmetrical argument, we also have α|γ. Again, since
gcd(α, β) = 1, we have αβ|γ. It now follows that γ = αβ. q

This lemma can be useful for finding primitive roots. For example, it is easy to
see that 2 has order 5 mod 31, since 25 ≡ 32 ≡ 1 mod 31. And we always know
that −1 has order 2 modulo an odd prime. If we can find an element c of order
3, the Multiplicative Lemma 20.5 implies that −2c will have order 30, so it is
primitive. Looking at a list of cubes:

1, 8, 27, 64, 125, 216, 343, ...
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we see that 53 = 125 ≡ 1 mod 31, so that −10 ≡ 21 is a primitive root mod 31.
By Corollary 20.4, the complete list of primitive roots mod 31 will be congruent
to some 21k for k relatively prime to 30, that is, the values:

21, 217, 2111, 2113, 2117, 2119, 2123, 2129 mod 31

or (listed in the same order):

21, 11, 12, 22, 24, 13, 17, 3 mod 31.

§

In the exercises that follow you will see that 2 is often (though not always)
a primitive root modulo an odd prime p. The question then arises, are there
infinitely many primes p such that 2 is primitive mod p? The answer to this
simple question is unknown. More generally, the Artin Conjecture1 asserts that,
if a is a positive integer that is not a perfect square, then there are infinitely
many primes p such that a is primitive mod p.

§

Exercise 20.1. What is ord23(2)? ord23(3)? ord23(5)?

Exercise 20.2. What is ord10(13)? What is ord13(10)?

Exercise 20.3.
(a) Is there a primitive root mod 10?
(b) Is there a primitive root mod 12?

Exercise 20.4. What are the orders of each of 1, 2, 3, 4, 5, 6 mod 7? Are there any primitive roots?

Exercise 20.5. What are the orders of each of 1, 2, 4, 5, 7, 8 mod 9? Are there any primitive roots?
Why do we not also compute the orders of 3 and 6 mod 9?

Exercise 20.6. What are the orders of the four elements of U8? Are there any primitive roots?

Exercise 20.7. What are the orders of the eight elements of U15? Are there any primitive roots?

Exercise 20.8. Find all of the primitive roots mod 11.

Exercise 20.9. Find a primitive root mod 41.

Exercise 20.10. Let u ∈ Um.
(a) Prove that ordm(u−1) = ordm(u).
(b) Prove that r is primitive mod m iff r−1 is primitive mod m.

Exercise 20.11. Suppose that p is an odd prime, and let r be a primitive root mod p.
(a) Prove that

r
p−1

2 ≡ −1 mod p.

(b) Prove that, if p ≡ 1 mod 4, then −r is also a primitive root mod p.
(c) Is this still true when p ≡ 3 mod 4?

1Posed by Emil Artin (1898-1962) in 1927.
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Exercise 20.12. Suppose that m is an integer with a primitive root. Let M denote the product of
all the units mod m.
(a) Prove that M ≡ −1 mod m.
(b) Find an example of an integer m (lacking a primitive root) where the product M 6≡ −1 mod m.
Remark: If m is prime this is equivalent to Wilson’s theorem.

Exercise 20.13. Find positive integers n, a, b such that:
(a) ordn(ab) < min{ordn(a), ordn(b)}.
(b) ordn(ab) = ordn(a) = ordn(b).

Exercise 20.14. Suppose that ordn(a) = 4 and ordn(b) = 6. What is ordn(ab2)?

Exercise 20.15. Suppose that Zm has a primitive root r, and let k ∈N. Prove that

ordm(rk) =
φ(m)

gcd(k, φ(m))
.

Exercise 20.16. Suppose that Zm has a primitive root, and let α ∈ N. Prove that, if α|φ(m), then
there are exactly φ(α) units in Um of order α.

Exercise 20.17. Suppose that p is a prime integer. The following steps lead to a proof that there
are an infinite number of primes q such that q ≡ 1 mod p, a special case of Dirichlet’s theorem
(see Section 9).
To begin, suppose that there are only a finite number of such primes q1, . . . , qm (or none at all).
Let

M = q1 · · · qm p,

or set M = p if no such qi exist.
Next, let q be a prime factor of the number

Mp−1 + Mp−2 + · · ·+ M + 1.

(a) Prove that q 6= p.
(b) Prove that q 6= qi for each i.
(c) Prove that Mp ≡ 1 mod q.
(d) Let α = ordq(M). Prove that α = p.
(e) Prove that q ≡ 1 mod p.
It follows from parts (b) and (e) that the finite list q1, . . . , qm can never be complete, so that there
are an infinite number of primes q such that q ≡ 1 mod p.

§

A rational number a/b is said to have a finite decimal expansion if its decimal expansion has only
a finite number of non-zero digits. Examples include:

1
2
= 0.5

3
8
= 0.375

12
5

= 2.4
8443
10000

= 0.8443

A rational number is said to have a purely periodic decimal expansion if its decimal expansion
consists of an infinitely repeating finite pattern of digits, such as:

1
9
= 0.1111 . . .

3
11

= 0.272727 . . .
2

37
= 0.054054054 . . .

8443
9999

= 0.844384438443 . . .

The period is the length of the repeating pattern of digits. For example, the expansion for 2
37 has

period 3.

If the decimal expansion of a/b eventually repeats, it is simply called repeating, as in the case of:

3
44

= 0.06818181...
2003
420

= 4.7690476190476190476... = 4.76904761
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Exercise 20.18. Let m > 1 be an integer.
(a) Prove that 1

m has a finite decimal expansion iff m = 2a5b for some integers a, b.
(b) Prove that, if 1

m has a purely periodic decimal expansion with period k, then

1
m

=
n

10k − 1

for some integer n.
Hint: The formula (3.3) can be helpful here. See also Exercises 3.5 and 3.4.
(c) Prove that, if 1

m has a purely periodic decimal expansion, then gcd(m, 10) = 1.
(d) Prove that, if gcd(m, 10) = 1, then 1

m has a purely periodic decimal expansion with period
equal to ordm(10).

Exercise 20.19. Suppose that an integer m > 1 has prime factorization

m = pa1
1 · · · p

as
s ,

and that gcd(m, n) = 1. What conditions on the factorization of m determine whether the decimal
expansion of n/m is finite, purely periodic with period k, or periodic with period k after a (non-
repeating) prefix of j digits?
Hint: Do Exercise 20.18 before attempting this one.

Exercise 20.20. Suppose that m > 1 and that gcd(n, m) = 1. Prove that the period of the repeating
part (if any) of the decimal expansion for n

m must divide φ(m).
Hint: Do Exercise 20.18 before attempting this one.

In particular, the period of a repeating decimal is never greater than the Euler-φ value of its
denominator when written as a fraction in lowest terms.
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We now present a series of lemmas leading to a proof that, if p is prime, then
Zp has a primitive root.

It is a consequence of Fermat’s Theorem 15.1 that the polynomial equation

xp−1 − 1 = 0

has at least p − 1 distinct solutions mod p. By Lagrange’s Theorem 18.3 this
polynomial has at most p− 1 roots, so it therefore has exactly the p− 1 simple
roots 1, 2, . . . , p− 1 (and no repeated roots).

A similar argument yields the following.

Lemma 21.1. If xp−1 − 1 = g(x)h(x), where deg(g) = k and deg(h) = l, then g(x)
has exactly k distinct roots mod p, and h(x) has exactly l distinct roots mod p.

Proof. To begin, notice that

p− 1 = degree(gh) = degree(g) + degree(h) = k + l.

If r is a root of xp−1 − 1, then g(r)h(r) ≡ 0 mod p, so that either g(r) ≡ 0
or h(r) ≡ 0 mod p. If g has fewer than k roots, then there are more than
l = p − 1− k distinct roots of xp−1 − 1 remaining, all of which must then be
roots of h. But h cannot have more than l roots. Therefore g must have exactly k
roots, and similarly h must have exactly p− 1− k = l roots. q

The following algebraic identity is a variant of the geometric sum formula (3.2).

Lemma 21.2. If n = kl, then

xn − 1 = (xk)l − 1 = (xk − 1)(xk(l−1) + xk(l−2) + · · ·+ xk + 1).

Proof. Begin with the geometric sum identity:

ul − 1 = (u− 1)(ul−1 + ul−2 + · · ·+ u + 1).

The lemma follows after substituting u = xk. q

We are now ready to prove the main theorem.
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Theorem 21.3. If p is prime, then Zp has a primitive root.

Proof. If p = 2 then 1 is primitive.

Suppose that p is an odd prime, and that p− 1 has the prime power factorization

p− 1 = qa1
1 · · · q

ak
k ,

where q1 < · · · < qk.

By Lemma 21.2, we have

xp−1 − 1 = (xqa1
1 − 1)h(x),

where h(x) is a polynomial. By Lemma 21.1 the factor xqa1
1 − 1 has exactly qa1

1
distinct roots mod p.

If s is a root of xqa1
1 − 1, then sqa1

1 ≡ 1 mod p. It follows from Proposition 20.1
that ordp(s)|qa1

1 . Therefore, ordp(s) = qb1
1 , for some 0 ≤ b1 ≤ a1.

If every root of xqa1
1 − 1 has order strictly less than qa1

1 , then every root of xqa1
1 − 1

is also a root of of xqa1−1
1 − 1. In other words, this polynomial of degree qa1−1

1
would have qa1

1 roots, which is impossible. It follows that at least one of the
roots of xqa1

1 − 1 has order qa1
1 . In other words, there exists an element r1 ∈ Up

having order qa1
1 .

Repeating this argument for each qi, we find, for each i, an element ri ∈ Up of
order qai

i .

By the Multiplicative Lemma 20.5, the unit r = r1 · · · rk has order qa1
1 · · · q

ak
k =

p− 1, so that r is a primitive root mod p. q

§

While we have proven the existence of primitive roots mod p, there remains the
issue of how to find one.

Proposition 21.4. Suppose that φ(p) = p− 1 = qa1
1 · · · q

as
s , where q1 < · · · < qs are

prime, and each ai > 0. Then r is a primitive root mod p iff

r
p−1
qi 6≡ 1 mod p

for every qi.

The proof of this proposition is left to the reader (see Exercise 21.1). Propo-
sition 21.4 speeds the process of checking whether a value r is primitive. For
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example, if p = 31 then p− 1 = 30 = 2 · 3 · 5. To determine if 3 is primitive mod
31 we need only check that

36 6≡ 1, 310 6≡ 1, 315 6≡ 1, mod 31.

First, use repeated squaring to determine that

32 ≡ 9, 34 ≡ −12, 38 ≡ 20, 316 ≡ −3 mod 31.

It is then easy to compute

36 ≡ 16, 310 ≡ 25, 315 ≡ −1 mod 31

so that 3 must be primitive mod 31.

§

We have shown that if p is an odd prime then Zp has a primitive root. From
here it is not difficult to show that Zp2 has a primitive root as well. Evidently
3 is a primitive root mod 4. The remaining cases are addressed by the next
proposition.

Proposition 21.5. If p is an odd prime then Zp2 has a primitive root.

Proof. Let r be primitive mod p, and let k = ordp2(r). Since rk ≡ 1 mod p2, we
also have rk ≡ 1 mod p. Since r is primitive mod p, it follows that (p− 1)|k, so
that k = s(p− 1) for some integer s.

Meanwhile, k|φ(p2); that is, k|p(p− 1). In other words,

s(p− 1)|p(p− 1)

so that s|p. This can only happen if s = 1 or s = p.

If s = p then ordp2(r) = k = p(p− 1) = φ(p2), so r is a primitive root mod p2.

If s = 1, then ordp2(r) = k = (p − 1), so rp−1 ≡ 1 mod p2. In this case, let
r̃ = r + p. Since r̃ ≡ r mod p, the value r̃ is also primitive mod p. By the
previous argument, ordp2(r̃) = s̃(p− 1) where s̃ ∈ {1, p}. Moreover,

r̃p−1 ≡ (r + p)p−1

≡ rp−1 + (p− 1)rp−2 p + terms divisible by p2

≡ 1 + (p2 − p)rp−2 mod p2

≡ 1− prp−2 mod p2

If s̃ = 1, then
1 ≡ r̃p−1 ≡ 1− prp−2 mod p2,

so that prp−2 ≡ 0 mod p2. This implies that p|r, which contradicts our choice of
r. Therefore, s̃ = p, and r̃ is a primitive root mod p2. q
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The gist of the previous proof is the following: To find a primitive root mod
p2, start with a primitive root r mod p. Either r is also primitive mod p2, or
r + p will be primitive mod p2. This argument can be generalized to show that
primitive roots exist for Zn under the following conditions.

Theorem 21.6. A primitive root exists for Zn if and only if n = 2, 4, pe or 2pe, where
p is an odd prime, and e is a positive integer.

Proof. The cases of 2 and 4 are easily verified directly directly.

If p is an odd prime, Proposition 21.5 implies that there exists a primitive root
r mod p2 which is also primitive mod p. More generally, suppose that r is
primitive mod p, p2, . . . , pe for some e ≥ 2. We will show that r is also primitive
mod pe+1.

To this end, let k = ordpe+1(r). Since rk ≡ 1 mod pe+1, we also have rk ≡ 1
mod pe. Since r is primitive mod pe, it follows that pe−1(p− 1)|k, so that k =
spe−1(p− 1) for some integer s.

Meanwhile, k|φ(pe+1); that is, k|pe(p− 1). In other words,

spe−1(p− 1)|pe(p− 1)

so that s|p. This can only happen if s = 1 or s = p.

Suppose that s = 1, so that

rpe−1(p−1) ≡ 1 mod pe+1. (21.1)

By Euler’s Theorem we also have

rpe−2(p−1) ≡ 1 mod pe−1,

so that
rpe−2(p−1) = 1 + pe−1t,

for some integer t. It follows from (21.1) that

1 ≡ rpe−1(p−1) = (1 + pe−1t)p ≡ 1 + pet mod pe+1,

so that pet ≡ 0 mod pe+1. In other words, pe+1|pet, so that p|t. Writing t = pm,
we now have

rpe−2(p−1) ≡ 1 + pe−1t ≡ 1 + pe−1 pm ≡ 1 mod pe,

violating the assumption that r is primitive mod pe.

It follows that s 6= 1. This means that s = p, so that ordpe+1(r) = pe(p− 1). In
other words, r is primitive mod pe+1 as well.

It now follows by induction that, if p is an odd prime, then there exists an
integer r that is primitive mod pe for all integer exponents e ≥ 1. The proof of
the rest of this theorem involves verifying a few additional cases, outlined by
Exercises 21.5-21.9. q
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§

Exercise 21.1. Prove Proposition 21.4.

Exercise 21.2. Suppose that p > 3 is prime. Prove that the product of all of the primitive roots
mod p is congruent to 1 mod p.
Hint: Part (b) of Exercise 20.10 is helpful.

Exercise 21.3. For which numbers n are there exactly two primitive roots?

Exercise 21.4. For which numbers n are there an odd number of primitive roots?

Exercise 21.5. (a) Suppose that p 6= q are odd primes. Prove that pq has no primitive root.
Hint: Show that, for all u ∈ Upq, we have us ≡ 1 mod pq, where s = lcm(p− 1, q− 1). Then show
that s < φ(pq).
(b) Generalize part (a) show that Zn has no primitive roots if n is divisible by two distinct odd
primes.

Exercise 21.6. (a) Verify directly that Z8 has no primitive roots.
(b) Use part (a) as the basis for an an induction argument (with respect to the exponent e) to
prove that Z2e has no primitive roots for e ≥ 3.

Exercise 21.7. (a) Prove that, if p is an odd prime, then Z4p has no primitive roots.
Hint: Suppose that r is primitive mod 4p. Show that r must also be primitive mod p, and show
that r2 ≡ 1 mod 4. Then use these results to contradict the primitive property mod 4p.

(b) Generalize part (a) show that Zn has no primitive roots if n is divisible by 4p when p is an
odd prime.

Exercise 21.8. Prove that, if p is an odd prime and e is a positive integer, then Z2pe has a primitive
root.
Hint: The proof of Theorem 21.6 above yields a primitive root r for Zpe . Show that either r or
r + pe is an odd integer. Then prove that the odd choice is also primitive for Z2pe .

Exercise 21.9. Let k ≥ 3. Show that if u ∈ U2k , then u(2k−2) ≡ 1 mod 2k.
Hint: First verify the case of k = 3, and then proceed by induction with respect to k.

Exercise 21.10. Suppose that p is prime.
(a) For n|(p− 1) define

g(n) = ∑
un≡1 mod p

u

where each u ∈ Up. Show that g(1) = 1 and that g(n) = 0 for n > 1.

(b) For n|(p− 1) define
f (n) = ∑

ordp(u)=n
u

where each u ∈ Up. Show that
g(n) = ∑

d|n
f (d).

(c) Use part (b) and Möbius inversion (see Exercise 16.28) to prove that the sum of all of the
primitive roots mod p is congruent to µ(p− 1) mod p.
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In school level mathematics we first learn about the basic arithmetic operations
(+,−,×,÷), and then continue with square roots, quadratic equations, and
beyond. The development of modular arithmetic proceeds in a similar way.
How do we solve quadratic equations modulo m? When do solutions exist?

§

A unit u ∈ Un is called a quadratic residue if there exists b ∈ Un such that b2 ≡ u
mod n. If unit u is not a quadratic residue, it is called a quadratic non-residue.1

Quadratic residues are the analogues of “perfect squares” among the units of a
modulus.

For example, the squared units 12, 22, 32, 42, 52, 62 mod 7 yield respective values
1, 4, 2, 2, 4, 1 (in corresponding order). It follows that 1, 2, 4 are quadratic
residues mod 7, while 3, 5, 6 are quadratic non-residues mod 7. We omit 0 from
consideration, because 0 is not a unit.

A similar computation reveals that 1 is the only quadratic residue mod 8, while
the quadratic residues mod 9 consist of {1, 4, 7}.

If u ∈ Un is a quadratic residue, and if b2 ≡ u mod n, then we say that b is a
square root of u mod n.

§

In the discussion that follows we will focus on quadratic residues mod p, where
p is an odd prime. In this case each quadratic residue u has exactly two distinct
square roots. To see this, note that b2 ≡ u mod p iff b is a root of the polynomial
equation

x2 − u ≡ 0 mod p.

Since p is prime, this quadratic polynomial can have at most 2 roots. If b is one
root, then (−b)2 ≡ b2 ≡ u, so that −b is another. Moreover, b 6≡ −b mod p, since
p is an odd prime, so b and −b are distinct and are the only square roots of u
mod p.

Proposition 22.1. If p is an odd prime, then there are exactly p−1
2 quadratic residues

and exactly p−1
2 quadratic non-residues mod p .

1It would make more sense to call them “non-quadratic residues,” since they certainly are
residues (i.e., remainders after division), but not quadratic (square). However, tradition trumps
rational nomenclature in this instance.
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Proof. Squaring the units {±1,±2, . . . ,± p−1
2 } gives us p−1

2 quadratic residues,
which are distinct from one another, since each quadratic residue can have at
most two square roots. This exhausts the units that we can square mod p, so
there can be no other quadratic residues mod p. Since there are p− 1 units in
total, the remaining p−1

2 units are the quadratic non-residues. q

More generally, it is not difficult to prove the following (see Exercise 22.3).

Proposition 22.2. If r is primitive mod p, then rk is a quadratic residue iff k is even.

§

The next theorem describes a fundamental test for whether a given unit u ∈ Up
is a quadratic residue.

Theorem 22.3 (The Euler Criterion). Let p be an odd prime. If u ∈ Z and p 6 | u,
then

u
p−1

2 ≡
{

1 if u is a quadratic residue mod p.
−1 otherwise.

Proof. Suppose that u ∈ Up. By Fermat’s Theorem 15.1,(
u

p−1
2

)2
≡ up−1 ≡ 1 mod p.

Since p is prime, it then follows from Lagrange’s Root Theorem 18.3 (or, alter-
natively, Proposition 15.3) that

u
p−1

2 ≡ ±1 mod p. (22.1)

If u ≡ b2, then
u

p−1
2 ≡ bp−1 ≡ 1 mod p,

so that each of the p−1
2 quadratic residues is a root of the polynomial equation

x
p−1

2 − 1 ≡ 0 mod p.

Since this polynomial can have no more than p−1
2 roots, the remaining units

(the quadratic non-residues) cannot satisfy this equation. By (22.1), the only
remaining possible value for u

p−1
2 is −1. q

Corollary 22.4. If p is an odd prime, then −1 is a quadratic residue mod p iff p ≡ 1
mod 4.
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Proof. By the Euler criterion, −1 is a quadratic residue mod p iff (−1)
p−1

2 = 1.
But this holds iff p−1

2 is even; that is, iff p ≡ 1 mod 4. q

§

If p is an odd prime and p 6 | u, denote(
u
p

)
= u

p−1
2 mod p.

The expression on the left-hand-side is called the Legendre symbol2 for the pair
(u, p). The Euler criterion tells us that(

u
p

)
≡
{

1 if u is a quadratic residue mod p.
−1 otherwise.

Legendre symbols satisfy the following properties.

Proposition 22.5. Let p be an odd prime. For all a, b ∈ Up,

(i) If a ≡ b mod p then
(

a
p

)
=
(

b
p

)
.

(ii)
(

a2

p

)
= 1.

(iii)
(

ab
p

)
=
(

a
p

) (
b
p

)
.

(iv)
(
−1
p

)
=

{
1 p ≡ 1 mod 4.
−1 p ≡ 3 mod 4.

Proof. Property (i) is immediate, while (ii) and (iii) follow from the Euler Crite-
rion. Property (iv) is a re-statement of Corollary 22.4. q

Note: Contrary to appearances, the expression inside the parentheses of a Leg-
endre symbol should never be viewed as a fraction.

§

The Euler criterion provides a quick answer (in the form of Corollary 22.4) to the
question of whether −1 is a quadratic residue mod p. We would like to derive
similar conditions for other values. When is 2 a quadratic residue mod p? What
about 3 and 5? More generally, given two odd primes p and q, how are their
quadratic characters related?

2Named for Adrien-Marie Legendre (1752–1833).
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Before stating the next theorem, we require some preliminary notation. Suppose
that u ∈ Up, and consider the list of values

u, 2u, 3u, . . . ,
(

p− 1
2

)
u. (22.2)

By the cancellation law, each of these values is distinct mod p. Reduce these
values mod p so that each value lies within the range (− p

2 , p
2 ). Suppose that s

of these values are negative, and t of them are positive, so that s + t = p−1
2 . The

following result then holds.

Lemma 22.6 (Gauss’s Lemma).
Following the notation introduced above, we have(

u
p

)
= (−1)s.

Proof. First, note once again that the values in the list (22.2) are non-zero and
distinct mod p, since u is a unit. We will show that, after reduction mod p to the
range (− p

2 , p
2 ), these numbers have distinct absolute values.

Suppose that, after reduction to the interval (− p
2 , p

2 ), we obtain both of the values
k and −k, where k ∈ (0, p

2 ). This means there are values au and bu from the
list (22.2), such that au ≡ k and bu ≡ −k mod p. Adding these equations we
find that

(a + b)u ≡ k + (−k) ≡ 0 mod p,

so that p|(a + b). However, the coefficients a and b also satisfy a, b ∈ (0, p
2 ). This

means that
0 < a + b < p,

so that p cannot divide a + b, giving us a contradiction. Thus, if k appears on
the reduced list, −k cannot also appear.

Since there are p−1
2 integer values in the interval (0, p

2 ), and p−1
2 values in the

reduced list (22.2), it follows that either the positive or the negative of each
integer in the list 1, 2, . . . , p−1

2 must appear exactly once in the list (22.2) after
reduction mod p to the interval (− p

2 , p
2 ).

If we now multiply the numbers in (22.2) together, it follows that

u · 2u · 3u · · ·
(

p− 1
2

)
u ≡ (−1)s

(
p− 1

2

)
! mod p,

where the sign is determined by the number s of values in the negative half of
the interval (− p

2 , p
2 ). Applying the cancellation law to the values 2, 3, . . . , p−1

2 on
both sides, we have

u
p−1

2 ≡ (−1)s mod p.

The Lemma now follows from the Euler criterion. q



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

124 22 Quadratic residues

Gauss’s Lemma 22.6 yields the following simple rule for determining when 2 is
a quadratic residue.

Corollary 22.7. If p is an odd prime, then(
2
p

)
=

{
1 p ≡ ±1 mod 8.
−1 p ≡ ±3 mod 8.

Proof. In each case set u = 2 in Gauss’s Lemma 22.6, and consider the list
2, 4, 6, . . . , p− 1.

If p ≡ 1 mod 8, then p = 8m + 1, so that p−1
2 = 4m. In this case 0 < 2k ≤ p−1

2 iff

0 < k ≤ 2m. It follows that s = t = 2m, so that
(

2
p

)
= (−1)s = (−1)2m = 1.

If p ≡ 3 mod 8, the p = 8m + 3, so that p−1
2 = 4m + 1 is odd. In this case the

largest even value from the list that appears in (0, p
2 ) is p−3

2 = 4m = 2t. This

means that t = 2m, so that s = 2m + 1, an odd number. Hence,
(

2
p

)
= (−1)s =

(−1)2m+1 = −1.

The remaining cases are similar. q

§

Exercise 22.1. List the quadratic residues in each of:

(a) mod 3
(b) mod 5

(c) mod 12
(d) mod 15

(e) mod 17
(f) mod 25

Exercise 22.2. Evaluate the following Legendre symbols:

(a)
(

5
3

)
(b)
(
−7
13

)
(c)
(

7
13

)
(d)
(

360
7

)
(e)
(
−360

7

)
(f)
(

384
5

)
(g)
(

63
13

)
(h)
(

36
2003

)
(i)
(

32
79

)

Exercise 22.3. Prove Proposition 22.2.

Exercise 22.4. Use the Euler Criterion to prove part (iii) of Proposition 22.5.

Exercise 22.5. Suppose that p is prime and that u has odd order mod p. Prove that u is a quadratic
residue mod p.

Exercise 22.6. Suppose that n is a composite integer, and let u ∈ Un.

(a) If u is a quadratic residue mod n, does it follow that u
φ(n)

2 ≡ 1 mod n?

(b) If u
φ(n)

2 ≡ 1 mod n, does it follow that u is a quadratic residue mod n?
(c) Examine the proof of the Euler Criterion, and determine which step(s) fail if the prime p is
replaced with a composite n (and p− 1 replaced by φ(n)).
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Exercise 22.7. Suppose that m > 1 is a composite integer with a primitive root r. Prove that rk is
a quadratic residue mod m iff k is even.

Exercise 22.8. Let p be a prime such that p ≡ 1 mod 4, and suppose that u is a quadratic non-
residue mod p.
(a) Prove that p−1

4 is an integer.

(b) Let v = u
p−1

4 , and prove that v2 ≡ −1 mod p.

Exercise 22.9. Let p be a prime such that p ≡ 3 mod 4, and suppose that u is a quadratic residue
mod p.
(a) Prove that p+1

4 is an integer.

(b) Let v = u
p+1

4 , and prove that v2 ≡ u mod p.

Exercise 22.10. Let p be a prime, and let c be the smallest positive quadratic non-residue mod p.
Prove that c is a prime number.

Exercise 22.11. Check the remaining cases in the proof of Corollary 22.7.

Exercise 22.12. Suppose that a, b > 1 are relatively prime integers. Prove that u is a quadratic
residue mod ab iff u is a quadratic residue both mod a and mod b.

Exercise 22.13. What happens in Exercise 22.12 if a and b are not relatively prime?

Exercise 22.14. Use the quadratic formula and quadratic residue theory to determine which of
these equations have solutions.

(a) x2 − x + 1 mod 17

(b) x2 − x + 1 mod 31

(c) 2x2 − 3x + 4 mod 11

(d) 2x2 − 3x + 4 mod 23

Exercise 22.15. Prove that there are infinitely many prime numbers of the form 4n + 1.
Hint: Suppose there are finitely many. Multiply them together to obtain an integer N. Use
Corollary 22.4 to show that the number 4N2 + 1 must have a prime factor of the form 4n + 1.

Exercise 22.16. Prove that, if n is an integer, then 4n2 + 4 cannot be divisible by 127.

Exercise 22.17. Let p be an odd prime such that p ≡ 2 mod 3.
Prove that, for every a ∈ Z, there exists b ∈ Z such that a ≡ b3 mod p.
In particular, every unit mod p is a cubic residue.
Hint: Combine Fermat’s theorem with the fact that gcd(3, p− 1) = 1 to find an actual formula for
the cube root.

Exercise 22.18. Let p be an odd prime such that p ≡ 1 mod 3. Let u ∈ Up.
Prove that there exists b ∈ Z such that u ≡ b3 mod p iff

u
p−1

3 ≡ 1 mod p.

Hint: Let r be a primitive root mod p. Since p 6 | u we know that u ≡ rk for a unique value
k ∈ {0, . . . , p− 2}. What happens if 3|k? What happens if 3 6 | k?

Exercise 22.19. Suppose that n, m > 1 and that n|m. True or False?
(a) If u is a quadratic residue mod m, then u is a quadratic residue mod n.
(b) If u is a quadratic non-residue mod m, then u is a non-quadratic residue mod n.

Exercise 22.20. Can you find an integer u > 1 such that u is a quadratic residue in every modulus
m such that gcd(u, m) = 1?
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Gauss’s Lemma is the stepping stone to the following remarkable symmetry law
satisfied by quadratic residues.

Theorem 23.1 (The Law of Quadratic Reciprocity).
Let p 6= q be positive odd primes.

• If p ≡ q ≡ 3 mod 4 then
(

p
q

)
= −

(
q
p

)
.

• Otherwise
(

p
q

)
=

(
q
p

)
.

This theorem has the following equivalent formulation:

(
p
q

)(
q
p

)
= (−1)

p−1
2 ·

q−1
2 (23.1)

Although the quadratic reciprocity law was formulated as a conjecture by Euler,
its first proof is due to Gauss,1 presented in his famous number theory text, the
Disquisitiones Arithmeticae.2

A proof of Theorem 23.1 is deferred to the next section. Before that, we take a
moment to illustrate how quadratic reciprocity makes it much easier to compute
Legendre symbols, allowing us to avoid computing the exponentials indicated
by the Euler Criterion.

1Carl Friedrich Gauss (1777–1855).
2Gauss was 21 years old when he wrote this enormously influential textbook. It is available in

English translation; see [11].

126
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Example:(
59
71

)
= −

(
71
59

)
by quadratic reciprocity, since 59 ≡ 71 ≡ 3 mod 4,

= −
(

12
59

)
since 71 ≡ 12 mod 59,

= −
(

4
59

)(
3
59

)
since 12 = 3 · 4,

= −
(

3
59

)
since 4 = 22,

=

(
59
3

)
by quadratic reciprocity, since 59 ≡ 3 mod 4,

=

(
2
3

)
since 59 ≡ 2 mod 3,

= −1 by inspection. q

Remember that the numerator of a Legendre symbol may be composite, but the
denominator must always be an odd prime. In particular, a composite numerator
must be factored before quadratic reciprocity can be applied.

Example:(
90

149

)
=

(
9

149

)(
2

149

)(
5

149

)
= 1 · (−1) ·

(
5

149

)
since 9 = 32 and 149 ≡ 5 mod 8,

= −
(

149
5

)
by quadratic reciprocity, since 5 ≡ 1 mod 4,

= −
(

4
5

)
since 149 ≡ 4 mod 5,

= −1 since 4 = 22. q

In order to use Theorem 23.1 to compute Legendre symbols, one needs to deter-
mine that the numerator is prime, or to factor the numerator if it is not prime.
When such factoring is not feasible (such as when the number is very large), one
must instead return to the exponential formula given by the Euler Criterion.3

§

Exercise 23.1. Show that the identity (23.1) is equivalent to Theorem 23.1.

3We will find a partial remedy to this difficulty in Section 26 on Jacobi symbols.
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Exercise 23.2. Let p, q1, q2 be distinct odd primes. Use Theorem 23.1 to show that(
p
q1

)
=

(
p
q2

)
whenever q1 ≡ q2 mod 4p.

Exercise 23.3. Use Theorem 23.1 to show that(
3
p

)
=

{
1 p ≡ ±1 mod 12.
−1 p ≡ ±5 mod 12.

Exercise 23.4. (a) Use Theorem 23.1 to derive a quick and easy rule (in analogy to the previous

exercise) for determining
(

5
p

)
for odd primes p 6= 5.

(b) For which primes p is 10 a quadratic residue?

Exercise 23.5. Use Theorem 23.1 to derive a simple rule (in analogy to the previous exercise) for

determining
(

7
p

)
for odd primes p 6= 7.

Exercise 23.6. Compute the following Legendre symbols:

(a)
(

7
101

)
(b)
(

15
127

) (c)
(

20
61

)
(d)
(

72
83

) (e)
(

1875
2003

)
(f)
(
−490

41

) (g)
(

919
683

)
(h)
(

173
401

) (i)
(

7
601

)
(j)
(

11
9901

)

where you may accept as given that 401, 601, 683, 919, 2003 and 9901 are prime numbers.

Exercise 23.7. (a) What is the smallest positive prime p such that 2 and 3 are both quadratic
residues mod p?
(b) What is the smallest positive prime p such that 2, 3, and 5 are all quadratic residues mod p?
(c) What is the smallest quadratic non-residue modulo the prime p of part (b)?
Hint: Corollary 22.7 and the results of Exercises 23.3 and 23.4 make this exercise a lot easier. Brute
force computations of every case are not necessary.

Exercise 23.8. Suppose that p is prime such that 3|(p− 1), and let m =
p−1

3 . Prove that m is a
quadratic residue mod p.

Exercise 23.9. Find a prime p such that 2, 3, 5, and 7 are all quadratic non-residues mod p.
Hint: Combine Corollary 22.7 and the results of Exercises 23.3, 23.4, and 23.5 with the Chinese
remainder theorem.

Exercise 23.10. Use the quadratic formula and quadratic residue theory to determine which of
the following quadratic equations have solutions. (But do not try to find the solutions unless you
have a lot of spare time.)

(a) x2 − x + 1 mod 53

(b) x2 − x + 1 mod 73

(c) 2x2 − 3x + 4 mod 101

(d) 2x2 − 3x + 4 mod 307

Exercise 23.11. Given that

a = 1111111111111111111 and b = 11111111111111111111111

are prime integers (consisting respectively of 19 and 23 catenated decimal ’1’s), what is
( a

b

)
?
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We now give a proof Theorem 23.1, by proving the equivalent assertion that(
p
q

)(
q
p

)
= (−1)

p−1
2 ·

q−1
2 , (24.1)

for odd primes p 6= q.

Proof of Quadratic Reciprocity. To begin, we apply Gauss’s Lemma 22.6 to the
Legendre symbol

(
p
q

)
. Specifically, consider the list of integers

p, 2p, . . . ,
(

q−1
2

)
p.

Reduce each number in this list modulo q, so that the resulting value lies in
the interval

(
− q

2 , q
2

)
. In order to apply Gauss’s Lemma, we need to count the

number µ of negative values in the reduced list. In other words, we need to
determine

µ = #{x | xp ≡ s for some s ∈
(
− q

2 , 0
)
},

where x ∈ {1, 2, . . . , q−1
2 }. Gauss’s Lemma then asserts that

(
p
q

)
= (−1)µ.

In order to count the number µ, note that

xp ≡ s ∈
(
− q

2 , 0
)

mod q

if and only if

xp− yq ∈
(
− q

2 , 0
)

(24.2)

for some x, y ∈ Z.

If indeed (24.2) holds, then

− q
2 < xp− yq < 0

iff − q
2 − xp < −yq < −xp

iff xp < yq < q
2 + xp

which means that
0 < y < 1

2 +
xp
q < 1

2 +
p
2

since x < q
2 . Since p is odd and y is an integer, this means that

1 ≤ y ≤ p− 1
2

.
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It now follows that (24.2) holds if and only if the line

xp− yq = s

passes through a point (x, y) in the region 2OABD of Figure 24.1, where x and
y are both integers and where s ∈ {−1,−2, . . . ,− q−1

2 }.

Points in the plane having integer coordinates are called lattice points. In order
to determine µ, we need to determine how many lines of the form xp− yq = s
pass through a lattice point in the region 2OABD.

Notice that if xp− yq = s and x̄p− ȳq = s for some pair of lattice points (x, y)
and (x̄, ȳ) then

xp− yq = s = x̄p− ȳq

so that (x − x̄)p = (y − ȳ)q. This implies that q|(x − x̄). Since 0 < x, x̄ < q
2 ,

it follows that x = x̄ and, similarly, y = ȳ. In other words, each line of the
form xp− yq = s passes through at most one lattice point in the region 2OABD.
This means that µ is simply the total number of lattice points in the interior1 of the
region 2OABD.

yq− xp = − p
2

xp− yq = − q
2

D=
( q

2 , p
2

)

O C’=
( q

2 , 0
)

A’

B’

A

B
C=

(
0, p

2

)

(x, y)...
...

Figure 24.1: Counting (lines through) lattice points.

Similarly, after exchanging the roles of the primes p and q, we can apply Gauss’s
Lemma 22.6 to the Legendre symbol

(
p
q

)
, to discover that(

q
p

)
= (−1)η ,

where (by a symmetrical argument) η is the number of lattice points in the
interior of the region 2OA′B′D. It now follows that(

p
q

)(
q
p

)
= (−1)µ+η ,

1That is, excluding the boundary.
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where µ + η is the total number of lattice points in the interior of the hexagonal
region OABDB′A′O.

Meanwhile, suppose that (x, y) is a lattice point in the interior of triangle4ABC.
This is true iff x and y satisfy the inequalities

0 < x <
q
2

0 < y <
p
2

xp− qy < − q
2

all hold. But these inequalities hold iff

0 < x̄ <
q
2

0 < ȳ <
p
2

qȳ− x̄p < − p
2

where
x̄ =

p + 1
2
− x and ȳ =

p + 1
2
− y.

The reader should check this algebra carefully. See Exercise 24.2.

It now follows that the lattice point (x, y) lies in the interior of the upper triangle
4ABC iff the lattice point (x̄, ȳ) lies in the interior of the lower triangle4A′B′C′.
Since the transforms x → x̄ and y → ȳ are each inverses of themselves (that is,
¯̄x = x and ¯̄y = y), this means that4ABC and4A′B′C′ contain the same number
of interior lattice points. Call this number λ.

If now follows that there are a total of µ + η + 2λ lattice points in the interior
of the rectangle 2OCDC′. Since this rectangle has p−1

2 ·
q−1

2 lattice points in its
interior, we have

µ + η + 2λ =
p− 1

2
· q− 1

2
,

so that
µ + η ≡ p− 1

2
· q− 1

2
mod 2,

which implies that (
p
q

)(
q
p

)
= (−1)µ+η = (−1)

p−1
2 ·

q−1
2 .

q

§

While conjectured by Euler, the Law of Quadratic Reciprocity was first proven
by Gauss, who ultimated published six different proofs over the course of his
mathematical career. Gauss’s third proof was later simplified by Eisenstein,2

whose lattice point counting argument is the proof most commonly given in

2Ferdinand Gotthold Max Eisenstein (1823–1852).
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modern introductory number theory texts, including this one. An exhaustive
history of reciprocity laws can be found in [17].

§

Exercise 24.1. Prove that ¯̄x = x and ¯̄y = y.

Exercise 24.2. Verify the assertion (used in the proof of Theorem 23.1) that x and y satisfy the
inequalities

0 < x <
q
2

0 < y <
p
2

xp− qy < − q
2

if and only if x̄ and ȳ satisfy the inequalities

0 < x̄ <
q
2

0 < ȳ <
p
2

qȳ− x̄p < − p
2

where
x̄ =

p + 1
2
− x and ȳ =

p + 1
2
− y.

Exercise 24.3. Prove that there are no lattice points on the line segment OD of Figure 24.1 except
the origin O.
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So far we have focused on the quadratic character of a unit mod p, where p
is prime. Having developed the tools for addressing that special case, we now
turn to the question of when a unit is a quadratic residue in a general modulus
m > 1. This turns out to be straightforward, provided that m can be factored
into powers of primes. The next three propositions explain.

Proposition 25.1. Suppose that m, n > 1 and that gcd(m, n) = 1. The following are
equivalent.

• u is a quadratic residue mod mn.

• u is a quadratic residue mod m and u is a quadratic residue mod n.

For example, a unit u is a quadratic residue mod 1001 = 7 · 11 · 13 if and only if
u is a quadratic residue in each of the moduli 7, 11, and 13.

Proof. If u is a quadratic residue mod mn, there exists b ∈ Z such that u ≡ b2

mod mn. This means that mn|(u − b2), so that m|(u − b2) and n|(u − b2). In
other words, u ≡ b2 mod m and u ≡ b2 mod n, so that u is a quadratic residue
in both of these moduli.

For the converse, suppose that u is a quadratic residue mod m and mod n. This
means that u ≡ b2 mod m, and u ≡ c2 mod n, for some integers b, c.

Since gcd(m, n) = 1, the Chinese Remainder Theorem 11.1 provides an integer
a such that a ≡ b mod m and a ≡ c mod n. This means that

a2 ≡ b2 ≡ u mod m and a2 ≡ c2 ≡ u mod n.

In other words, m|(a2− u) and n|(a2− u). Since gcd(m, n) = 1, we may conclude
that mn|(a2 − u), so that u ≡ a2 mod mn, and a is a quadratic residue mod mn.
q

Proposition 25.1 implies that, to determine the quadratic character of an integer
mod 3645, it is sufficient to look at the separate cases mod 5 and mod 729.
However, our methods so far do not help us with this question mod 729 = 36,
which is neither prime nor factorable into relatively prime proper divisors. To
complete the story we still need to address the case of prime powers.

Proposition 25.2. Let p be an odd prime, and suppose p 6 | u. Then u is a quadratic
residue mod ps, for s ≥ 2, iff u is a quadratic residue mod p.
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If follows, for example, that a unit u is a quadratic residue mod 3645 = 36 · 5
if and only if u is a quadratic residue in each of the moduli 3 and 5, which is
usually easy to determine.

Proof. If u is a quadratic residue mod ps, then ps|(u− r2) for some integer r. It
follows that p|(u− r2), so that u is a quadratic residue mod p.

We will prove the converse by induction on s. Suppose that u is a quadratic
residue mod ps for some s ≥ 1. This means that u ≡ r2 mod ps for some integer
r, so that

r2 − u = psk (25.1)

for some integer k.

We will show that u is a quadratic residue mod ps+1 as well. To see this, let

r̄ = r + tps, (25.2)

where t is an integer to be determined. We have

r̄2 − u ≡ (r + tps)2 − u mod ps+1

≡ r2 + 2rtps + t2 p2s − u mod ps+1

≡ ps(k + 2rt) mod ps+1.

It follows that r̄2 − u ≡ 0 mod ps+1 iff

k + 2rt ≡ 0 mod p,

which, in turn, holds iff there is an integer t such that

t ≡ −k(2r)−1 mod p. (25.3)

Such a value of t exists, because p is odd and r ∈ Up.

We have shown that if u is a quadratic residue mod ps, then u is a quadratic
residue mod ps+1. Therefore, if u is a quadratic residue mod p, then u is also a
quadratic residue modulo every positive power of p. q

The proof above describes an algorithm for finding a square root of u mod ps+1,
if we are given a square root mod ps. Combining the equations (25.1), (25.2),
and (25.3) yields:

Corollary 25.3. Let p be an odd prime, and let u be a quadratic residue mod p. If
r2 ≡ u mod ps, then

[r− v(r2 − u)]2 ≡ u mod ps+1,

where v ≡ (2r)−1 mod p.
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In other words, if r is a square root of u mod ps, then r− v(r2 − u) is a square
root of u mod ps+1, where v ≡ (2r)−1 is first computed mod p.

Example: Since 11 ≡ 1 mod 5, it follows that 11 is a quadratic residue modulo
every positive power of 5. To find the square root of 11 mod 25, first observe
that 12 ≡ 1 ≡ 11 mod 5, and compute v ≡ (2 · 1)−1 ≡ 3 mod 5.

It follows that

1− 3(12 − 11) ≡ 31 ≡ 6 mod 25,

so that 62 ≡ 11 mod 25.

Continuing, we can find a square root for 11 mod 125 by “lifting” our solution
mod 25 to

6− 3(62 − 11) ≡ 56 mod 125,

so that 562 ≡ 11 mod 125.

§

The proof of Proposition 25.2 uses the fact that p is odd, so that 2−1 exists mod p.
We can use a similar argument to determine the quadratic character of integers
modulo 2s, but some adjustment is needed.

To begin, recall that every odd number u is a quadratic residue mod 2, while u
is a quadratic residue mod 4 iff u ≡ 1 mod 4. The remaining powers of 2 are
addressed by the next proposition.

Proposition 25.4. An odd number u is a quadratic residue mod 2s, for s ≥ 3, iff u ≡ 1
mod 8.

Recall that u ≡ 1 mod 8 is precisely the condition under which an odd number
is a quadratic residue mod 8.

Proof. Suppose that u is a quadratic residue mod 2s, where s ≥ 3. Since 8|2s, it
follows that u is also a quadratic residue mod 8, so that u ≡ 1 mod 8.

To prove the converse, suppose that u is a quadratic residue mod 2s for some
s ≥ 3. This means that u ≡ r2 mod 2s for some odd integer r.

If u ≡ r2 mod 2s+1, then u is also a quadratic residue mod 2s+1.

If u 6≡ r2 mod 2s+1, then r2 − u = 2sk for some integer k.

Setting

r̄ = r + k2s−1,
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we have

r̄2 − u ≡ (r + k2s−1)2 − u mod 2s+1

≡ r2 + rk2s + k222s−2 − u mod 2s+1

≡ 2sk(1 + r) mod 2s+1 (since s ≥ 3, so that 2s− 2 ≥ s + 1)

≡ 0 mod 2s+1 (since 1 + r is even).

It follows that r̄2 ≡ u mod 2s+1, so that u is a quadratic residue mod 2s+1.

We have shown that if u is a quadratic residue mod 2s, for some s ≥ 3, then u is
also a quadratic residue mod ps+1. Therefore, if u is a quadratic residue mod 8,
then u is also a quadratic residue modulo 2s, for all s ≥ 3. q

The following theorem now summarizes the situation for any modulus m other
than a pure power of 2.

Theorem 25.5. Suppose that m has the form

m = 2t ps1
1 · · · p

sk
k , (25.4)

where p1 < · · · < pk are odd primes, t ≥ 0, and each si > 0. If gcd(u, m) = 1, then u
is a quadratic residue mod m iff u is a quadratic residue modulo each of the pi and

• u is odd if t = 1.

• u ≡ 1 mod 4 if t = 2.

• u ≡ 1 mod 8 if t ≥ 3.

Proof. This theorem is a straightforward consequence of Propositions 25.1, 25.2,
and 25.4. q

§

Example: To determine if 13 has a square root mod 1377, begin by factoring
1377 = 34 · 17. Since 13 ≡ 1 mod 3, and(

13
17

)
=

(
17
13

)
=

(
4
13

)
= 1,

it follows that 13 is indeed a quadratic residue mod 1377.

To find a square root, start with 22 ≡ 4 ≡ 13 mod 9. Compute (2 · 2)−1 ≡ 1 mod
3, and then apply the formula from Corollary 25.3 to obtain a square root

2− 1(22 − 13) ≡ 11 mod 27.
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Applying the lifting formula once again yields

11− 1(112 − 13) ≡ 65 mod 81.

so that 652 ≡ 13 mod 81.

Meanwhile, we can verify by trial and error that 82 ≡ 13 mod 17. Apply the
Chinese Remainder Theorem 11.1 to the identities

r ≡ 8 mod 17
r ≡ 65 mod 81

to conclude that r ≡ 875 is a square root of 13 mod 1377.

§

Recall that the quadratic residues mod m are the units mod m that are congruent
to squared integers. What about squares that are not units?

An integer n is a perfect square mod m if n ≡ c2 mod m for some integer c.
Evidently a perfect square is a quadratic residue iff it is also a unit mod m.

The perfect squares modulo a prime p are just the quadratic residues, along with
the extra value 0 ≡ 02. Perfect squares in an odd prime power modulus ps are
described as follows.

Proposition 25.6. Let p be an odd prime, and let s be a positive integer.

An integer n is a perfect square mod ps iff n ≡ peb mod ps, where e ≥ 0 is even and b
is a quadratic residue mod p.

Proof. If p 6 | n, then n is a unit mod ps, so n is a perfect square mod ps iff n is a
quadratic residue mod ps (by the definition of quadratic residue). This holds in
turn iff n is a quadratic residue mod p, by Proposition 25.2.

If ps|n, then n ≡ 0 ≡ p2s mod ps, so the theorem holds in this case.

Suppose p|n, but ps 6 | n. Assume n is reduced mod ps, and write n = peb, where
1 ≤ e ≤ s− 1 and where p 6 | b.

If e is even and b is a quadratic residue mod p, then e = 2t for some integer t,
while b is a quadratic residue mod ps. Therefore b and pe = p2t are both perfect
squares mod ps, so that n ≡ peb is a perfect square mod ps.

For the converse, suppose that n ≡ peb is a perfect square mod ps, where p 6 | b.
This means that

peb = c2 + rps,

for some integer c. Therefore, c2 = pe(b− rps−e) = ped for some integer d, so
that

b = d + rps−e.
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Since p 6 | b, it follows that p 6 | d, so that p divides c2 exactly e times, and e must be
an even integer. This also implies that d is a perfect integer square, say d = g2.
We now have

b = g2 + rps−e ≡ g2 mod ps−e.

Since p 6 | b, it follows that b is a quadratic residue mod ps−e and therefore also
mod p. q

Note that every integer is a perfect square mod 2, while the perfect squares mod
4 are {0, 1}. Perfect squares modulo higher powers of 2 are described as follows.

Proposition 25.7. Let s ≥ 3 be a positive integer. An integer n is a perfect square mod
2s iff n ≡ 2eb mod 2s, where e ≥ 0 is even, b is odd, and

• b = 1 if e ≥ s− 2,

• b ≡ 1 mod 8 if e ≤ s− 3.

The proof is similar to that of Proposition 25.6, keeping in mind the special cases
characterizing quadratic residues mod 2s given by Proposition 25.4.

The Chinese remainder theorem can now be used to prove the following more
general result, characterizing perfect squares in a composite modulus m.

Theorem 25.8. Suppose that
m = ps1

1 · · · p
sk
k ,

where p1 < · · · < pk are primes and each si > 0.

An integer n is a perfect square mod m iff n is a perfect square mod psi
i for each i.

The proof of Theorem 25.8 is left as an exercise (see Exercise 25.16).

§

Exercise 25.1. Is 6 a quadratic residue mod 25? mod 35? mod 75? mod 95?

Exercise 25.2. Is 17 a quadratic residue mod 64? mod 65? mod 169? mod 338?

Exercise 25.3. Continue the example given after Corollary 25.3 to find the square roots of 11 mod
625 and mod 3125.

Exercise 25.4. Use Corollary 25.3 to find a square root of 13 mod 289, starting with the fact that
82 ≡ 13 mod 17.

Exercise 25.5. Let m > 1 be an integer. Describe a simple condition for when −1 is a quadratic
residue mod m.

Exercise 25.6. Let m > 1 be an odd integer. Describe a simple condition for when 2 is a quadratic
residue mod m.

Exercise 25.7. Use Theorem 25.5 and the results of Exercise 23.3 to determine when 3 is a
quadratic residue mod m, where 3 6 | m and m has the factorization (25.4).
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Exercise 25.8. Suppose that gcd(u, 10) = 1. Describe a simple condition, in the spirit of Exer-
cise 23.3, for when u is a quadratic residue mod 10k, where k ≥ 3. What if k = 1 or k = 2?

Exercise 25.9. (a) Develop an algorithm in the spirit of Corollary 25.3 for finding the square root
of an odd number mod 2k+1 given a square root mod 2k.
(b) Starting with the observation that 12 ≡ 1 ≡ 41 mod 8, use your algorithm from part (a) to find
a square root of 41 mod 64.

Exercise 25.10. Suppose that p 6= q are odd primes. Show that a quadratic equation

x2 + ax + b ≡ 0 mod pq

has a solution iff it has solutions mod p and mod q.

Exercise 25.11. Suppose that p is an odd prime.
(a) Show that a quadratic equation

x2 + ax + b ≡ 0 mod p2

has a solution iff it has a solution mod p.
(b) If r is a root of this equation mod p, what is the corresponding solution mod p2?

Exercise 25.12. Read the proof of Proposition 25.2 carefully, and use the notation of that proof to
explain why the formula of Corollary 25.3 is correct.

Exercise 25.13. What are the perfect squares mod 3? mod 9? mod 15? mod 27?

Exercise 25.14. Let p be an odd prime, and let k be a positive integer. Prove that an integer n is a
perfect square mod p2 iff either n ≡ 0 mod p2 or n is a quadratic residue mod p. Does this still
hold if p = 2?

Exercise 25.15. Give a detailed proof of Proposition 25.7. Use the proof of Proposition 25.6 as a
model, and be mindful of the special conditions imposed by Proposition 25.4.

Exercise 25.16. Use the Chinese Remainder Theorem 11.1 to prove Theorem 25.8.
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Recall that, when p 6 | a, the Euler criterion asserts that(
a
p

)
= a

p−1
2 . (26.1)

Gauss’s Lemma and the Law of Quadratic Reciprocity gave us more efficient
means for computing Legendre symbols. However, there remains the difficulty
of computing the value of (26.1) when p is a large prime and a has large compos-
ite value mod p. In this case we cannot apply quadratic reciprocity until a has
been factored, and this may not be feasible for large values of a. It was Jacobi’s
insight to extend the notion of Legendre symbol to a larger context that makes
these computations possible without requiring factorizations.1

We will see in Section 31 that Jacobi’s generalization of the Legendre symbol
also points to a practical and efficient algorithm for primality testing.

§

To begin, suppose that p is an odd prime and that a ∈ Z. Extend the definition
of Legendre symbol for the pair (a, p) as follows

(
a
p

)
=


0 if p|a,
1 if a is a quadratic residue mod p,
−1 otherwise.

Note that we have added the case where p|a, in which case the Legendre symbol
is set equal to zero.

Suppose instead that a ∈ Z and n > 1 is an odd integer, including the case where
n is composite. By the unique factorization theorem, n has a unique expression
as a product of powers of distinct odd primes:

n = pe1
1 pe2

2 · · · p
ek
k .

Define the Jacobi symbol for the pair (a, n) by(
a
n

)
=

(
a
p1

)e1
(

a
p2

)e2

· · ·
(

a
pk

)ek

(26.2)

where each factor in the product above is a Legendre symbol. Observe that
Jacobi symbols can take values 0, 1 or −1.

1Carl Gustav Jacob Jacobi (1804–1851).

140



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

26 Jacobi symbols 141

Note that if n is an odd prime, then the Jacobi symbol is simply the usual Leg-
endre symbol.

Euler’s criterion does not typically tell us the value of the Jacobi symbol directly.
However, if gcd(a, n) = 1, then Euler’s criterion can be applied to each prime
pi in the factorization of n to compute each factor in the expression (26.2). The
downside of this approach is that one needs to know the factorization of the
number n.

Fortunately, there are easier ways to compute Jacobi symbols. The following el-
ementary properties follow easily from similar properties of Legendre symbols.

Proposition 26.1. Let a, b ∈ Z, and let m, n > 1 be odd integers.

(i) If a ≡ b mod n then
( a

n

)
=
( b

n

)
.

(ii)
( ab

n

)
=
( a

n

)( b
n

)
.

(iii)
( a

mn

)
=
( a

m

)( a
n

)
.

(iv) gcd(a, n) 6= 1 if and only if
( a

n

)
= 0.

(v) If gcd(a, n) = 1 then
( a

n2

)
= 1.

(vi) If gcd(a, n) = 1 then
( a2

n

)
= 1.

The proof is left as an exercise (see Exercise 26.3).

The converse of the property (vi) is false in general: It is possible that
( a

n

)
= 1

even though a is not a quadratic residue mod n. For example, 2 is not a quadratic
residue mod 15, even though(

2
15

)
=

(
2
3

)(
2
5

)
= (−1)(−1) = 1.

Moreover, notice that

2
15−1

2 ≡ 27 ≡ 128 ≡ 8 mod 15,

so that

2
15−1

2 6=
(

2
15

)
.

In other words, a naive generalization of the Euler criterion may fail to hold
when n is composite (see also Exercise 22.6).

§

The next proposition shows that two important formulas for Legendre symbols
generalize without change to Jacobi symbols.
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Proposition 26.2. Let n > 1 be an odd integer. Then(
−1
n

)
=

{
1 if n ≡ 1 mod 4
−1 if n ≡ 3 mod 4

and
(

2
n

)
= (−1)

n2−1
8 .

Recall that (−1)
n2−1

8 = 1 iff n ≡ ±1 mod 8. It follows that(
2
n

)
=

{
1 if n ≡ ±1 mod 8.
−1 if n ≡ ±3 mod 8.

Proof. Another way of stating the first part is to assert that, if n is odd, then(−1
n

)
≡ n mod 4. This follows from the Euler criterion when n is prime. It

then follows for more general n by the denominator product rule (iii) of Propo-
sition 26.1.

To prove the second statement, observe that

(nm)2 − 1 = n2m2 − n2 + n2 − 1 = n2(m2 − 1) + (n2 − 1). (26.3)

Since n is odd, we have (−1)n2
= −1, so that

(−1)
(nm)2−1

8 = (−1)
n2(m2−1)+(n2−1)

8

=
(
(−1)n2

)m2−1
8

(−1)
n2−1

8

= (−1)
m2−1

8 (−1)
n2−1

8 .

Suppose that (
2
s

)
6= (−1)

s2−1
8 (26.4)

for some odd integer s > 1, and let s be the smallest for which this occurs. We
know that the proposition holds for primes, so s must be composite; that is,
s = nm, where n, m > 1 are odd and strictly smaller than s. By the minimality
of s, the proposition holds for n and m, so that(

2
s

)
=

(
2

nm

)
=

(
2
n

)(
2
m

)
= (−1)

n2−1
8 (−1)

m2−1
8 = (−1)

(nm)2−1
8 = (−1)

s2−1
8 ,

contradicting (26.4). The proposition now follows. q

The Law of Quadratic Reciprocity also generalizes to Jacobi symbols.
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Theorem 26.3. If m, n > 1 are odd integers, then

(m
n

)
=
( n

m

)
(−1)

m−1
2

n−1
2 =

{ ( n
m

)
if n ≡ 1 mod 4 or if m ≡ 1 mod 4

−
( n

m

)
if n ≡ m ≡ 3 mod 4

Note that this statement of quadratic reciprocity is presented a little differently
from the original version for primes, in order to account for the case in which
either Jacobi symbol is zero.

Proof. If gcd(m, n) 6= 1 then both sides of the identity are zero. The more in-
teresting case, in which gcd(m, n) = 1, is left as an exercise (see Exercise 26.5).
q

Theorem 26.3 and the propositions that precede it enable us to compute the
Jacobi symbol

( a
n

)
without knowing the prime factorizations of a or n. In par-

ticular, it can be computationally feasible to compute
( a

n

)
, even if the numbers a

and n are too large for us to factor in a reasonable amount of time.

§

Exercise 26.1. Evaluate the following Jacobi symbols using Propositions 26.1 and 26.2, but with-
out recourse to Theorem 26.3:

(a)
(

12
45

)
(b)
(

13
45

)
(c)
(

7
27

)
(d)
(

7
363

)
(e)
(
−7
363

)
(f)
(

363
7

)
(g)
(

70
125

)
(h)
(

36
77

)
(i)
(
−77
15

)

Exercise 26.2. Evaluate the following Jacobi symbols using the generalized quadratic reciprocity
(Theorem 26.3) whenever it applies:

(a)
(

7
363

)
(b)
(

700
363

) (c)
(

777
363

)
(d)
(

7777
363

) (e)
(

1234
4321

)
(f)
(

20002
10003

)

Exercise 26.3. Prove Proposition 26.1.

Exercise 26.4. Show that if
( a

n
)
= −1 then a is a quadratic non-residue mod n.

Exercise 26.5. Finish the proof of Theorem 26.3.
Here are some hints: Use the fact that quadratic reciprocity holds for odd primes. First, suppose
that m is an odd prime and let n be the smallest odd composite number for which the theorem
fails. Use an identity similar to (26.3) from the proof of Proposition 26.2 to derive a contradiction.
This verifies the theorem when m is an odd prime and n is any odd number. Now repeat the
process with a similar argument focusing on the general case for m.
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Exercise 26.6. Evaluate the Jacobi symbol(
17292864462617
17292864462677

)
without the help of an electronic device.

Exercise 26.7. Suppose that n > 1 is an even integer. Determine the exact conditions for when
the Jacobi symbol (

n!
n + 1

)
is equal to 0, 1, or −1.
Hint: You might find Wilson’s theorem helpful.

Exercise 26.8. If

a = 1111111111111111111 and b = 11111111111111111111111

(consisting respectively of 19 and 23 catenated decimal ’1’s), what is
( a

b

)
?

Hint: While this is the same as Exercise 23.11, observe that the Jacobi symbol is easier to evaluate
and that we no longer need to know in advance that a and b are prime numbers.

§

Evidently if n = k2 for some integer k then n is a quadratic residue in every modulus m (such
that gcd(n, m) = 1). The next exercise deals with the converse.

Exercise 26.9. Show that, if a positive integer n ∈ Z is a quadratic residue modulo every prime p
(such that p 6 | m), then n is the square of an integer.
Here are some hints.
(a) Suppose n is not the square of an integer. Let n be minimal in this regard, and show that n is
square-free, so that n = p1 p2 · · · ps for some primes p1 < p2 < · · · < ps.
(b) Suppose that n is odd. Let c be a quadratic non-residue mod p1. Show that there exists a
positive integer m such that

m ≡ 1 mod 4

m ≡ c mod p1

m ≡ 1 mod pi for i > 1.

Then show that
( n

m
)
= −1.

(c) Suppose that n is even, so that n = 2p1 p2 · · · ps. Show that there exists a positive integer m
such that

m ≡ 5 mod 8

m ≡ 1 mod pi for each i.

Then show that
( n

m
)
= −1.

(d) Use parts (a)-(c) to show that n cannot be a quadratic residue in every modulus.

Exercise 26.10. Let p be an odd prime. Prove that there exists an odd prime q such that q is a
quadratic non-residue mod p.
Hint: See Exercise 22.10.

Exercise 26.11. Let p be an odd prime. Prove that there exists an odd prime q such that q is a
quadratic residue mod p.
Hint: Use Exercise 20.17.
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Suppose that p is an odd prime and that a is a quadratic residue mod p. How
do we find an integer b such that b2 ≡ a mod p?

This is very easy when p ≡ 3 mod 4. Since a is a quadratic residue mod p,
Euler’s criterion tells us that

a
p−1

2 ≡ 1 mod p,

so that
a

p+1
2 ≡ a mod p.

Since p ≡ 3 mod 4, the expression p+1
4 is an integer. Set b ≡ a

p+1
4 . We then have

b2 ≡ a
p+1

2 ≡ a mod p. (27.1)

§

On the other hand, if p ≡ 1 mod 4, then either p ≡ 1 mod 8 or p ≡ 5 mod 8.

Suppose p ≡ 5 mod 8. Let c any quadratic non-residue1 mod p, so that

c
p−1

2 ≡ −1 mod p.

If a is a quadratic residue, then

a
p−1

2 ≡ 1 mod p,

so that
a

p−1
4 ≡ ±1 mod p.

Since 8|(p + 3), we set b ≡ a
p+3

8 . We then have

b2 ≡ a
p+3

4 ≡ a
p−1

4 · a ≡ ±a.

If b2 ≡ a we are done. If b2 ≡ −a, then

(bc
p−1

4 )2 ≡ −ac
p−1

2 ≡ a.

§

1For example, since p ≡ 5 mod 8, we can set c = 2.

145
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If p ≡ 1 mod 8, then either p ≡ 1 mod 16 or p ≡ 9 mod 16.

When p ≡ 9 mod 16 a slightly more complicated version of the previous argu-
ment yields a square root for the quadratic residue a.

When p ≡ 1 mod 16 one turns to the state of affairs mod 32, and so on. The
result of this cascade of cases is the Tonelli-Shanks algorithm,2 which will produce
a square root for any quadratic residue modulo an odd prime p. Because this
algorithm operates via a sequence of cases of indeterminate (but always finite)
length, there is no resulting closed formula for the square root. It is an algorithm
more suited to computer programming than to mathematical analysis. Instead,
we will consider an alternative approach.

§

Suppose once again that we seek the square roots of a quadratic residue a mod
p, where p ≡ 1 mod 4.

Cipolla’s algorithm offers an answer in two steps. To begin, find a value t such
that t2 − a is a quadratic non-residue. In other words, we need to find t so that

(
t2 − a

p

)
= −1. (27.2)

The value of t is found by trial and error. It can be shown that there is approxi-
mately a 50% chance of finding an acceptable value of t by guessing at random,
so one would expect to find an acceptable value for t after a few guesses.3 (See
also Exercise 27.17.)

Having verified (27.2), introduce a symbol α into Zp arithmetic with the rule
that α2 ≡ t2− a mod p. Note that α /∈ Zp, since t2− a is not a quadratic residue.
Instead we have introduced a new element, in analogy to the imaginary i =

√
−1

used in the theory of complex numbers. Following this analogy, we continue
doing mod p arithmetic in the larger ring

Zp[α] = {m + nα | m, n ∈ Zp},

always keeping in mind the rule that α2 ≡ t2 − a mod p.

2Also known as the RESSOL algorithm. For a more detailed treatment, see [6, p. 32] or [20, p.
110].

3Although this might seem obvious at first glance, since half the units are quadratic non-
residues, the reasons behind this are actually more subtle, since we are translating a only by
quadratic residues t2.
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Example: Computing in Zp[α] we have

1 + α

3− α
≡ 1 + α

3− α
· 3 + α

3 + α
≡ (1 + α)(3 + α)

9− α2

≡ 3 + 4α + α2

9− α2

≡ 3 + 4α + (t2 − a)
9− (t2 − a)

≡ [3 + (t2 − a)][9− (t2 − a)]−1 + 4[9− (t2 − a)]−1α,

where [3 + (t2 − a)][9 − (t2 − a)]−1 and 4[9 − (t2 − a)]−1 are integers mod p.
Note that the inverse of 9− (t2 − a) exists mod p because t2 − a is a quadratic
non-residue, so that t2 − a 6≡ 9.

The following proposition is helpful when doing arithmetic in Zp[α].

Proposition 27.1. Suppose that m, n ∈ Z.

(i) m + nα ≡ 0 in Zp[α] iff m ≡ n ≡ 0 mod p.

(ii) (m + nα)(r + sα) ≡ 0 in Zp[α]
iff either m ≡ n ≡ 0 mod p, or r ≡ s ≡ 0 mod p, or both.

Proof. To prove (i), suppose that m + nα ≡ 0 in Zp[α]. If n 6≡ 0 mod p, then n−1

exists mod p, so that α ≡ −n−1m ∈ Zp. This contradicts the assumption that
α /∈ Zp (because t2 − a is a quadratic non-residue). It follows that n ≡ 0 mod p,
so that m ≡ 0 as well.

Conversely, if n ≡ m ≡ 0 mod p, then m + nα ≡ 0 + 0α ≡ 0 in Zp[α].

The proof of part (ii) is left as an exercise (see Exercise 27.1). q

We are now ready to find the square root of a in Zp. To do this, we set

b = (t + α)
p+1

2 , (27.3)

and simplify the resulting algebra.

Theorem 27.2. After simplification of the expression (27.3) we have

• b ∈ Zp, and

• b2 ≡ a mod p.
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Proof. We are given that α2 ≡ t2− a in Zp. Since t2− a is a quadratic non-residue
mod p, the Euler criterion implies that

αp−1 ≡ (t2 − a)
p−1

2 ≡ −1 mod p.

It follows that αp ≡ −α.

Observe that

(t + α)p =
p

∑
k=0

(
p
k

)
tp−kαk ≡ tp + αp,

since (p
k) ≡ 0 mod p for 1 ≤ k ≤ p− 1 (see Exercise 10.24). Moreover, Fermat’s

Theorem implies that tp ≡ t, since t is a unit in Zp. Since we found that αp ≡ −α,
it now follows that

(t + α)p ≡ tp + αp ≡ t− α.

We now have

(t + α)p+1 ≡ (t + α)p(t + α) ≡ (t− α)(t + α) ≡ t2 − α2 ≡ a,

It follows from the definition (27.3) that

b2 ≡ (t + α)p+1 ≡ a,

so that b is a square root of a in the ring Zp[α]. It remains to show that b is
actually a value in Zp.

We were given that a is a quadratic residue mod p. It follows that a ≡ r2 for
some r ∈ Zp. The previous argument implies that b2 ≡ r2 in Zp[α], so that

(b− r)(b + r) ≡ b2 − r2 ≡ 0

in Zp[α]. It follows from Proposition 27.1 that either b ≡ r or b ≡ −r. In
particular, b ∈ Zp. q

Example: Let’s find
√

2 mod 17. Since 17 ≡ 1 mod 8, we know that
( 2

17

)
= 1, so

that
√

2 exists in Z17.

Setting t = 3 we have t2 − 2 = 7. Since(
7
17

)
=

(
17
7

)
=

(
3
7

)
= −1,

this is an acceptable choice for t. It follows from (27.3) that
√

2 = (3 + α)9,

where α2 ≡ 7. Of course, this still has to be simplified, since we want an answer
in Z17.
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To this end, observe that

(3 + α)2 ≡ 9 + 6α + α2 ≡ 9 + 6α + 7 ≡ 16 + 6α ≡ 6α− 1.

After repeated squaring, similar computations yield

(3 + α)4 ≡ 5α− 2 and (3 + α)8 ≡ 9− 3α.

Hence,
(3 + α)9 ≡ (9− 3α)(3 + α) ≡ 6,

so that
√

2 ≡ ±6 mod 17.

Considering how small the modulus was in this example, it would have made
more sense to make (at most) 8 consecutive guesses to find the answer. Cipolla’s
algorithm, while elegant in theory, can be cumbersome in practice.

§

Exercise 27.1. Prove the second assertion of Proposition 27.1; that is,

(m + nα)(r + sα) ≡ 0

in Zp[α] iff m ≡ n ≡ 0 mod p or r ≡ s ≡ 0 mod p (or both).
Hint: Part (i) of Proposition 27.1 is helpful.

Exercise 27.2. Perform the following computations in Zp[α]. Use the notation of this section,
where α2 ≡ t2 − a mod p. In every case, your final answer should be of the form m + nα, where
m, n ∈ Zp.

(a) α3

(b) α−1
(c) (α− a)p

(d) (t + α)2

Exercise 27.3. Perform the following computations in Z97[α], where α2 ≡ 5. In every case, your
final answer should be of the form m + nα, where m, n ∈ Z97.

(a) (1 + α)(2 + α)

(b) α−1

(c) 10α
1+α

(d) (α + 100)98

(e) α2 + 1
α2

(f) α3 + 1
α3

Exercise 27.4. (a) When is αn an element of Zp?
(b) Find a formula for the values r, s ∈ Zp such that αn = r + sα.

Exercise 27.5. Let V = Zp ×Zp be the set of vectors (x, y) with coordinates x, y ∈ Zp. Define
addition of vectors in the usual way, and define multiplication by the rule

(x, y)(u, v) = (xu + yv(t2 − a), xv + yu),

where t and a are defined as in the description of Cipolla’s algorithm. Show that the function
f : V → Zp[α] defined by f (x, y) = x + yα is a one-to-one and onto function, such that

f (~v + ~w) = f (~v) + f (~w) and f (~v~w) = f (~v) f (~w),

for all ~v, ~w ∈ V.



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

150 27 Computing square roots mod p

Exercise 27.6. Let p be a positive integer prime.

(a) Suppose that p ≡ 5 mod 8. Prove that
√
−1 ≡ ±2

p−1
4 .

(b) Suppose that p ≡ 5 mod 12. Prove that
√
−1 ≡ ±3

p−1
4 .

Exercise 27.7. Let p be an odd prime integer, and let a be a quadratic non-residue mod p. Suppose
that someone mistakenly believed that a had a square root mod p, and proceeded to use Cipolla’s
algorithm to generate the number

b = (t + α)
p+1

2 ,

as directed by that algorithm. What happens? What does b look like? How is b2 related to a?

Exercise 27.8. Prove that x2 − α ≡ 0 has no solution x ∈ Zp[α].

Exercise 27.9. Let p be an odd prime integer of the form p = 4m + 1 for some integer m. Let a be
a quadratic residue mod p. Choose t so that t2 − a is a quadratic non-residue mod p, and let

b = (t + α)
p+1

2 ,

as directed by Cipolla’s algorithm, where α2 = t2 − a in Zp[α]. Prove that

b ≡
m

∑
s=0

(
2m + 1

2s

)
t2(m−s)+1(t2 − a)s mod p,

and that
m

∑
s=0

(
2m + 1
2s + 1

)
t2(m−s)(t2 − a)s ≡ 0 mod p.

Hint: Apply the binomial theorem to the identity b = (t + α)
p+1

2 , and recall what we proved about
the value of b in Theorem 27.2 above.

Exercise 27.10. Use the formula from Exercise 27.9 to verify our computation of
√

2 ∈ Z17 in the
example earlier.

Exercise 27.11. Use Cipolla’s algorithm to compute
√

10 mod 37.

Exercise 27.12. Recompute
√

10 mod 37 using the Tonelli-Shanks method. (See also Exercise 27.11.)

Exercise 27.13. Use the Tonelli-Shanks algorithm (outlined at the start of this section) to compute
the following:

(a)
√

20 mod 151

(b)
√

2 mod 71

(c)
√
−3 mod 103

(d)
√

6 mod 101

(e)
√

5 mod 61

(f)
√

2 mod 127

Exercise 27.14. With regard to part (f) of Exercise 27.13, find a much easier way to compute
√

2
mod 127, using the fact that 27 = 128.

Exercise 27.15. Use the results of Exercise 27.13(b) and the worked example in this section to
compute

√
2 mod 1207.

Hint: 1207 = (71)(17).

Exercise 27.16. Let m > 1 be an integer, possibly composite. Suppose that u is a unit mod m of
odd order b = ordm(u). Find a simple formula for the square root of u mod m in terms of u and b.
Hint: Look for an analogy with the Tonelli-Shanks algorithm in the special case of p ≡ 3 mod 4.
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Exercise 27.17. Here are some steps leading to a proof that a suitable value for t in Cipolla’s
algorithm always exists.

To begin, recall that half of the units mod p are quadratic non-residues. Let a ∈ Up be a quadratic
residue, and suppose that c is a quadratic non-residue mod p.

(a) Prove that the set {c + ka | k = 0, . . . , p− 1} exhausts all values mod p. In other words, prove
that

{c + ka mod p | k = 0, . . . , p− 1} = {0, . . . , p− 1}

(b) Prove that c + ka is a quadratic residue mod p for some value of k.

(c) Let k be the smallest non-negative integer such that c + ka is a quadratic residue mod p. Since
we chose c to be a quadratic non-residue, we know that k 6= 0. Prove that there exists t such that
t2 = c + ka mod p.

(d) Show that t2 − a is a quadratic non-residue mod p, as required for Cipolla’s algorithm.

Exercise 27.18. Let p be an odd prime such that p ≡ 2 mod 3. Combine Fermat’s Theorem with
the fact that gcd(3, p− 1) = 1 to find a formula for the cube root of any value mod p.

Exercise 27.19. Let p be an odd prime such that p ≡ 7 mod 9, and suppose that u is a cubic
residue mod p. Derive a simple formula for the cube root of u mod p in analogy to the square
root formula (27.1).
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Possibly the most celebrated theorem of ancient mathematics is the Pythagorean
theorem relating the sides of a right triangle: If a triangle has edge lengths
a ≤ b ≤ c, where the two smaller edges meet at a right angle, then a2 + b2 = c2.
A proof of this theorem can be inferred from Figure 28.1.

c b

a

Figure 28.1: A “proof without words” of the Pythagorean theorem.

The Pythagoreans were especially interested in the cases where a, b, and c
are integers. A sequence of three non-negative integers (a, b, c) is called a
Pythagorean triple if a2 + b2 = c2. The reader can verify the following examples
of Pythagorean triples:

32 + 42 = 52 52 + 122 = 132 82 + 152 = 172

62 + 82 = 102 102 + 242 = 262 162 + 302 = 342

92 + 122 = 152 152 + 362 = 392 242 + 452 = 512

...
...

...

(28.1)

A Pythagorean triple is primitive if gcd(a, b) = 1. The triples in the top row
of (28.1) are all primitive, while each column consists of triples that are multiples
of the corresponding top row entry.

A simple way to generate Pythagorean triples arises from the algebraic identi-
ties:

(x + y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2.

152
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After subtracting these identities, we have (x + y)2 − (x− y)2 = 4xy, so that

(x− y)2 + 4xy = (x + y)2.

Setting x = X2 and y = Y2, we obtain Euclid’s formula:

(X2 −Y2)2 + (2XY)2 = (X2 + Y2)2. (28.2)

The top row entries of (28.1) are generated by setting (X, Y) equal to (1, 2), (2, 3)
and (1, 4), respectively. While Euclid’s formula (28.2) is not quite sufficient to
generate all Pythagorean triples, a small adjustment will do the trick.

Theorem 28.1. All Pythagorean triples have the form

Z2(X2 −Y2)2 + (2XYZ)2 = Z2(X2 + Y2)2, (28.3)

where X, Y, Z ∈ Z.

Proof. Multiplying both sides of (28.2) by the integer Z2 verifies that (28.3) is a
valid algebraic identity, yielding a Pythagorean triple for all integer values of X,
Y, and Z.

To prove that every Pythagorean triple has the form (28.3), suppose first that
(a, b, c) is a primitive Pythagorean triple.

Since gcd(a, b) = 1, the integers a and b are not both even. If a and b are both
odd, then

c2 ≡ a2 + b2 ≡ 1 + 1 ≡ 2 mod 4,

which is impossible, since every integer square is either 0 or 1 mod 4. It follows
that a and b have opposite parity, so that c is odd.

Suppose, without loss of generality, that a is odd and b is even. We now have

b2 = c2 − a2 = (c− a)(c + a). (28.4)

Since a and c are odd, both c− a and c + a are even, so that

c + a = 2s
c− a = 2t (28.5)

for some integers s and t.

If k|s and k|t, then k|(c + a) and k|(c− a), so that k|[(c + a) + (c− a)] = 2c and
k|[(c + a) − (c − a)] = 2a. Since gcd(2a, 2c) = 2 gcd(a, c) = 2, it follows that
k|2. But if k = 2 then the identities (28.5) imply that c + a ≡ c− a ≡ 0 mod 4,
so that 2c ≡ 0 mod 4. Since c is odd, this is impossible. Therefore, k 6= 2, and
gcd(s, t) = 1.

On combining (28.4) and (28.5) we have

b2 = (c− a)(c + a) = 4st.
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Since gcd(s, t) = 1, it follows from the Fundamental Theorem 9.3 that s and t
are both integer squares. In other words,

s = X2 and t = Y2

for some integers X and Y. We now have

a = s− t = X2 −Y2

c = s + t = X2 + Y2

while b2 = 4st = (2XY)2, so that (a, b, c) conforms to (28.2).

More generally, if (a, b, c) is a Pythagorean triple with common factor Z, then

(a, b, c) = (Za′, Zb′, Zc′) = Z(a′, b′, c′),

where (a′, b′, c′) is primitive, so that

(a, b, c) = Z(X2 −Y2, 2XY, X2 + Y2) = (Z(X2 −Y2), 2XYZ, Z(X2 + Y2)),

for some integers X and Y. q

§

Euclid’s formula (28.3) for Pythagorean triples is described in the Arithmetica,
an ancient Greek book of mathematics by Diophantus. Inspired by this presen-
tation, Fermat was led to consider the more general equation

an + bn = cn, (28.6)

for integers n > 2. He conjectured that, if n > 2, the equation (28.6) never holds
for integers a, b, c > 0. Fermat famously wrote in the margin of his copy of
Arithmetica that he had found a demonstrationem mirabilem sane (truly wonderful
proof) of this conjecture, but that the margin was too small for him to explain
his proof in detail.

While Fermat later published a proof that a4 + b4 = c4 has no positive integer
solutions, the details of his demonstrationem mirabilem were never revealed.1 As
a result, his more general conjecture, now known as Fermat’s Last Theorem, re-
mained open for over 400 years. During the centuries that followed many math-
ematicians verified Fermat’s conjecture for various specific values of n, without

1That Fermat never published his demonstrationem mirabilem suggests that, as often happens,
an apparently great idea when first conceived turned out to contain limitations or errors when
reviewed later in careful detail. Take a lesson from this, and don’t be discouraged when it happens
to you.
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solving the problem completely. It was not until 1994 that Fermat’s Last Theo-
rem was finally proved by Andrew Wiles for all n > 2.

A history of this famous conjecture and its proof can be found in [33, p. 210].
For an elementary presentation of Fermat’s proof of the special case n = 4, see
[21, p.72-74]. The proof by Wiles that turned Fermat’s Last Theorem from a
conjecture into a genuine theorem appears in [36].

§

While the Pythagoreans were motivated by the geometry of right triangles, num-
ber theorists became interested in the more general question of when a positive
integer n can be expressed as a sum of two integer squares. For example, we
have:

02 + 12 = 1 22 + 22 = 8
12 + 12 = 2 02 + 32 = 9
02 + 22 = 4 12 + 32 = 10
22 + 12 = 5 22 + 32 = 13

and so on. Evidently the integers 3, 6, 7, 11, and 12 cannot be expressed as sums
of two integer squares.

Recall that if a ∈ Z, then a2 ≡ 0 or a2 ≡ 1 mod 4. It follows that if n = a2 + b2,
then

n ∈ {0, 1, 2} mod 4.

In particular, if n ≡ 3 mod 4, then n is a not a sum of two integer squares.
This explains some of the exceptions listed above. More generally, we have the
following.

Proposition 28.2. Suppose that p is a prime factor of n, that p ≡ 3 mod 4, and that p
divides n an odd number of times. Then n cannot be expressed as a sum of two integer
squares.

Proof. If the proposition is false, let n be the smallest counterexample, where
n = a2 + b2, for a, b,∈ Z.

Since p|n, we have a2 + b2 ≡ 0 mod p, so that

b2 ≡ −a2 mod p.

If p 6 | a, then a and b are both units mod p, and

(ba−1)2 ≡ −1 mod p,

so that −1 is a quadratic residue mod p. This contradicts Corollary 22.4, since
p ≡ 3 6≡ 1 mod 4.



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

156 28 Sums of squares

It follows that p|a and p|b, so that p2|n. Write

n = p2ñ a = pã b = pb̃.

Dividing by p2, we have
ñ2 = ã2 + b̃2,

where ñ < n. Since p divides n an odd number of times, p also divides ñ an
odd number of times. Since n is the smallest counterexample to the proposi-
tion, we have a contradiction. Therefore, there are no counterexamples, and the
proposition is true. q

§

Proposition 28.2 explains why 3, 6, 7, 11, 12, and 30003 are not sums of integer
squares. It turns out that the condition of Proposition 28.2 is the only obstruc-
tion. If n isn’t divisible an odd number of times by any prime of the form 4k + 3,
then n can indeed be expressed as a sum of squares. This remarkable fact, first
proved by Fermat, is summarized by the next theorem.

Theorem 28.3 (Sums of Squares). Let n ∈ N, and suppose that n = s2N, where
s, N ∈N and N is square-free. Then n can be expressed as a sum of two integer squares
iff every odd prime factor of N is congruent to 1 mod 4.

In other words, the converse of Proposition 28.2 is true: n is a sum of squares iff
every prime factor p ≡ 3 mod 4 divides n an even number of times.

A pair of lemmas will be helpful for the proof of Theorem 28.3. The first lemma,
an algebraic identity, will allow us to address the situation for composite num-
bers.

Lemma 28.4. For all a, b, c, d, we have

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2.

Lemma 28.4 is easily verified by simplifying the algebra.2 This lemma implies
that if n is a sum of squares and m is a sum of squares then nm is also a sum of
squares.

The most challenging step in a proof of Theorem 28.3 is to show that every prime
p ≡ 1 mod 4 is a sum of squares. The following lemma takes care of this.

2Simplifying the algebra verifies the lemma, but is not particularly edifying. Readers familiar
with complex numbers should note that if z = a + bi and w = c + di, then Lemma 28.4 is
equivalent to the complex conjugation identity: zzww = zwzw.
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Lemma 28.5. If p ∈N is prime and p ≡ 1 mod 4, then there exist a, b ∈N such that
p = a2 + b2.

The following proof is due to Fermat.3

Proof. Suppose that p ≡ 1 mod 4 is a positive prime. By Proposition 22.4, the
integer −1 is a quadratic residue mod p. It follows that Y2 ≡ −1 mod p for
some integer u, so that

Y2 + 12 = kp

for some integer k.

More generally, let s be the smallest positive integer such that

a2 + b2 = sp (28.7)

for some a, b ∈ Z. Note that

a2 + b2 ≡ 0 mod p, (28.8)

so that either of a or b can be replaced with p− a or p− b without altering (28.8).
Since s is minimal, it now follows that 0 < a < p

2 and 0 < b < p
2 , so that

sp = a2 + b2 <
p2

2
.

Therefore, 0 < s < p
2 . Moreover, the minimality of s implies that gcd(a, s) =

gcd(b, s) = 1.

We will prove the Lemma by showing that s = 1.

Suppose that s > 1. In this case we can reduce the identity (28.7) mod s, so that
a2 + b2 ≡ 0 mod s. Reducing a and b mod s, there exist units c ≡ a and d ≡ b
mod s such that |c|, |d| < s

2 . It follows that

c2 + d2 ≡ a2 + b2 ≡ 0 mod s,

so that c2 + d2 = st for some integer t > 0. Moreover,

st = c2 + d2 <
s2

4
+

s2

4
=

s2

2
,

so that 0 < t < s
2 . In particular, note that t < s.

Applying Lemma 28.4, we obtain

s2 pt = (a2 + b2)(c2 + d2) = (ad− bc)2 + (ac + bd)2.

3The description of Fermat’s proof given here is essentially that given in Davenport’s beautiful
little book [8, p. 105-106].
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Since

ad− bc ≡ ab− ba ≡ 0 and ac + bd ≡ a2 + b2 ≡ 0 mod s,

it follows that ad − bc = As and ac + bd = Bs for some integers A and B.
Therefore,

s2 pt = (As)2 + (Bs)2,

so that A2 + B2 = pt. Since t < s, this violates the minimality of s.

It follows that s = 1, so that a2 + b2 = p. q

We are ready to prove the full characterization for sums of two integer squares.

Proof of Theorem 28.3. Let n ∈N, and suppose that n = s2N, where N is square-
free.

If N has a prime factor p ≡ 3 mod 4, then p divides n an odd number of times
(since every prime divides s2 an even number of times), so n cannot be expressed
as a sum of two integer squares, by Proposition 28.2.

Suppose instead that every prime factor p of N satisfies p 6≡ 3 mod 4. Note
that 2 = 12 + 12 is a sum of squares, while every prime p ≡ 1 mod 4 is a sum of
squares by Lemma 28.5. It then follows from Lemma 28.4 that any finite product
of these primes is also expressible as a sum of two integer squares. Therefore,
there exist integers a, b ∈ Z such that N = a2 + b2, so that

n = s2N = (sa)2 + (sb)2

is also expressible as a sum of two integer squares. q

§

Fermat’s theorem on sums of squares was later generalized. While some num-
bers (such as 7) cannot even be expressed as a sum of 3 integer squares, La-
grange proved that every positive integer can be expressed as a sum of 4 integer
squares. Several different proofs of Lagrange’s Four Square Theorem can be
found in [13]. An elementary proof is described in [8, p. 111-114].

An exact description of the 3 square case was later given by Legendre. It is
fairly elementary to show that a sum of 3 squares can never have the form
4s(8k + 7) (see Exercise 28.15). Legendre proved that all other positive integers
can indeed be expressed as sums of 3 squares. Unfortunately all known proofs
of Legendre’s theorem are rather difficult. A proof is given by Gauss in Section
291 of [11, p. 336-338]. For a modern proof, see [2].

§
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Exercise 28.1. Describe in detail the proof of the Pythagorean theorem implicit in Figure 28.1.

Exercise 28.2. Suppose that (a, b, c) is a primitive Pythagorean triple. Prove that:
(a) Exactly one of the integers a and b is divisible by 3.
(b) Exactly one of the integers a, b, or c is divisible by 5.

Exercise 28.3. Suppose that a, b, c ∈ Z and a2 + b2 = c2. Prove that at least one of the values a
and b is divisible by 4. Can you prove it without using Euclid’s formula?

Exercise 28.4. Suppose that a, b, c, d ∈ Z and a2 + b2 + c2 = d2.
(a) Prove that, if d is even, then all of the values a, b, c are even.
(b) Prove that, if d is odd, then exactly one of the values a, b, c is odd.

Exercise 28.5. Suppose that a, b, c, d, e ∈ Z and a2 + b2 + c2 + d2 = e2.
(a) Prove that, if e is odd, then exactly one of the values a, b, c, d is odd.
(b) Prove that, if e is even, all of the values a, b, c, d have the same parity.

Exercise 28.6. Prove that the Pythagorean triple given by Euclid’s formula (28.2) is primitive iff
the integers X and Y are relatively prime and of opposite parity.

Exercise 28.7. Prove that if k is an odd integer, then there is a Pythagorean triple of the form
(k, b, c).

Exercise 28.8. Prove Lemma 28.4.

Exercise 28.9. Which of the following integers can be expressed as sums of two integer squares?
(Answer Yes or No for each value.)

(a) 15
(b) 18
(c) 38

(d) 98
(e) 125
(f) 686

(g) 1100
(h) 12100
(i) 10!

Exercise 28.10. Suppose that n = a2 + b2, where a, b ∈ Z. Find a formula for integers A and B
such that 2n = A2 + B2.

Exercise 28.11. (a) Express 10 as a sum of squares.
(b) Use part (a) and Lemma 28.4 to express 10000 as a sum of squares.

Exercise 28.12. Differences of squares are much easier to work with than sums of squares.
(a) Prove that every odd integer can be expressed a difference of two integer squares.
(b) Prove that an even integer m is a difference of two integer squares iff 4|m.
Hint: What happens when you simplify (a + 1)2 − a2? What about (a + 2)2 − a2?

Exercise 28.13. Let p be an odd prime. Prove that:
(a) If p = a2 + 2b2 for some integers a and b, then p ≡ 1 or p ≡ 3 mod 8.
(b) If p > 3 and p = a2 + 3b2 for some integers a and b, then p ≡ 1 mod 3.
Note: Fermat proved that the converses of (a) and (b) are also true.

Exercise 28.14. (a) Show that 65 can be written as a sum of squares in two different ways.
(b) Use part (a) to show that there are two non-congruent right triangles with side lengths a, b,
and 65, where a < b < 65.

Exercise 28.15. Suppose that n = 4s(8k + 7), where k and s are non-negative integers. Prove that
n cannot be expressed as a sum of 3 integer squares.
Hint: First, consider the case where s = 0 and n is odd. Then show that if n = a2 + b2 + c2 is a
sum of 3 squares and if n is even, then so are a, b, and c. What happens next?
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Think of a list of 20 random digits between 0 and 9. Quickly now! Write them
down. Now go make a cup of coffee, then come back and look again at your
numbers. Do they really look random to you? Or was there an unintended
pattern to your choices? A careful answer to this question might involve fancy
statistical analysis, taking us outside the scope of number theory. But it is clear
that sequences like

0, 4, 7, 0, 4, 7, 0, 4, 7, 0, 4, 7, . . .
1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, . . .
0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, . . .

do not look random; indeed you can certainly guess what is likely to happen
after the ‘. . .’ in each case. On the other hand, the pattern of the sequence

3, 2, 7, 5, 3, 0, 1, 8, 1, 9, 8, 2, 6, . . .

is harder to discern.1

While true randomness can only be (arguably) obtained from physical phenom-
ena (such as coin flipping, dice rolls, radioactive emissions, Brownian motion of
particles, ambient noise), it is often sufficient in applications to use pseudorandom
numbers; that is, sequences of numbers that do have a predictable pattern, but
appear random from the perspective of simple statistical tests. The advantage to
pseudorandom numbers is that they are easy to generate in large quantities and
at high speed on a computer. The disadvantage is that the underlying pattern
(even if unknown) may undermine the application of those numbers, whether
they are used to test scientific models (Monte-Carlo methods) or to provide
cryptographic security.

A pseudorandom number generator (or PRNG) is based on the following principle:
Beginning with a seed number s0, an iterative procedure then transforms the
seed s0 into a new number s1. The value s1 is now the new seed, returned to
the same procedure to produce s2 and so on. The iterative procedure typically
involves a simple algebraic expression, computed in a certain fixed modulus.
The pseudorandom sequence s0, s1, s2, . . . is then usually modified in some way
to suit its application: for example, only the last digit (or bit) of each number
si might be used. If the numbers si are expressed in binary, the even parity

1Least significant decimal digit (i.e., the last digit) of the iterated sequence xn+1 = 7xn + 1
mod 23 seeded with the number x0 = 3.

160
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29 Pseudorandom numbers 161

bit of each si may be taken.2 Bit sampling of a pseudorandom stream offers a
simulation of a sequence of coin flips, which can then be easily manipulated to
form random integers in any finite range.

In the discussion that follows we will examine some famous methods of gen-
erating pseudorandom numbers and examine briefly the utility and security of
each method.

Our first example is due to John von Neumann,3 who (in the era before mod-
ern computing) would generate pseudo-random numbers using the following
‘middle square’ method: Start with a (random?) initial 4-digit number s0 as the
seed.4 To produce a new number in the sequence, square the current number to
produce a string of 8 digits (padding to the left with zeroes if necessary). Then
pick out the middle 4 digits.

For example, starting with s0 = 2013, we obtain the sequence

2013, 4226, 8590, 7881, 1101, 2122, 5028, 2807, 8792, 2992, 9520, 6304, . . .

which doesn’t look too bad at first glance. On the other hand, starting with
s0 = 1969, we obtain the less appealing sequence

1969, 8769, 8953, 1562, 4398, 3424, 7237, 3741, 9950, 25, 6, 0, 0, 0, . . .

revealing immediately a serious defect of this PRNG: If a number less than 10
ever appears, the sequence will consist of only zeroes after that.

The next proposition illustrates a defect of most PRNGs.

Proposition 29.1. Regardless of the seed, the middle square algorithm produces a peri-
odic sequence. That is, there exist k, M such that am+k = am for all m > M.

The proof is left as an exercise (see Exercise 29.4).

§

While the middle square method can be tweaked in various ways to avoid some
of its substantial defects, we turn instead to a more popular method, the Linear
Congruential Generator.

The idea is to use a simple arithmetic iteration to quickly generate a sequence of
numbers, and to perform this arithmetic in a modulus that prevents the numbers

2Recall from Section 13 that the even parity bit of a positive integer n is obtained by summing
the bits of n (counting the 1’s that appear in the binary expression of n) and returning the value
of this sum modulo 2.

3John von Neumann (1903–1957) was a Hungarian-American mathematician and physicist,
and a founder of modern computer science.

4Do you see something circular about this? How do we choose a random seed? This chicken-
and-egg paradox is an issue with every pseudorandom number generator and is part of the
‘pseudo’ in pseudorandomness.
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from becoming too large, while also, one hopes, disguising any pattern that the
numbers form. Sampling only a few bits of each output number will enhance
the “pseudorandom” effect.

For the Linear Congruential Generator (LCG) we use the simplest possible al-
gebraic iteration, a linear function. Choose constants a (the multiplier), b (the
increment), m (the modulus), and x0 (the seed), so that gcd(a, m) = 1. The
elements of the pseudorandom sequence are given by

xn+1 ≡ axn + b mod m for n ≥ 0. (29.1)

If b = 0, the LCG is said to be purely multiplicative.

An LCG is necessarily periodic, with period at most m. For computational
convenience, the value of m in most implementations is m = 232 or m = 264.
These moduli are typically used because computers store numbers in binary, at
which point a computation mod 232 (resp. 264) is simply a truncation to the last
32 (resp. 64) bits.

Remark: If gcd(a − 1, m) = 1, then one should choose a seed x0 such that
gcd(x0 − b(1− a)−1, m) = 1. To understand why, see Exercise 29.12.

Example: Let x0 = 38 and xn+1 = 4xn + 7 mod 81.

This results in the mod 81 sequence

36, 70, 44, 21, 10, 47, 33, 58, 77, 72, 52, 53, 57, 73, 56, 69, 40, . . .

having least significant bits5

0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, . . .

and even parity bits

0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, . . .

Example: Let x0 = 23 and xn+1 = 11xn + 4 mod 100. This results in the mod 100
sequence

23, 57, 31, 45, 99, 93, 27, 1, 15, 69, 63, 97, 71, 85, 39, 33, 67, . . .

having least significant bits

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . (not very helpful!)

and even parity bits

0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, . . .
5That is, the last digit of each number when expressed in binary.
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While the even parity bit sequence looks better, the fact that this example only
generates odd numbers is a serious flaw, since at most half of the values mod 100
can ever appear. Measures can be taken to avoid losing so much of the modulus
in this way.

Different choices of a, b and m produce different quality generators. For exam-
ple, if a positive integer k divides all three of the constants a, b, m, it will divide
every value xn for n ≥ 1. Moreover, if b and m are both even, then parity of
xn is constant for n ≥ 1. For these and other reasons, one should be sure that
gcd(a, m) = 1 and gcd(b, m) = 1.

Following the notation of (29.1), conditions for maximal period length are given
by the following theorem.

Theorem 29.2 (Hull-Dobell). The period of an LCG is equal to its modulus m if and
only if the following conditions hold:

• gcd(b, m) = 1.

• a ≡ 1 mod p for every prime p such that p|m.

• a ≡ 1 mod 4 if 4|m.

The proof of this theorem lies beyond the scope of these notes.6 Note that
the first example above satisfies the optimality conditions of the Hull-Dobell
theorem, whereas the second example does not.

Example: Setting a = 45, b = 229, m = 128, with seed s = 28 yields the mod 128
sequence

81 34 95 24 29 126 11 84 41 26 119 80 117 118 35 12 1 18 15 8 77 110

59 68 89 10 39 64 37 102 83 124 49 2 63 120 125 94 107 52 9 122 87 48

85 86 3 108 97 114 111 104 45 78 27 36 57 106 7 32 5 70 51 92 17 98

31 88 93 62 75 20 105 90 55 16 53 54 99 76 65 82 79 72 13 46 123 4 25

74 103 0 101 38 19 60 113 66 127 56 61 30 43 116 73 58 23 112 21 22

67 44 33 50 47 40 109 14 91 100 121 42 71 96 69 6 115 28 81 . . .

repeating for the first time at the 129th step. While the least significant bit-
stream of this sequence is the very uninteresting 1010101010 . . ., since the num-
bers above alternate even by odd, the resulting even parity bitstream is

1000001111001110100101100001100111000111011000001001000000110100011111

00001100010110100111100110001110001001111101101111110010111 . . .

§

6See, for example, [16, p. 17]. See also Exercises 29.9, 29.10, and 29.11 for some hints on how
to prove parts of Theorem 29.2.
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A special case of LCG, the Lehmer generator, uses b = 0. In this case one should
choose m = pk for some prime number p, and choose a to be a primitive root
(or element of high order) mod m, in order to have a large period. It is also vital
that p 6 | x0 (the reader should think about why this is important).

Example: Let a = 47, b = 0, m = 81, and x0 = 28. This results in the mod 81
sequence

20 49 35 25 41 64 11 31 80 34 59 19 2 13 44 43 77 55 74 76

8 52 14 10 65 58 53 61 32 46 56 40 17 70 50 1 47 22 62 79

68 37 38 4 26 7 5 73 29 67 71 16 23 28 20 . . .

repeating for the first time at the 55th step, because φ(81) = 54 and 47 is prim-
itive mod 81. Replacing 47 with a non-primitive multiplier would shorten the
period of the resulting sequence. The sequence above results in a least signifi-
cant bitstream of

011110110011010111000000101100001001100101000111111010 . . .

and an even parity bitstream of

011111110011111001111110000110100111111101111101010101 . . .

§

The Blum-Blum-Shub (BBS) algorithm can be used to generate a cryptographically
secure stream of pseudorandom bits [5] (also [34, p. 336]). The idea is to produce
a stream of pseudorandom bits using a private key, so that an eavesdropper that
intercepts any number of bits cannot use that data to predict the next bit (or
discern the overall pattern in the sequence). Since LCG’s are highly insecure in
this regard, alternative methods are needed for secure pseudorandomness.

To implement Blum-Blum-Shub, choose a modulus m = pq, where p and q are
two large distinct primes such that p ≡ q ≡ 3 mod 4. Then choose a seed x0 that
is relatively prime to m. The numbers p, q, and m remain private and are not
shared.

The elements of the pseudorandom sequence are now given by

xn+1 ≡ x2
n mod m for n ≥ 0.

The actual output of the algorithm is not the numbers xn, but the sequence of
even parity bits of these numbers (or, alternatively, the sequence of bits given by
xn mod 2).

The condition that p ≡ q ≡ 3 mod 4 helps to guarantee a longer period. To this
end, one should also choose p and q so that gcd(φ(p− 1), φ(q− 1)) is a small
integer relative to m.
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§

If you’re interested in pseudorandom numbers be sure to look up the Mersenne
twister. This PRNG is increasingly common in modern software applications,
being more effectively pseudorandom than LCGs (and their relatives), while still
computationally feasible. Unfortunately the algorithm for the Mersenne twister
is outside the scope of these notes, but there are many sources and discussions
available on the internet.

§

Exercise 29.1. Show that, if a number less than 100 ever appears in the middle square algorithm,
then future numbers in the sequence will also be less than 100, and reduce to a sequence of zeroes
shortly thereafter.

Exercise 29.2. Show that, if a number divisible by 100 ever appears in the middle square algo-
rithm, then future numbers in the sequence will also be divisible by 100.

Exercise 29.3. The next few questions involve the middle square algorithm.
(a) Show that, if a number of the form ‘a100’ ever appears in the middle square algorithm, where a
is a decimal digit, then future numbers in the sequence will form a periodic pattern of 4 repeating
numbers.
(b) Show that, if a number of the form ‘a500’ ever appears, where a is a decimal digit, then future
numbers in the sequence become constant.
(c) Show that, if a number of the form ‘a600’ ever appears, where a is a decimal digit, then future
numbers in the sequence have the same form.
(d) Show that, if a number of the form ‘ab00’ ever appears, where a is a decimal digit and b is an
even digit, then future numbers in the sequence eventually have the same form as in part (c).
(e) Show that, if a number of the form ‘ab00’ ever appears, where a is a decimal digit and b is odd
digit, then future numbers in the sequence eventually have the same form as in part (a).

Exercise 29.4. Prove Proposition 29.1.

Exercise 29.5. Consider the LCG defined by xn ≡ 6xn−1 + 9 mod 25, where x0 = 7.
(a) What is x5?
(b) What is the length of the period of this LCG?

Exercise 29.6. Consider the LCG defined by xn ≡ 5xn−1 + 3 mod 8, where x0 = 4.
(a) What is the length of the period of this LCG?
(b) What is the least significant bit sequence generated by this LCG?
(c) What is the even parity bit sequence generated by this LCG?

Exercise 29.7. Consider the LCG defined by xn ≡ 3xn−1 + 5 mod 8, where x0 = 4.
(a) What is the length of the period of this LCG?
(b) What is the least significant bit sequence generated by this LCG?
(c) What is the even parity bit sequence generated by this LCG?

Exercise 29.8. Consider the Lehmer generator defined by xn ≡ 2xn−1 mod 27, where x0 = 7.
(a) What is the length of the period of this LCG?
(b) What is the least significant bit sequence generated by this Lehmer generator?
(c) What is the even parity bit sequence generated by this Lehmer generator?

Exercise 29.9. Consider the LCG defined by xn+1 ≡ axn + b mod m, where 4|m.
(a) Show that if a is even then xn is constant mod 4 for all n ≥ 2.
(b) Show that if a ≡ 3 mod 4 then xn+2 ≡ xn mod 4 for all n ≥ 0.
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Exercise 29.10. Consider the LCG defined by xn+1 ≡ axn + b mod m, where p|m and p|b for some
odd prime p. Show that, for n ≥ 1, either p always divides xn or never divides xn.

Exercise 29.11. Consider the LCG defined by xn+1 ≡ axn + b mod m, where p|m. Show that, if
a 6≡ 1 mod p, then xn+k ≡ xn mod p, where k = ordp(a).
Hint: Show that, if a 6≡ 1 mod p and k = ordp(a), then 1 + a + · · ·+ ak−1 ≡ 0 mod p.

Exercise 29.12. Consider the LCG defined by xn+1 ≡ axn + b mod m, where gcd(a− 1, m) = 1.
(a) What happens if x0 ≡ b(1− a)−1 mod m?
(b) What happens if gcd(x0 − b(1− a)−1, m) 6= 1?

Exercise 29.13. Show that, if gcd(a − 1, m) = 1, then the nth term generated by an LCG with
parameters a, b, m and seed x0 is given by the formula

xn ≡ anx0 + b(a− 1)−1(an − 1) mod m.

Exercise 29.14. Suppose you are given a sequence of numbers x0, x1, x2, . . . , xn, where n > 4. You
are told these numbers come from an LCG mod m (where m is given), but that the values of a, b
have been forgotten. How can you recover them?

Exercise 29.15. Suppose that a sequence of numbers xi is generated via the Blum-Blum-Shub
algorithm. Prove that

xn ≡
(

x2n mod lcm(p−1,q−1)
0

)
mod m.

Why doesn’t this formula undermine the security of the Blum-Blum-Shub algorithm?

Exercise 29.16. Prove that if distinct primes p ≡ q ≡ 3 mod 4 then every quadratic residue mod
m = pq has at least one square root that is itself also a quadratic residue mod m.

Exercise 29.17 (Exploratory Exercise). Suppose Bob chooses a secret pair of large primes p and
q and then broadcasts a pseudorandom sequence of large integers {xn} generated by the Blum-
Blum-Shub algorithm. Suppose that Eve records some of the integers xn (say, 100 of them in
succession). How can Eve use the data xk, xk+1, . . . , xk+99 to more easily guess the secret modulus
m?
Remark: The point of this exercise is that, when using Blum-Blum-Shub, the public output should
consists of one bit from each of the xi. The full values of the xi should remain private.

Exercise 29.18 (Exploratory Exercise). Invent a PRNG that is not periodic. Given a suitable seed,
the generator should yield a sequence of decimal digits as long as needed. Each subsequent digit
in the sequence should yield a number that depends on the previous entries, but does not require
any seeds other than the initial seed (nor any other ‘external’ sources of randomness).
Remark: Your invented PRNG will probably not be computationally efficient. That’s ok: it’s one
of the points of this exercise.
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Given n ∈ Z, how can we determine if n is prime without actually factoring n?

If n is composite, then n must have a prime factor p ≤
√

n. So one way to test
for primality is to attempt division of n by p for all primes p ≤

√
n. But this is

impractical for large n, even on a fast computer. There are better approaches.

§

Fermat’s theorem says that, if p is prime and gcd(a, p) = 1, then ap ≡ a mod p.
Suppose that n is a large odd number. It follows from Fermat’s theorem that, if
2p 6≡ 2 mod n, then n cannot be prime.

On the other hand, if 2n ≡ 2 mod n, we still don’t know whether or not n is
prime. If such a number n is composite, n is said to be a pseudoprime to base 2.
For example, 341 = 31 · 11 is a pseudoprime to base 2.

Pseudoprimes to other bases are defined analogously. A composite number n is
a pseudoprime to base a if gcd(a, n) = 1 and an ≡ a mod n. Unfortunately there
are pseudoprimes for every base. In fact, some numbers are pseudoprimes for
every base at once!

An composite integer is a Carmichael number if an ≡ a mod n for all integers a.
In particular, a Carmichael number is a pseudoprime to every base.

The smallest Carmichael number is 561. Here is a condition for finding more of
them.

Theorem 30.1. A composite positive integer n is a Carmichael number if and only if n
is square-free, and if, for each prime p|n, we have (p− 1)|(n− 1).

For example, the number 561 = 3 · 11 · 17 is square-free. Moreover, since 560 =
24 · 5 · 7 is divisible by 2, 10, and 16, it follows that 561 is a Carmichael number.

On the other hand, while 341 = 11 · 31 is also square-free, 340 is not divisible by
30, so the theorem implies that 341 is not a Carmichael number. Indeed, 341 is
not even a pseudoprime to base 3.

Proof of Theorem 30.1. To begin, suppose that n is a Carmichael number. If a
prime p divides n, write n = pkQ, where gcd(p, Q) = 1. Let r be a primitive
root for Upk . By the Chinese remainder theorem, there exists s ∈ Un such that
s ≡ 1 mod Q and s ≡ r mod pk. Since n is a Carmichael number and s is a unit
mod n, we have

sn−1 ≡ 1 mod n,

167
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so that
sn−1 = 1 + tn = 1 + tpkQ,

for some integer t. Modulo pk this becomes

rn−1 ≡ 1 mod pk.

Since r is primitive mod pk, the divisibility theorem for order implies that
φ(pk)|(n− 1), so that

pk−1(p− 1)|(n− 1). (30.1)

In particular, (p− 1)|(n− 1) for each prime p dividing n. Moreover, if k > 1,
then (30.1) implies that p|(n− 1). Since p|n, this contradicts the assumption that
p is prime. It follows that k = 1, so that n is square-free.

Conversely, suppose that n is a square-free composite number, and that each
prime p dividing n satisfies (p − 1)|(n − 1). In this case we can write n =
p1 · · · pk for primes p1 < · · · < pk. Let a ∈ Z. By Fermat, we have api ≡ a
mod pi for each i.

Suppose that gcd(a, n) = 1. For each i we have n− 1 = (pi − 1)bi for some bi. It
follows that

an−1 = a(pi−1)bi = (api−1)bi ≡ 1 mod pi.

The Chinese remainder theorem then implies an−1 ≡ 1 mod n, so that an ≡ a
mod n.

By a similar argument, pn
j ≡ pj mod pi for each i 6= j, while obviously pn

j ≡ 0 ≡
pj mod pj as well. Again the Chinese remainder theorem implies that pn

j ≡ pj

mod n for each j.

More generally, if gcd(a, n) 6= 1 then a = de, where gcd(e, n) = 1 and d =
pα1

1 · · · p
αk
k . Therefore,

an = dnen ≡ de ≡ a mod n

by the preceding cases.

It follows in every case that n is a Carmichael number. q

It can be shown that there are infinitely many Carmichael numbers, although
the proof is quite difficult (see [1]).

The existence of Carmichael numbers suggests that a better approach is needed
for efficient primality testing.

§

Exercise 30.1. Show that 91 is a pseudoprime to base 3, but not to base 2.

Exercise 30.2. Show that 341 is a pseudoprime to base 2, but not to base 3.
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Exercise 30.3. Show that 2701 is a pseudoprime to base 2 and to base 3, but not to base 5.

Exercise 30.4. Show that 9017 is composite by showing that Fermat’s theorem is violated when
considering powers of 2. (Use a calculator or computer for this exercise.)

Exercise 30.5. Show that, if n is a pseudoprime to base 2, so is 2n − 1. It follows that there are
infinitely many pseudoprimes to base 2.

Exercise 30.6. Use Theorem 30.1 to prove that 1105 and 2465 are both Carmichael numbers.

Exercise 30.7.
(a) Prove that 7 · 11 · 13 · 41 is Carmichael.

(b) Prove that 3 · 5 · 47 · 89 is Carmichael.

(c) Prove that 11 · 13 · 17 · 31 is Carmichael.

(d) Prove that 7 · 11 · 13 · 31 is not Carmichael.
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Recall that if p is an odd prime and p 6 | a then Euler’s criterion tells us that(
a
p

)
≡ a

p−1
2 mod p.

The right hand expression is easy to compute (by repeated squaring, for exam-
ple) even for large numbers, provided a computer is available.

On the other hand, we saw in the Section 26 that, if n is composite, then it is
possible that (

a
n

)
6≡ a

n−1
2 mod n. (31.1)

This provides a primality test: Given a large positive odd number n, choose a
smaller positive integer a at random, and compute

( a
n

)
using the methods of the

Section 26. If
( a

n

)
6≡ a

n−1
2 mod n then we know for certain that n is composite.

On the other hand, if
( a

n

)
≡ a

n−1
2 mod n, then n may or may not be prime.

We still do not know. While this sounds like a fatal flaw for this proposed test,
we will show that, if n is composite, then (31.1) will hold for at least 1/2 of all
possible choices of a. This means that a false positive (making n look prime
when it is not) occurs with probability at most 1/2. If we perform the test using
10 values of a, each chosen independently1 and uniformly2 at random, then the
probability that a composite n will be falsely labelled prime every time is at most
(0.5)10 ≈ 0.001. If we run the test 100 times, the probability of falsely claiming
n is prime goes down to less than 10−30. On a typical computer this test allows
one to determine primality for a very large number (too large to factor) with
vanishingly small probability of error.

The test outlined above is called the Solovay-Strassen Test.3 In order to justify
these probabilistic assertions, we need to prove the following theorem.

Theorem 31.1. Let n > 1 be an odd composite integer. There are at least n
2 positive

integers a ∈ {1, 2, . . . , n} such that the Solovay-Strassen test applied to a and n will
reveal that n is composite.

In other words, there is at most a 50% chance that the Solovay-Strassen test will
falsely claim that n is prime.

1The outcome of one choice should have no effect on how the other choices are made.
2Each value should be equally likely to be chosen.
3First described by Robert Solovay and Volker Strassen in 1977. See [31].
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Before we prove Theorem 31.1, we will need a couple of lemmas. We begin
with a lemma that guarantees the inequality (31.1) holds at least once when n is
composite. Denote by Un the group of units mod n.

Lemma 31.2. If n > 1 is an odd composite integer, there exists a ∈ Un such that the
inequality (31.1) holds.

Proof. First, suppose that n = pem for some prime p and e ≥ 2, where p 6 | m.

Let r be a primitive root mod pe, and let a = r2. Evidently,(
a
n

)
=

(
r2

n

)
= 1.

If a
n−1

2 ≡ 1 mod n then rn−1 ≡ 1 mod pe. Since r is primitive for pe, this implies
that φ(pe)|(n− 1). In other words,

pe−1(p− 1)|(n− 1),

so that p|(n− 1). Since p|n this is a contradiction. Therefore, the inequality (31.1)
holds for a and n in this case.

Next, suppose instead that n = p1 · · · pk where p1 < · · · < pk are prime and
k > 1. Suppose also that( a

n

)
≡ a

n−1
2 mod n for all a ∈ Un. (31.2)

Since a is a unit mod n, this means that a
n−1

2 ≡
( a

n

)
≡ ±1 mod n.

If a ∈ Un, and if a
n−1

2 ≡ −1 mod n, then a
n−1

2 ≡ −1 mod p1. Use the Chinese
Remainder Theorem to obtain c ∈ Un so that

c ≡ a mod p1 and c ≡ 1 mod ps for s > 1.

We then have

c
n−1

2 ≡ −1 mod p1 and c
n−1

2 ≡ 1 mod ps for s > 1.

It follows that c
n−1

2 6≡ ±1 mod n, so that

±1 ≡
( c

n

)
6≡ c

n−1
2 mod n

This contradicts our assumption (31.2). Hence,

a
n−1

2 ≡ 1 mod n

for all a ∈ Un. It follows from (31.2) that( a
n

)
= 1 for all a ∈ Un. (31.3)
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Meanwhile, let d be a quadratic non-residue mod p1, and use the Chinese Re-
mainder Theorem to obtain a ∈ Un so that

a ≡ d mod p1 and a ≡ 1 mod ps for s > 1.

We then have (
a
n

)
=

(
a
p1

)(
1
p2

)
· · ·
(

1
ps

)
= −1,

contradicting (31.3). It follows that (31.2) must be false, so that the inequal-
ity (31.1) holds for some a ∈ Un. q

The next lemma addresses how often (31.1) holds when a ∈ Un.

Lemma 31.3. Let n > 1 be an odd composite integer. There are at least φ(n)
2 values

a ∈ Un such that the inequality (31.1) holds.

Proof. Suppose that (
bi

n

)
≡ b

n−1
2

i mod n

for some values b1, . . . , bk ∈ Un.

By Lemma 31.2, there is an a ∈ Un such that (31.1) holds. For each bi, we then
have (

abi

n

)
≡
(

a
n

)(
bi

n

)
≡
(

a
n

)
b

n−1
2

i 6≡ a
n−1

2 b
n−1

2
i ≡ (abi)

n−1
2 mod n

In other words, for every b ∈ Un violating (31.1) there is at least one distinct
value ab ∈ Un satisfying (31.1). Therefore, at least half of the elements of Un
satisfy (31.1). q

The previous lemmas together lead to Theorem 31.1, stated earlier.

Proof of Theorem 31.1. Lemma 31.3 asserts that at most φ(n)
2 values of a ∈ Un will

give false positives for primality when gcd(a, n) = 1.

Meanwhile, if gcd(a, n) 6= 1 (which can be quickly determined by Euclid’s algo-
rithm) then n is immediately revealed to be composite. It follows that at most
φ(n)

2 values of a ∈ Zn will give false positives for primality.

Since φ(n) ≤ n − 1 for all odd n > 1, the Solovay-Strassen test gives a false
positive for primality in fewer than n−1

2 cases, and therefore gives a correct
answer at least 50% of the time, when the value a is chosen uniformly at random
from the set {1, . . . , n− 1}. q
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§

As elegant as the Solovay-Strassen test is, most modern primality testing soft-
ware uses a different algorithm, known to be even faster. Like the Solovay-
Strassen test, the Miller-Rabin test is also probabilistic, but gives false positives
at most 1/4 of the time, resulting in fewer trials needed for a given tolerance of
error. The Miller-Rabin test also uses quadratic residue theory and is even easier
to describe than Solovay-Strassen. Unfortunately, the proof that Miller-Rabin is
accurate with the claimed probability is more difficult, and beyond the scope of
these notes. We will describe the test, and refer to reader to any of [10, 23, 27]
for a proof of accuracy. The test is named for Gary Miller [19], who discovered
an early version of the test, and Michael Rabin [23], who proved that the test
determines primality with at least 75% accuracy (Theorem 31.5 below).

Lemma 31.4. Let p be an odd prime integer. Suppose p− 1 = 2eb, where b is odd. If
p 6 | a then either

ab ≡ 1 mod p,

or
a2sb ≡ −1 mod p

for some non-negative integer s < e.

Proof. By Fermat’s Theorem 15.1,

a2eb = ap−1 ≡ 1 mod p.

Let t be the smallest non-negative integer such that

a2tb ≡ 1 mod p. (31.4)

If t = 0, then ab ≡ 1 mod p.

If t > 0, then set x = a2t−1b, so that

x2 ≡ a2tb ≡ 1 mod p.

Since p is prime, it follows that x ≡ ±1 mod p. Since t was chosen to be minimal
so that (31.4) holds, we must have x ≡ −1, that is,

a2t−1b ≡ x ≡ −1 mod p.

Set s = t− 1 to complete the proof of the lemma. q

Since Lemma 31.4 holds for all odd primes, this gives us another primality test:
Given a large odd integer n, choose a random integer a such that 2 ≤ a ≤ n− 1.
If gcd(a, n) 6= 1, then n is composite. Otherwise, test to see if Lemma 31.4 holds.
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If Lemma 31.4 fails to hold, then n is certainly composite. On the other hand,
if Lemma 31.4 is true for this choice a, then we don’t know if n is composite or
prime. As with the Solovay-Strassen test, the Miller-Rabin test is always correct
if it reports “composite,” but may give a false answer if it reports “prime.”

Theorem 31.5. Let n > 1 be an odd composite integer. There are at least 3φ(n)
4 units

a ∈ Un such that the Lemma 31.4 is violated for the pair (a, n).

Since Lemma 31.4 is also violated whenever gcd(a, n) 6= 1, a false positive (mak-
ing n look prime when it is not) occurs with probability at most 1/4. If we
perform the test using 10 values of a, each chosen independently and uniformly
at random, then the probability that a composite n will be falsely labelled prime
every time is at most (0.25)10 ≈ 0.000001. If we run the test 100 times, the prob-
ability of falsely claiming n is prime goes down to less than 10−60. For a proof
of Theorem 31.5, see any of [10, 23, 27].

In practice, the Miller-Rabin test is implemented as follows. Given a large odd
number n, factor the powers of 2 out of n− 1 to express n− 1 = 2eb, where b is
odd. Then compute ab mod n. If

ab ≡ ±1 mod n,

the test says “probably prime.”

Otherwise, if
ab 6≡ ±1 mod n,

then compute
a2b, a4b, a8b, . . . , a2e−1b mod n.

If −1 appears on this list at any point, then n is “probably prime.”
If 1 appears on this list before −1 has appeared,4 or if ±1 never appear at all,
then n is certainly composite.

§

Exercise 31.1. Suppose we run the Solovay-Strassen test just once to determine if the number 15
is prime. What is the exact probability that the test is correct?

Exercise 31.2. Suppose we run the Miller-Rabin test just once to determine if the number 15 is
prime. What is the exact probability that the test is correct?

Exercise 31.3 (Project Exercise). Write a program in a computer language of your choice to deter-
mine the primality of a given integer n, by testing for divisibility by 2 and by all subsequent odd
numbers up to

√
n. Use your program to determine which of following numbers are prime:

2003, 65537, 90901, 90109, 10909, 4115181073

4You should think about why −1 will never appear after 1 has appeared.



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

31 Advanced primality testing 175

Exercise 31.4 (Project Exercise). Write a program in a computer language of your choice to im-
plement the Miller-Rabin test on a personal computer. Use your program to determine which of
following numbers are prime:

4115181073

293417457040049

10000000000000001

1111111111111111111

862720373833956440063030449

Your program should run the Miller-Rabin test at least 50 times per trial to assure a high proba-
bility of accuracy.

If you did the previous exercise, how do the speeds of the algorithms compare when applied to
the same numbers?

Exercise 31.5 (Project Exercise). Write a program in a computer language of your choice to imple-
ment the Solovay-Strassen test on a personal computer. Use your program to determine which of
following numbers are prime:

4115181073

293417457040049

10000000000000001

1111111111111111111

862720373833956440063030449

Your program should run the Solovay-Strassen test at least 100 times per trial to assure a high
probability of accuracy.

If you did the previous two exercises, how do the speeds of the algorithms compare when applied
to the same numbers?

Exercise 31.6. If you did either of Exercises 31.4 or 31.5, then write a program that draws on your
previous written primality test to find the smallest prime number p such that p > 1020.

Exercise 31.7 (Project Exercise). Write a program in a computer language of your choice to find the
prime factorization of an integer using the Miller-Rabin test to determine primality and Pollard’s
Rho (see Section 14) to find proper factors of composites. Use your program to find the prime
factorizations of the numbers

12193263122374638001

37779076541226640496687

1964348484277503385911389

131687572016790123621399218107
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In this section we explore some basic properties of continued fractions, includ-
ing their relation to Euclid’s algorithm and fundamental properties of relatively
prime pairs.

§

We begin with an alternative view of Euclid’s algorithm. Consider the rational
number

53
16

.

Using elementary arithmetic we typically write

53
16

= 3 +
5
16

. (32.1)

This is the same as using division with remainder to write

53 = 16 · 3 + 5.

In order to find gcd(53, 16), we iterate division with remainder as follows:

53 = 16 · 3 + 5
16 = 5 · 3 + 1.

This procedure, called Euclid’s algorithm, implies that gcd(53, 16) = 1. More-
over, we can fold the preceding equations together:

1 = 16− 5 · 3 = 16− (53− 16 · 3) · 3 = 16 · 10− 53 · 3,

thereby obtaining an integer solution to the linear equation

16x + 53y = 1,

namely, x = 10 and y = −3.

Let’s rewrite this procedure in another way. The equation 16 = 5 · 3 + 1 is
equivalent to the equation

16
5

= 3 +
1
5

.

On combining this with (32.1) we have

53
16

= 3 +
1
16
5

= 3 +
1

3 +
1
5

. (32.2)

176
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The final expression in (32.2) is called the simple or regular continued fraction
expansion for the number 53

16 .

Similarly,
72
25

= 2 +
22
25

= · · · = 2 +
1

1 +
1

7 +
1
3

. (32.3)

For shorthand we will write

[a0, a1, . . . , an] = a0 +
1

a1 +
1

· · ·+ 1
an

. (32.4)

Note that the continued fraction [a0, a1, . . . , an] always has the value 1 in each
numerator of the display (32.4).

For example,

[2] = 2

[2, 1] = 2 +
1
1
= 3

[2, 1, 7] = 2 +
1

1 +
1
7

=
23
8

[2, 1, 7, 3] =
72
25

,

as in (32.3).

The continued fractions [a0], [a0, a1], [a0, a1, a2], . . . leading up to [a0, . . . , an] are
called the convergents to [a0, . . . , an]. The numbers a0, a1, a2 . . . are called the
partial quotients (or simply the quotients) of the continued fraction [a0, . . . , an].

Comparing the last two convergents of the continued fraction for 72
25 we find that

72
25
− 23

8
=

72 · 8− 25 · 23
200

=
1

200
.

In particular,
72 · 8− 25 · 23 = 1,

solving 72x + 25y = 1 with the integers x = 8 and y = −23.

We will show later that this always holds: if gcd(a, b) = 1 then the numerator
and denominator of the next-to-last convergent to a

b solve the linear equation
ax + by = 1 (up to a possible change of sign).

§
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Any rational number a
b can be expanded into a regular continued fraction of fi-

nite length. This follows from the fact that Euclid’s algorithm always terminates
after a finite number of steps. What about regular continued fraction expan-
sions for irrational numbers? Let x be any positive real number. Then x must lie
between two natural numbers, a0 ≤ x < a0 + 1; that is,

x = a0 + r0,

where 0 ≤ r0 < 1. If r0 = 0 then x is an integer and we are finished. If 0 < r0 < 1
then 1

r0
> 1, so that

1
r0

= a1 + r1,

for some integer a1 and some real 0 ≤ r1 < 1. Hence,

x = a0 +
1
1
r0

= a0 +
1

a1 + r1
.

We can continue this way, at each step defining ak to be the integer part of the
reciprocal 1/rk−1 of the previous remainder rk−1. This procedure will terminate
(yielding a finite continued fraction for x) if and only if x is rational.

§

Using the preceding algorithm we can show that the simple continued fraction
expansion for a positive rational number x is unique. For suppose that

x = [a0, a1, . . . , an] = [b0, b1, . . . , bk]

with an 6= 1 and bk 6= 1. Since the integer (whole number) part of

x = a0 +
1

a1 +
1

· · ·+ 1
an

is a0, it follows that x = a0 + r0 with 0 ≤ r0 < 1. But the same argument implies
that the integer part of x is b0. Therefore, a0 = b0. After subtracting a0 = b0 from
both continued fractions and then taking reciprocals we obtain

[a1, . . . , an] = [b1, . . . , bk].

A similar argument implies that a1 = b1 and so on, leading to the conclusion
that n = k and ai = bi for i = 1, . . . , n. Note however that we need to assume
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that an 6= 1 and bk 6= 1 for this argument to work at the final step, since

[a0, a1, . . . , an−1, 1] = a0 +
1

a1 +
1

· · ·+ 1

an−1 +
1
an

= a0 +
1

a1 +
1

· · ·+ 1
an−1 + 1

= [a0, a1, . . . , an−1 + 1].

§

When the numbers ai are integers, the value of [a0, a1, . . . , an] is always a rational
number; that is, it can always be expressed as the ratio a/b of two relatively
prime integers a and b. For integers k = 0, 1, . . . n denote

pk

qk
= [a0, a1, . . . , ak],

also called the kth convergent of [a0, a1, . . . , an].

Computing the first few convergents we find that

[a0] = a0,

[a0, a1] = a0 +
1
a1

=
a0a1 + 1

a1
,

[a0, a1, a2] = a0 +
1

a1 +
1
a2

=
a0a1a2 + a2 + a0

a1a2 + 1
.

so that, for example,

p0 = a0, p1 = a0a1 + 1, p2 = a0a1a2 + a2 + a0,
q0 = 1, q1 = a1, q2 = a1a2 + 1.

For notational convenience we will also formally define p−1 = 1 and q−1 = 0.

The most important properties of regular continued fractions are encoded in the
following theorem.

Theorem 32.1. For all a0, a1, . . . , an,[
a0 1
1 0

] [
a1 1
1 0

]
· · ·
[

an 1
1 0

]
=

[
pn pn−1
qn qn−1

]
(32.5)

where gcd(pn, qn) = gcd(pn−1, qn−1) = 1.
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It will follow from its proof that the matrix identity (32.5) is still true for any
complex values of ak for which the continued fraction makes sense; that is,
provided no zero denominators are ever generated in the continued fraction
expansion. However, if the values ak are not integers, then the values pk and qk
may not be integers either.

Proof. The proof is by induction on the number of matrices in the product (32.5).
To begin, we have [

a0 1
1 0

]
=

[
p0 p−1
q0 q−1

]
by the definition of pk and qk above. Suppose the theorem is true for the product
of k matrices, so that, for example,[

a0 1
1 0

] [
a1 1
1 0

]
· · ·
[

ak−1 1
1 0

]
=

[
pk−1 pk−2
qk−1 qk−2

]
.

Denote [
a1 1
1 0

]
· · ·
[

ak 1
1 0

]
=

[
p p̃
q q̃

]
.

Since this is also a product of only k matrices, our induction assumption implies
that

p
q
= [a1, . . . , ak] and

p̃
q̃
= [a1, . . . , ak−1],

where gcd(p, q) = gcd( p̃, q̃) = 1. It follows that

[a0, a1, . . . , ak] = a0 +
1

[a1, . . . , ak]
= a0 +

q
p
=

a0 p + q
p

and
[a0, a1, . . . , ak−1] = a0 +

1
[a1, . . . , ak−1]

= a0 +
q̃
p̃
=

a0 p̃ + q̃
p̃

.

where gcd(a0 p + q, p) = gcd(p, q) = 1 and gcd(a0 p̃ + q̃, p̃) = gcd( p̃, q̃) = 1.

Meanwhile,[
a0 1
1 0

] [
a1 1
1 0

]
· · ·
[

ak 1
1 0

]
=

[
a0 1
1 0

] [
p p̃
q q̃

]
=

[
a0 p + q a0 p̃ + q̃

p p̃

]
.

The theorem now follows by induction on k. q

Corollary 32.2. For integers n ≥ 2,

pn = an pn−1 + pn−2 (32.6)
qn = anqn−1 + qn−2 (32.7)

pnqn−1 − pn−1qn = (−1)n+1 (32.8)
pnqn−2 − pn−2qn = (−1)nan. (32.9)
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Proof. By Theorem 32.1,[
pn pn−1
qn qn−1

]
=

[
a0 1
1 0

] [
a1 1
1 0

]
· · ·
[

an−1 1
1 0

] [
an 1
1 0

]
=

[
pn−1 pn−2
qn−1 qn−2

] [
an 1
1 0

]
=

[
an pn−1 + pn−2 pn−1
anqn−1 + qn−2 qn−1

]
.

The identities (32.6) and (32.7) now follow. To prove (32.8) take the determinant
of both sides of (32.5). To prove (32.9), use (32.6) and (32.7), along with the basic
properties of determinants, to obtain

pnqn−2 − pn−2qn = det
[

pn pn−2
qn qn−2

]
= det

[
an pn−1 + pn−2 pn−2
anqn−1 + qn−2 qn−2

]
(by identities (32.6) and (32.7))

= det
[

an pn−1 pn−2
anqn−1 qn−2

]
= an(pn−1qn−2 − pn−2qn−1)

= an(−1)n.

For the third identity above we use the fact that subtracting one column from an-
other does not change the determinant, while the last identity follows from (32.8).
q

The identity (32.8) of Corollary 32.2 implies that the continued fraction formula-
tion for Euclid’s algorithm always provides a solution to the Diophantine equa-
tion ax + by = 1 when a and b are relatively prime positive integers.

Corollary 32.3. If gcd(a, b) = 1 where 0 < b < a then the Diophantine equation

ax + by = 1

is solved by setting

x = (−1)n+1qn−1 and y = (−1)n pn−1,

where pn−1
qn−1

is the next-to-last convergent to the continued fraction for a
b .

Proof. Following the notation in the statement of the corollary, we have a = pn
and b = qn. The corollary now follows from the identity (32.8). q
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§

The recursion identities (32.6) and (32.7) provide a useful shorthand for more
rapid computations of the convergents to a continued fraction. Consider the
regular continued fraction

[a0, a1, a2, a3, a4] = [2, 4, 2, 3, 6].

For notational convenience we begin with

p−1 = 1 p−2 = 0
q−1 = 0 p−2 = 1.

Since a0 = 2, we have

p0 = 2p−1 + p−2 = 2 · 1 + 0 = 2
q0 = 2q−1 + q−2 = 2 · 0 + 1 = 1

so that
p0 = 2 p−1 = 1 p−2 = 0
q0 = 1 q−1 = 0 p−2 = 1.

Since a1 = 4, we have

p1 = 4p0 + p−1 = 4 · 2 + 1 = 9
q1 = 4q0 + q−1 = 4 · 1 + 0 = 4

so that
p1 = 9 p0 = 2 p−1 = 1 p−2 = 0
q1 = 4 q0 = 1 q−1 = 0 p−2 = 1.

All of this is easier to read if we drop the p’s and q’s from the notation and make
a table:

6 3 2 4 2 an+1
9 2 1 0 pn
4 1 0 1 qn

Since the next partial quotient is a2 = 2, we multiply the numbers in its column
by 2 and add this to the previous column, to obtain the next column in the table:

6 3 2 4 2 an+1
20 9 2 1 0 pn
9 4 1 0 1 qn

Continuing in this manner, we complete the table:

6 3 2 4 2 an+1
434 69 20 9 2 1 0 pn
195 31 9 4 1 0 1 qn

(32.10)
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It follows that
[2, 4, 2, 3, 6] =

434
195

.

§

Theorem 32.1 and Corollary 32.2 have many implications regarding the behavior
of convergents to a continued fraction.

To begin, the difference between successive convergents is

pn

qn
− pn−1

qn−1
=

pnqn−1 − pn−1qn

qnqn−1
=

(−1)n+1

qnqn−1
, (32.11)

where the last identity (in which the numerator is simplified) follows from the
determinant identity (32.8). Since the values of an, and therefore of qn, are
positive integers, we obtain the following:

Proposition 32.4. For n ≥ 1,

pn

qn
>

pn−1

qn−1
if n is odd,

pn

qn
<

pn−1

qn−1
if n is even.

Skipping two steps instead, we also find that

pn

qn
− pn−2

qn−2
=

pnqn−2 − pn−2qn

qnqn−2
=

(−1)nan

qnqn−2
,

where the last identity (in which the numerator is simplified) follows from the
determinant identity (32.9). In this case, we have the following:

Proposition 32.5. For n ≥ 1,

p0

q0
<

p2

q2
< · · · < p2n

q2n
,

and p1

q1
>

p3

q3
> · · · > p2n+1

q2n+1
.

In other words, the even numbered convergents form an increasing sequence,
while the odd number convergents are decreasing.

Propositions 32.4 and 32.5 are combined as follows.
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Proposition 32.6. Every even numbered convergent is less than every odd numbered
convergent. Moreover, for n ≥ 1,

p0

q0
<

p2

q2
< · · · < p2n

q2n
<

p2n+1

q2n+1
< · · · p3

q3
<

p1

q1
. (32.12)

To see how quickly the convergents are “converging”, take absolute values
in (32.11). The distance between successive convergents is then given by∣∣∣∣ pn

qn
− pn−1

qn−1

∣∣∣∣ =

∣∣∣∣ pnqn−1 − pn−1qn

qnqn−1

∣∣∣∣ =
1

qnqn−1
, (32.13)

where the last identity (in which the numerator is simplified) follows from the
determinant identity (32.8).

Since every ai ≥ 1 for i > 1, the recursion relation (32.7) implies that

qn+1 ≥ qn + qn−1,

for n ≥ 1. Since every denominator qi ≥ 1, it follows that qn+1 > qn. In fact, it
follows that, for n ≥ 0,

qn ≥ Fn,

where F0, F1, F2, . . . denotes the Fibonacci sequence:

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 for n ≥ 2.

It is a simple exercise in mathematical induction (see Exercise 2.7) to show that,
for n ≥ 6,

Fn ≥ 2
n
2 .

Combining these observations with (32.13) yields∣∣∣∣ pn

qn
− pn−1

qn−1

∣∣∣∣ = 1
qnqn−1

<
1

q2
n−1
≤ 1

F2
n−1
≤ 1

2n−1 , (32.14)

for n ≥ 7.

We see that convergence is exponentially fast, since the inequalities of (32.14)
imply that each step in the continued fraction reduces the distance between
successive convergents by at least 1/2. And this would be the slowest case:
typically some values of an exceed 1, so that qn is substantially greater than the
Fibonacci number Fn, causing the convergence to proceed even more quickly.
The larger the value of an, the faster the regular continued fraction will converge
to its final value.

§
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Exercise 32.1. Express the continued fraction [1, 2, 3, 4, 5] as an ordinary fraction.

Exercise 32.2. (a) Express the number 229
72 as a regular continued fraction.

(b) Use the results of part (a) to find x, y ∈ Z such that 229x + 72y = 1.

Exercise 32.3. Which is bigger [2, 3, 7] or [2, 5, 7]? Which is bigger [2, 3, 7] or [2, 3, 8]? What
happens in general?

Exercise 32.4. Express the continued fractions

[1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]

as ordinary fractions. Does the resulting pattern of numerators and denominators remind you of
anything? Use Corollary 32.2 to explain what you have found.

Exercise 32.5. Suppose that a real number x satisfies x = [1, 3, x]. Find the value of x.

Exercise 32.6. Let m ∈N. Consider the sequence

s0 = 1, s1 = m, sk = 4sk−1 + sk−2 for k ≥ 2.

Prove that, for k ≥ 2,
sk+1

sk
= [4, . . . , 4︸ ︷︷ ︸

k copies

, m].

Exercise 32.7. How does the formula for sk+1
sk

in Exercise 32.6 change when s0 > 1?
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If x is irrational, then x cannot be expressed as a fraction with integer numerator
and denominator. It follows that, for irrational x, the procedure for constructing
a simple continued fraction for x continues forever, and we obtain an infinite
continued fraction:

[a0, a1, a2, . . .] = a0 +
1

a1 +
1

a2 + · · ·

.

But does this expression make any sense? Suppose we view it as the limit of the
sequence:

[a0], [a0, a1], [a0, a1, a2], . . . .

In other words, define

[a0, a1, a2, . . . ] = lim
n→∞

[a0, a1, . . . , an].

Does this limit exist, and if so, does the sequence converge to our original irra-
tional number x? We will see later that the answers to both of these questions is
yes.

§

Consider the following example. Let

x = [1, 1, 1, 1, 1, . . .] = 1 +
1

1 +
1

1 +
1

1 + · · ·

. (33.1)

Notice that the tail end of the expansion (33.1) looks just like the whole expan-
sion. Suppose that the limit of this infinite continued fraction exists, and denote
the value of this limit by x. In this case, we have

x = 1 +
1
x

so that
x2 − x− 1 = 0

or

x =
1 +
√

5
2

= 1.618 . . . .

186
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Indeed, if we examine the convergents to the expansion (33.1) we see that

[1] = 1

[1, 1] = 1 +
1
1
= 2

[1, 1, 1] = 1 +
1

1 + 1
1

=
3
2
= 1.5

[1, 1, 1, 1] =
5
3
= 1.666 . . .

[1, 1, 1, 1, 1] =
8
5
= 1.6,

The appearance of the Fibonacci numbers in the numerators and denominators
of this sequence is no coincidence. They appear as a consequence of the recur-
sion relations given in Corollary 32.2.

Notice also that convergents seem to alternate sides of the limit 1.618 . . ., first
below, then above, and so on, closing in on the limit from each side. This oscil-
latory behavior is consistent with Propositions 32.4, 32.5, and 32.6.

§

To go other way, let’s try applying a “Euclid-style” algorithm to the irrational
number x =

√
3. At each stage we extract the whole number part, leaving a

remainder r such that 0 < r < 1. The reciprocal will then satisfy 1 < 1
r , so that

we can repeat ad infinitum. Since the number
√

3 is irrational, the procedure
can never terminate, but we might nonetheless discern a pattern.

Begin by observing that 1 <
√

3 < 2. The first step then yields
√

3 = 1 + (
√

3− 1).

Here a0 = 1 and r0 =
√

3− 1, where 0 < r0 < 1. Taking the reciprocal of the
remainder r0 gives a number greater than 1, namely,

1
r0

=
1√

3− 1
=

1√
3− 1

·
√

3 + 1√
3 + 1

=

√
3 + 1

√
3

2 − 12
=

√
3 + 1
2

.

Since 1 <
√

3 < 2, we have 1 <
√

3+1
2 < 3

2 , so that the next partial quotient is
also 1, and √

3 + 1
2

= 1 +

(√
3 + 1
2

− 1

)
= 1 +

√
3− 1
2

.

In other words, a1 = 1 and r1 =
√

3−1
2 . Taking reciprocals again yields

1
r1

=
2√

3− 1
=

2(
√

3 + 1)
√

3
2 − 12

=
√

3 + 1 = 2 + (
√

3− 1),
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so that a2 = 2 and r2 =
√

3− 1. Since r2 = r0, the pattern of reciprocals and
quotients will repeat, so that

a3 = 1, a4 = 2, a5 = 1, a6 = 2, . . . ,

suggesting that √
3 = [1, 1, 2, 1, 2, 1, 2, . . .],

if this limit exists. (This will be shown further ahead.)

§

A continued fraction of the form [b1, . . . , bk, a1, . . . , an] is said to be periodic. In
this notation the pattern of partial quotients beneath the overline is repeated
infinitely often.

A continued fraction of the form [a1, . . . , an] is said to be purely periodic.

§

Suppose we are given that the limiting value x = [1, 1, 2] exists. Let us determine
a numerical value for x. We have

x = 1 +
1
s

where s = [1, 2] is purely periodic. To compute s, we use the periodicity to observe
that

s = 1 +
1

2 +
1
s

= 1 +
s

2s + 1
=

3s + 1
2s + 1

.

so that 2s2 + s = 3s + 1 and, therefore, 2s2 − 2s− 1 = 0. The quadratic formula
yields

s =
2±
√

12
4

=
1±
√

3
2

.

Since we know that s > 0, it follows that s = 1+
√

3
2 , so that

x = 1 +
1
s

= 1 +
2√

3 + 1
= 1 +

2(
√

3− 1)
√

3
2 − 12

=
√

3,

as expected.

§
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The preceding examples suggest that if a periodic infinite continued fraction
with integer entries converges to a value x, then x must be a quadratic surd; that
is

x =
a + b

√
n

c
, (33.2)

where a, b, c, n are integers, and
√

n is irrational. Indeed, if x is purely periodic;
say,

x = [a0, . . . , am],

where ai ∈N, then

x = a0 +
1

a1 +
1

· · ·+ 1

am +
1
x

.

Unwinding the algebra will result in a quadratic equation with integer coeffi-
cients having a solution of the form (33.2). If x has the more general form

x = [b0, . . . , bk, a0, . . . , am],

where ai, bi ∈ N, then a similar argument applies. It is less obvious that the
converse also holds.

Theorem 33.1 (Lagrange). A real number x has a representation as a periodic contin-
ued fraction if and only if x is a quadratic surd.

The proof of this theorem is a bit involved. See, for example, any of [13, 14, 27].

§

Given a sequence of integers a0, a1, a2, . . . , where a0 ≥ 0 and an ≥ 1 for n ≥ 1,
we defined the infinite regular continued fraction [a0, a1, a2, . . . ] by

[a0, a1, a2, . . . ] = lim
n→∞

[a0, a1, a2, . . . , an]. (33.3)

But how do we know this limit exists? It follows from Proposition 32.6 that, if
k, l ≥ n ≥ 7, then ∣∣∣∣ pk

qk
− pl

ql

∣∣∣∣ <

∣∣∣∣ pn

qn
− pn−1

qn−1

∣∣∣∣ ≤ 1
2n−1 ,

where the last inequality follows from (32.14). Since limn→∞
1

2n−1 = 0, it follows
that the convergents to an infinite regular continued fraction [a0, a1, a2, . . . ] form
a Cauchy sequence, and therefore always converge to some limit.

Let’s make this argument even more precise. Proposition 32.5 implies that the
even numbered convergents form an increasing sequence. But Proposition 32.6



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

190 33 Infinite continued fractions

asserts that this entire sequence of even numbered convergents p2n
q2n

is bounded
above by any odd numbered convergent; that is,

p0

q0
<

p2

q2
<

p4

q4
< · · · < p1

q1
.

A bounded increasing sequence of real numbers must converge to some limit,
call it L = limn→∞

p2n
q2n

. Similarly, the odd numbered convergents form a bounded
decreasing sequence converging to some value M. Since every even convergent
is smaller than every odd convergent, we have L ≤ M. In fact, for all n > 0,

p2n

q2n
≤ L ≤ M ≤ p2n+1

q2n+1
. (33.4)

It follows that

|L−M| ≤
∣∣∣∣ pn

qn
− pn−1

qn−1

∣∣∣∣ ≤ 1
2n−1 ,

for all n ≥ 7. Therefore L = M, and the limit (33.3) is precisely this value.

Once again, convergence is exponentially fast, since the inequalities of (32.14)
imply that each successive convergent (eventually) reduces the distance to the
limit by at least 1/2. As noted earlier, larger values of an will lead to much faster
convergence.

Notice from (33.4) that the limit L = [a0, a1, a2, . . . ] always lies in between suc-
cessive convergents. This leads to the following important observation.

Proposition 33.2. Given a sequence of integers a0, a1, a2, . . ., where a0 ≥ 0 and an ≥ 1
for n ≥ 1, let L = [a0, a1, a2, . . . ]. For n ≥ 0,∣∣∣∣ pn

qn
− L

∣∣∣∣ ≤ 1
qnqn+1

.

Proof. Suppose that n is even, where n = 2m. It follows from (33.4) that

p2m

q2m
≤ L ≤ p2m+1

q2m+1

so that
0 ≤ L− p2m

q2m
≤ p2m+1

q2m+1
− p2m

q2m
.

Therefore, ∣∣∣∣L− p2m

q2m

∣∣∣∣ ≤ ∣∣∣∣ p2m+1

q2m+1
− p2m

q2m

∣∣∣∣ = ∣∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣∣ = 1
qnqn+1

,

by the identity (32.8) of Corollary 32.2.

If n is odd, set n = 2m + 1, compare to 2m + 2, and proceed similarly. q
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§

Some additional references to the theory of continued fractions are listed in
the bibliography. The book by Rosen [27] gives an elementary introduction.
Hardy and Wright [13] provide a more terse but thorough treatment. Stark
emphasizes a geometric interpretation in [32]. For an advanced treatment of
continued fractions see [14] and [26]. Some remarkable computational methods
are described in an unpublished (but widely available) paper by Gosper [12].
Continued fraction generators can be found on the web. See, for example, [37].

§

Exercise 33.1. (a) Suppose that m is a positive integer. Set α = [m, m, m, m, . . .], and solve a
quadratic equation to find a formula for the value of α in terms of m.

(b) Use your answer to part (a) to find continued fraction expansions for
√

2 and
√

5.

Exercise 33.2. (a) Suppose that m, n are positive integers. Set α = [m, n, m, n, . . .], and solve a
quadratic equation to find a formula for the value of α in terms of m and n.

(b) Use your answer to part (a) to find the continued fraction expansion for
√

15.

Exercise 33.3. Use a table of the form (32.10) to compute the first 5 convergents pk
qk

for the infinite
continued fraction α = [1, 2, 3, 4, . . .].

Exercise 33.4. Find the infinite continued fraction expansion for
√

7.

Exercise 33.5. Evaluate the continued fraction x = [1, 6, 1, 8].

Exercise 33.6. Let δ = 3
√

2. Using a computer or hand-held calculator, find the integer part of δ,
subtract it off, and take the reciprocal of the remainder. Repeat this procedure to find the first 8
partial quotients ai of δ, so that δ = [a1, a2, a3, a4, a5, a6, a7, a8, . . .].

Exercise 33.7. The simple continued fraction expansion for e = 2.718281828459... is given by

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .], (33.5)

continuing with the pattern 1, 1, 2n for all n ≥ 2.∗

(a) Use a table of the form (32.10) to compute the first 10 convergents pk
qk

for the infinite continued
fraction of (33.5).
(b) How far must you go in part (a) to find a fraction that correctly approximates e to two decimal
places? To four decimal places?

Exercise 33.8. The simple continued fraction expansion for π is given by

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, . . .], (33.6)

continuing with no discernible pattern.
(a) Use a table of the form (32.10) to compute the first 5 convergents pk

qk
for the infinite continued

fraction of (33.6).
(b) How far must you go in part (a) to find a fraction that correctly approximates π to two decimal
places? To four decimal places?

∗A short proof of (33.5) can be found in [7].
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Here are some suggestions for further reading and some useful references for
more specialized topics.

• Tom Apostol, Introduction to Analytic Number Theory,
Springer, New York, 1976.

• William Dunham, Euler: The Master of Us All,
Mathematical Association of America, New York, 1999.

• Paul Garrett, Making, Breaking Codes: An Introduction to Cryptology,
Prentice Hall, Upper Saddle River, NJ, 2001.

• G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th ed.,
Oxford University Press, New York, 2006.

• Neil Koblitz, A Course in Number Theory and Cryptography, 2nd ed.,
Springer, New York, 1994.

• C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory,
Dover Publications, New York, 1988.

• Kenneth Rosen, Elementary Number Theory and Its Applications, 5th ed.,
Addison-Wesley, New York, 2005.

• Simon Singh, The Code Book,
Doubleday, New York, 1999.

• Douglas R. Stinson, Cryptography, Theory and Practice, 3rd ed.,
Chapman and Hall/CRC, Boca Raton, FL, 2006.

The book by Ogilvy and Anderson is easy reading and a lot of fun for beginners.
Rosen’s book is a more traditional course textbook. Hardy and Wright is a classic
general reference.

Dunham’s book about Euler is a layman’s introduction to different aspects of
Euler’s work, devoting different chapters to different mathematical topics. Some
of Euler’s contributions to number theory are described, with an emphasis on
insights to be found in Euler’s original arguments.

The book by Koblitz emphasizes connections between number theory and mod-
ern cryptography, while assuming some familiarity with basic abstract alge-
bra (groups, rings, and fields). Garrett’s book has a similar focus, but offers
a more elementary and self-contained presentation. Simon Singh’s book pro-
vides a history of cryptography, written for the general public, and requiring
minimal mathematical background. Stinson’s book is more practical and offers

192



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

34 Recommended reading 193

specific technical details and cryptographic algorithms, as well as material on
cryptanalysis (codebreaking).

Apostol’s book moves beyond classical number theory to the modern analytic
theory. This book is an especially suitable text for a second course in number
theory.
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35 Answers, hints, and solutions to selected exercises

Exercise 2.13: Use the fact that N is closed under
multiplication.

Exercise 2.17: No.

§

Exercise 3.5: 127
999 .

Exercise 3.9: Use the fact that x6 = (x2)3 and y6 =
(y2)3.

Exercise 3.13: How many ways can a teacher choose a
team of k students from a class with n students? How
many ways if we know Harold was chosen? How
many ways if we know Harold was not chosen?

Exercise 3.17: Since n is even, write n = 2m for some
integer m.

If m is odd , then 7n − 4n = 72m − 42m = (7m −
4m)(7m + 4m). Use algebraic factoring to show that
7m − 4m is divisible by 7− 4 = 3, and that 7m + 4m is
divisible by 11.

If m is even, factor out 2 from n as many times as
possible, so that n = 2st where t is odd, and then use
a similar argument.

§

Exercise 4.1: This follows from the fact that a · 0 = 0.

Exercise 4.3: 1001 = 7 · 11 · 13.
This is a handy fact for estimation. Since 1001 ≈ 1000,
we have

1
13
≈ 77

1000
= 0.077,

and, similarly, 1
11 ≈ 0.91 and 1

7 ≈ 0.143.

Exercise 4.4: 999 = 27 · 37 = 33 · 37.
This is another handy fact for estimation. Since
999 ≈ 1000, we have

1
37
≈ 27

1000
= 0.027,

and, similarly, 1
27 ≈ 0.037.

Exercise 4.5: 3, 4, 0, 2, 0.

Exercise 4.10: If n = 3 we have 3 = 1 + 2. If n > 3
then

1 + 2 + 3 + · · ·+ (n− 1) > 1 + (n− 1) = n,

so the identity never holds again for n > 3.

Exercise 4.14: If a is even, then a = 2k for some in-
teger k, so that a2 = 4k2 is divisible by 4. If a is
not even, then a = 2k + 1 for some integer k, so that
a2 = 4k2 + 4k + 1 is not divisible by 4; indeed, it has
a remainder of 1 after division by 4.

Exercise 4.16: The answer is 1 both in part (a) and (b).
To see this, use the fact that n = 3a+ 2 and m = 3b+ 2
for some integers a and b.

Exercise 4.19: Suppose that 2
1
3 = a

b , where this frac-
tion is expressed in lowest terms. This means that

a = 2
1
3 b, so that a3 = 2b3. What can you now say

about the parity of a? Of b?

§

Exercise 5.1: (a) 1; (b) 3; (c) 6; (d) 8; (e) 21; (f) 237.

Exercise 5.2: (a) 101; (b) 1111; (c) 10000; (d) 11000;
(e) 1111000; (f) 1011011001.

Exercise 5.3: The octal answers are (a) 1 (b) 3; (c) 6;
(d) 10; (e) 25; (f) 355.
The hexadecimal answers are (a) 1 (b) 3; (c) 6; (d) 8;
(e) 15; (f) ED.

Exercise 5.8: The possible final digits are
{0, 1, 4, 5, 6, 9}. To see this, observe that if n ends
with 0, then n = 10k for some k, so that n2 = 100k
also ends with 0. If n ends with 1, then n = 10k + 1
for some k, so that n2 = 100k2 + 10k + 1 also ends
with 1. If n ends with 2, then n = 10k + 2 for some
k, so that n2 = 100k2 + 40k + 4 = 10(10k2 + 4k) + 4
ends with 4. Continue by similar checking the cases
in which n ends with 3, 4, and so on, up to 9.

Exercise 5.11: 37
60 .

Exercise 5.12:
(

1
3

)
10

=
(

1
11

)
2

= 0.01010101 . . . in

base 2.

§

Exercise 6.1: (a) 3 (b) 2; (c) 1; (d) 5; (e) 243; (f) 22 · 32.

Exercise 6.2: The answer to both questions is 6.

Exercise 6.3: (a) gcd(n, n + 1) = gcd(n, 1) = 1.

(b) gcd(n, n + 2) = gcd(n, 2) =
{

1 if n is odd.
2 if n is even.

Exercise 6.6: The answer is 23.

Exercise 6.7: It’s the same as the gcd(84, 123). Now
finish the problem.

194
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Exercise 6.9: 6x + 3y is always divisible by 3. But 4 is
not divisible by 3.

Exercise 6.13: (a) One solution is x = 3, y = 4.
(b) This one is similar to Exercise 6.9.
(c) Yes. Can you find some?

§

Exercise 7.9: (a) 84 (b) 12 · 29; (c) 11 · 12 · 13;
(d) 23 · 32 · 56; (e) n; (f) n if n is even, 2n if n is odd;
(g) n(n + 1); (h) n(n + 2) if n is odd, n(n+2)

2 if n is
even.

Exercise 7.11: This can be proved using Theorem 7.5
and Corollary 6.5. Alternatively, you can prove it
more directly: Let e = lcm(a, b). Since k|lcm(ka, kb),
we can write lcm(ka, kb) = ke′ for some integer e′.
Since ka|ke′, we have a|e′ and, similarly, b|e′. The
minimality of the lcm implies that e ≤ e′. Meanwhile,
since a|e and b|e, we have ka|ke and kb|ke. Minimality
again implies that ke′ ≤ ke and e′ ≤ e as well.

Exercise 7.14: The assertion is false.

Exercise 7.15: 1 or 3.

Exercise 7.16: 1, 2, 3, or 4.

Exercise 7.17: What happens when you factor the ex-
pression m3 − n3?

Exercise 7.20: n = 28.

§

Exercise 8.5: (x, y) ∈ {(91, 2), (47, 67), (3, 132)}.

Exercise 8.6: (a) x = 11 + 13t and y = 12− 4t where
t ∈ Z; (b) (x, y) ∈ {(11, 12), (24, 8), (37, 4)}; (c) Same
as (b); (d) No integer solutions.

Exercise 8.10: 27.

Exercise 8.12: Since gcd(120, 102) = 6, that 120a +
102b = 6 has integer solutions a and b. Since
gcd(6, 425) = 1, that 6c + 425d = 1 has integer so-
lutions c and d. Use these facts to finish the proof.

Exercise 8.14: (a) Use the equation 6S + 10M + 15L =
425 to solve this part; (b) 3; (c) 29.

Exercise 8.15: 154 candies (4 gum balls and 150 jelly
beans).

Exercise 8.16: (a)

[
22 1 0
17 0 1

]
→
[

5 1 −1
17 0 1

]
→
[

5 1 −1
2 −3 4

]
→
[

1 7 −9
2 −3 4

]
→
[

1 7 −9
0 −17 22

]

so that x = 7 and y = −9 solve the equation.
(b) [

576 1 0
84 0 1

]
→ · · · →

[
12 −1 7
0 7 6

]
so that x = −1 and y = 7 solve the equation.

Exercise 8.17: (a)[
25 1 0
9 0 1

]
→ · · ·

→
[

1 4 −11
0 −9 25

]
→
[

4 16 −44
0 −9 25

]
so that 25 · 16 + 9 · (−44) = 4.
(b) Row reduce the following matrix to the suggested
final form: 28 1 0 0

26 0 1 0
91 0 0 1

→ · · · →
 1 x y z

0 ∗ ∗ ∗
0 ∗ ∗ ∗


where the symbol ∗ denotes whatever various in-
tegers appear elsewhere in the matrix. The result-
ing values of x, y, and z should solve the equation
28x + 26y + 91z = 1. Then multiply both sides by 17
to solve the original problem. There are many dif-
ferent solutions, but you can easily check if yours is
correct.

Exercise 8.18: Row reduce the following matrix to the
suggested final form: 3 2 1 0 0

4 1 0 1 0
7 −8 0 0 1

→
 5 1 x y z
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


where the symbol ∗ denotes whatever various inte-
gers appear elsewhere in the matrix. The resulting
values of x, y, and z should solve both equations si-
multaneously.

§

Exercise 9.5: (a) Primes; (b) Integers of the form p2,
where p is prime; (c) Integers of the form p3 or pq,
where p 6= q are prime.

Exercise 9.6: (a) 748 zeroes; (b) k = 2993.

Exercise 9.10: Either a = 1 and b is prime, or vice
versa, or a = b is prime.

Exercise 9.11: What happens if n + 1 is prime? What
happens if n + 1 is composite? Watch out for special
cases!

Exercise 9.12: Exercise 7.5 is helpful here.

Exercise 9.20: The assertion is false. Find a counterex-
ample.

Exercise 9.26: What are the remainders after division
by 3?

Exercise 9.34: (a) n = ±2; (b) n ∈ {0, 2, 4, 6}.
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Exercise 9.35: Factor n5 + n4 + 1 algebraically. To see
how, let n = 0, 1, 2, 3, 4, and look for patterns in how
the values of n5 + n4 + 1 factor (as integers) in order
to guess an algebraic factor. If you can guess one fac-
tor, use long division of polynomials to find the other.

§

Exercise 10.1: (a) 9; (b) 89; (c) 0; (d) 3; (e) 0; (f) 6;
(g) 0; (h) 1.

Exercise 10.4: It would be boring.

Exercise 10.6: (a) ax ≡ ay mod am iff am|(ax − ay)
iff am = (ax − ay)k for some integer k. Since a 6= 0,
this holds iff m = (x − y)k iff m|(x − y) iff x ≡ y
mod am.
(b) 12x ≡ 18 mod 30 iff 2x ≡ 3 mod 5 iff x ≡ 4 mod
5. This means that x has the form x = 4 + 5t mod 30,
where t ∈ Z, so that x ∈ {4, 9, 14, 19, 24, 29} mod 30.

Exercise 10.7: If n is even, then n = 2k for some inte-
ger k. If n is odd, then n = 2k + 1 for some integer k.
What does this tell us (in each case) about n2 mod 4?

Exercise 10.9: Never.

Exercise 10.12: What happens mod 5? Does this
equation have any solutions mod 5?

Exercise 10.15: What happens mod 4?

Exercise 10.20: {1, 2, 4, 7, 8, 11, 13, 14} are the units
mod 15. The zero divisors are {0, 3, 5, 6, 9, 10, 12}.

Exercise 10.23: (a) x ≡ 67 mod 77 (b) x ≡ 34
mod 63 (c) No solutions. (d) x ≡ 5 mod 7, so that
x ∈ {5, 12, 19, 26, 33, 40} mod 42.

Exercise 10.27: No.

Exercise 10.28: What happens if n = 2? If n > 2, then
what happens mod 8?

Exercise 10.30: When the modulus m is small, there
are only a few cases to check in order to solve any
polynomial equation.

Exercise 10.32: (a) If n is even, try algebraic factoring.
If n is odd, consider the situation mod 3.
(b) Prove that n ≥ 4, and use an argument mod 16 to
show that 4|m. Then show the equation is impossible
mod 5.

§

Exercise 11.3: x ≡ 869 mod 1435

Exercise 11.4: −566

Exercise 11.5: 173

Exercise 11.9: x ≡ 98 mod 105.

Exercise 11.10: Since x2 ≡ 3 mod 11, we have x ≡ 5
mod 11 or x ≡ 6 mod 11. Combine each of these
cases with the condition x ≡ 1 mod 5 to find exactly
two distinct solutions mod 55.

Exercise 11.11: Each quadratic equation has two dis-
tinct solutions in its respective modulus. Apply the
Chinese remainder theorem to each pairing to find 4
distinct solutions mod 65.

§

Exercise 12.5: Since 37 · 27 = 999, it follows that
1000 ≡ 1 mod 37. Use this to show that any large
number is congruent to the sum of its groupings into
blocks of 3 decimal digits.

Exercise 12.10: Use the fact that 16 ≡ 1 mod 15.

§

Exercise 13.2: (a) True; (b) False; (c) True; (d) True;
(e) False; (f) False.

Exercise 13.5: 4

Exercise 13.6: 5

Exercise 13.8: 8

Exercise 13.9: 8

Exercise 13.12: 6

Exercise 13.13: 9

§

Exercise 15.2: 39

Exercise 15.3: 17

Exercise 15.6: Wilson’s theorem makes this problem
much easier.

Exercise 15.11: Check the cases of n ∈ {0, 1, 2, 3}.
Then use Fermat’s theorem to finish the proof.

Exercise 15.12: The case where n is prime follows im-
mediately from Fermat’s Theorem. If n = pk , where
p is prime, then a similar argument also works. If
n = pq where p < q are prime, then gcd(p− 1, q) = 1,
so that (p− 1)x + qy = 1 for some integers x, y. Com-
bine this observation with Fermat’s Theorem to verify
the case of n = pq, and then generalize this approach
to solve the problem.

Exercise 15.14: Do Exercises 15.12 and 15.13 first.

§

Exercise 16.4: Use the final expression in the identity
of Proposition 16.5.

Exercise 16.6: φ(3) = φ(4) = φ(6) = 2;
φ(5) = φ(8) = φ(10) = φ(12) = 4;
φ(7) = φ(9) = φ(14) = φ(18) = 6.

Exercise 16.7: What happens when n is odd? When
n is even?
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Exercise 16.11: The probability is 0.4; that is, a 40%
chance.

Exercise 16.19: The geometric sum formula (3.2) is
helpful.

Exercise 16.31: What is φ(100)?

Exercise 16.32: Euler’s theorem doesn’t work for this
problem. (Why not?)

Exercise 16.33: The answer is 01. (Be careful with
your use of Euler’s theorem in this exercise.)

Exercise 16.38: (a) 3; (b) 4; (c) 1; (d) 5; (e) 6; (f) 4.

§

Exercise 17.1:
(a) DOITTWICETOGETTHEORIGINALTEXTBACK;
(b) N.

Exercise 17.2: (a) DWWDFNDWGDZQ; (b) UFEUOVUFOUIY.

Exercise 17.4: (a) ITHINKTHEREFOREIAM;
(b) A(x) ≡ 25− x mod 26.

Exercise 17.11: (c) It’s a really bad idea, because this
function c(x) is not invertible. As a result, different
plaintexts may encrypt to the same ciphertext, and
there is no well-defined method for decryption.

Exercise 17.12: 85

Exercise 17.13: d = 141.

Exercise 17.14: p = 3537197 and q = 4888861 (or vice
versa).

§

Exercise 18.1: 1 mod 4; 1 mod 5; 1, 2, and 4 mod 7.

Exercise 18.2: 1 and 6 mod 7; 1, 5, 8, and 12 mod 13.

Exercise 18.3: Yes, there are a total of eight distinct
solutions.

Exercise 18.5: Look for roots!

Exercise 18.8: (b) and (d) are irreducible. The others
can be factored.

§

Exercise 19.1: (c) There is no solution mod 2, and
therefore no solution mod 250; (d) Use the Chinese
remainder theorem to combine solutions mod 3 with
your solutions from part (b).

Exercise 19.2: (b) There is no solution mod 27.

Exercise 19.3: (a) Notice that x4 + x + 23 ≡ x4 + x.
Factor this.
(b) There are 4 distinct solutions mod 25.
What are they?

(c) There are 8 distinct solutions mod 575.
What are they?

Exercise 19.4: Combine the Chinese remainder theo-
rem with the factorizations 999 = 27 · 37 and 1001 =
7 · 11 · 13 to simplify this problem.

Exercise 19.6: 1, −1, 2n−1 + 1, 2n−1 − 1.

§

Exercise 20.1: Since φ(23) = 22, the only possible val-
ues for an order mod 23 are 1, 2, 11, and 22. Since 23
is prime, only −1 can have order 2, so every value
k 6≡ ±1 must have order 11 or 22. These are the only
exponents that need to be checked. It turns out that
ord23(2) = ord23(3) = 11, and ord23(5) = 22.

Exercise 20.2: Note that 13 ≡ 3 mod 10.

Exercise 20.3: (a) 3 and 7 are primitive roots mod 10.
(b) No.

Exercise 20.6: ord8(1) = 1 and ord8(3) = ord8(5) =
ord8(7) = 2. There are no primitive roots mod 8.

Exercise 20.11: (a) Let u = r
p−1

2 . Show that u2 ≡ 1,
but that u 6= 1. What other possibilities remain?
(b) An idea: Let β = ordp(−r). What happens if β is
even? What if β is odd?
(b) A different idea: Use part (a) to show that −r ≡
r

p+1
2 . Combine this with Proposition 20.3 and that

fact that p ≡ 1 mod 4.
(c) No! (Why not?)

Exercise 20.14: What is ordn(b2)? Is Proposition 20.5
helpful?

Exercise 20.16: Write φ(m) = αs. Show that
ordm(rs) = α. Then show that if ordm(rt) = α, then
s|t. Now apply Proposition 20.3 to u = rs.

Exercise 20.17:
(a) Since q|(Mp−1 + Mp−2 + · · · + M + 1) we have
Mp−1 + Mp−2 + · · ·+ M + 1 ≡ 0 mod q. What hap-
pens if q = p?
(b) Same hint as part (a). What happens if q = qi for
some i?
(c) Recall that
Mp − 1 = (M− 1)(Mp−1 + Mp−2 + · · ·+ M + 1).
(d) By part (c) and Proposition 20.1, we have α|p.
What happens if α = 1?
(e) Combine part (d), Fermat’s theorem, and Proposi-
tion 20.1.

§

Exercise 21.3: 5, 7, 9, 10, 14, 18.

Exercise 21.4: 2, 3, 4, 6.

Exercise 21.5–21.9: These exercises are most easily
understood if done together, in the order presented.

§
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Exercise 22.1: (a) {1}; (b) {1, 4}; (c) {1};
(d) {1, 4}; (e) {1, 2, 4, 8, 9, 13, 15, 16};
(f) {1, 4, 6, 9, 11, 14, 16, 19, 21, 24}.

Exercise 22.2: (a) −1; (b) −1; (c) −1; (d) −1; (e) 1;
(f) 1; (g) −1; (h) 1; (i) 1.

Exercise 22.7: It helps to recall that φ(m) is even.

Exercise 22.6: (a) Yes. (b) No.

Exercise 22.13: Implication in one direction is still
true, but the other direction may fail to hold.

Exercise 22.14: Since each modulus is in this exercise
is odd, the quadratic formula applies (why?). There-
fore, each polynomial in this exercise has a root in its
given modulus iff its discriminant has a square root
in that modulus.

Exercise 22.19: (a) True. Prove it! (b) False. Find a
counterexample.

Exercise 22.20: Yes, you can find one. Keep looking!

§

Exercise 23.3: If p ≡ 1 mod 12, what is p mod 4?
Write p = 12k + 1, and apply the law of quadratic

reciprocity to the Legendre symbol
(

3
p

)
.

Exercise 23.4: (a)
(

5
p

)
= 1 iff p ≡ ±1 mod 5.

Exercise 23.5: Find a condition mod 28.

Exercise 23.6: (a), (d), (i) −1; the rest are 1.

Exercise 23.7: (a) 23; (b) 71; (c) 7.

Exercise 23.8: First show that 3m ≡ −1 mod p.

Exercise 23.11: −1.

§

Exercise 25.1: 6 is a quadratic residue mod 25 and
mod 95. It is a non-residue mod 35. It is a perfect
square mod 75, but not a quadratic residue, since 6 is
not a unit mod 75.

Exercise 25.2: All yes except mod 65.

Exercise 25.5: Every odd prime p dividing m must
satisfy p ≡ 1 mod 4. If m is even, then we must have
m ≡ 2 mod 4 as well.

Exercise 25.6: Every prime p dividing m must satisfy
p ≡ ±1 mod 8.

Exercise 25.13: {0, 1} mod 3; {0, 1, 4, 7} mod 9;
{0, 1, 4, 6, 9, 10} mod 15; and
{0, 1, 4, 7, 9, 10, 13, 16, 19, 22, 25} mod 27.

§

Exercise 26.1: (a) 0; (b) −1; (c) 1; (d) 1; (e) −1; (f) −1;
(g) 0; (h) 1; (i) −1.

Exercise 26.2: (a) 1; (b) 1; (c) 0; (d) −1; (e) 1; (f) −1.

Exercise 26.6: Quadratic reciprocity allows us to in-
vert this Jacobi symbol. Simplifying in the smaller
modulus then yields(

17292864462617
17292864462677

)
=

(
17292864462677
17292864462617

)
=

(
60

17292864462617

)
Now finish the computation. (The final answer is 1.)

Exercise 26.9: (a) Show that, if a2b is a quadratic
residue in every modulus, then so is b. Then apply
the minimality assumption.
(b) The Chinese remainder theorem is helpful at this
step.
(c) Similar to (b).
(d) See part (vi) of Proposition 26.1.

§

Exercise 27.2: (a) (t2− a)α; (b) (t2− a)−1α; (c) −a− α;
(d) 2t2 − a + 2tα.

Exercise 27.4: (a) n must be even. (b) If n is even then
αn ≡ (t2 − a)

n
2 . If n is odd then αn ≡ (t2 − a)

n−1
2 α.

Exercise 27.8: Suppose that x = r + sα is a solution,
where r, s ∈ Zp. Derive a contradiction. Keep in
mind that p ≡ 1 mod 4.

Exercises 27.11 and 27.12: ±11 mod 37.

Exercise 27.13: (a) ±41 mod 151; (b) ±12 mod 71;
(c) ±29 mod 103; (d) ±39 mod 101;
(e) ±26 mod 61; (f) ±16 mod 127.

§

Exercise 28.3: To prove the assertion without appeal-
ing to Euclid’s formula, consider what happens mod
8.

Exercise 28.4: What happens mod 4?

Exercise 28.7: Use Euclid’s formula (28.2).
What happens when Y = X + 1?

Exercise 28.9: Use Theorem 28.3. (b), (d), (e), and (h)
are sums of two integer squares; the rest are not.

Exercise 28.10: Use Lemma 28.4 and the fact that
2 = 12 + 12.

Exercise 28.14: Use Lemma 28.4 in two different
ways.

§

Exercise 29.4: Do Exercise 29.3 before this one.

Exercise 29.5: (a) x5 = 2; (b) 25.
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Exercise 29.6: (a) 8; (b) 01010101 . . . (repeating);
(c) 11010010 . . . (repeating).

Exercise 29.7: (a) 4; (b) 01010101 . . . (repeating);
(c) 1100 . . . (repeating).

Exercise 29.8: (a) 18;
(b) 101000010010111101 . . . (repeating);
(c) 111111100011101110 . . . (repeating).

Exercise 29.9: Prove that xn+1 ≡ axn + b mod 4, and
use this observation to prove parts (a) and (b).

Exercise 29.10: Prove that xn+1 ≡ axn + b mod p, and
use this observation to complete the proof.

Exercise 29.12:
(a) Prove that xn ≡ x0 mod m for all n ≥ 0, resulting
in a constant sequence.
(b) Prove that, for some prime p|m, we have xn ≡ x0
mod p for all n ≥ 0, resulting in a sequence that
is constant mod p (and therefore of relatively short
period mod m).

§

Exercise 30.4: Since 29017 ≡ 1399 mod 9017, the inte-
ger 9017 cannot be prime.
In case you’re curious, 9017 = 71 · 127, but the point
of this exercise is to show that 9017 is composite with-
out knowing or finding the actual factorization.

Exercise 30.6: Note that 1105 = 5 · 13 · 17 and 2465 =
5 · 17 · 29.

Exercise 30.7: Use Theorem 30.1. Note that the con-
dition (p − 1)|(n − 1) is equivalent to checking that
n ≡ 1 mod p− 1.

§

Exercise 31.1: Only ±1 (that is, 1 or 14 mod 15) give
false positives. Assuming the algorithm chooses a
uniformly random test value a ∈ {1, 2, . . . , 14}, the
probability of error in this case is therefore 1/7 or
about 14.3%.
This problem can be solved by brute force (checking
all 14 cases), but it can also be reasoned out: Since
φ(15) = 8, we have a8 ≡ 1 mod 15 for all units.
Meanwhile, (15 − 1)/2 = 7, so that a7 ≡ ±1 only
when 1 ≡ a8 ≡ ±a. Equivalently, this means that
a ≡ ±1 are the only units mod 15 can give values
that agree with the Jacobi symbol.

Exercise 31.2: Only ±1 (that is, 1 or 14 mod 15) give
false positives. Assuming the algorithm chooses a
uniformly random test value a ∈ {1, 2, . . . , 14}, the
probability of error in this case is therefore 1/7 or
about 14.3%.

Exercise 31.3: The integer 90109 is composite. The
other integers in the list are prime.

Exercises 31.4 and 31.5: The integers 4115181073 and
1111111111111111111 are prime. The other integers
in the list are composite.

Exercises 31.6: The smallest prime integer p greater
than 1020 is 100000000000000000039.

§

Exercise 32.1 :
225
157

.

Exercise 32.2: [3, 5, 1, 1, 6].

Exercise 32.5: x =
3 +
√

21
6

.

§

Exercise 33.2: (a) We are given

α = m +
1

n +
1
α

so that
nα2 −mnα−m = 0

and, since α > 0,

α =
mn +

√
m2n2 + 4mn
2n

(b) If n = 1, and if we make m even, say m = 2k (in
order to clear the denominator), we have

α =
2k +

√
4k2 + 8k)
2

= k +
√

k2 + 2k

If k = 3 (that is, m = 6) then k2 + 2k = 15, so that

3 +
√

15 = [6, 1, 6, 1, 6, 1, 6, . . .]

and √
15 = [3, 1, 6, 1, 6, 1, 6, . . .].

Exercise 33.4:
√

7 = [2, 1, 1, 1, 4]

Exercise 33.5: First evaluate the purely periodic con-
tinued fraction [1, 8]. Then substitute this value ap-
propriately into the expression [1, 6, 1, 8] to determine
the value of x.

Exercise 33.6: Your answer should be:

3√2 = [1, 3, 1, 5, 1, 1, 4, 1, . . .].

The expansion continues as:

[1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, . . .],

with no discernible pattern.

§ § § §



Esse
ntia

ls
of

Number

The
ory

by
Dan

iel
A. K

lai
n

References

[1] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers,
Ann. Math., 139 (1994), 703-722.

[2] N. Ankeny, Sums of three squares, Proc. Amer. Math. Soc., 8 (1957), 316-319.

[3] T. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.

[4] M. Artin, Algebra (2nd edition), Pearson, New York, 2010.

[5] L. Blum, M. Blum, and M. Shub, A simple unpredictable pseudo-random number generator,
SIAM J. Comput., 15 (1986), 364-383.

[6] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, New York, 1996.

[7] H. Cohn, A short proof of the simple continued fraction expansion of e,
Amer. Math. Monthly, 113 (2006), 57-62.

[8] H. Davenport, The Higher Arithmetic (8th edition), Cambridge University Press, New York,
2008.

[9] W. Dunham, Euler: The Master of Us All, MAA, New York, 1999.

[10] P. Garrett, Making, Breaking Codes: An Introduction to Cryptology,
Prentice Hall, Upper Saddle River, NJ, 2001.

[11] C. F. Gauss, Disquisitiones Arithmeticae (translated by W. C. Waterhouse, A. A. Clarke, et al.),
Springer, New York, 1986.

[12] W. Gosper, Continued fraction arithmetic, http://www.tweedledum.com/rwg/cfup.htm

[13] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (6th edition),
Oxford University Press, New York, 2006.

[14] A. Khinchin, Continued Fractions, Dover, New York, 1979.

[15] D. Knuth, Mathematics and computer science: Coping with finiteness,
Science, 194 (1976), 1235-1242.

[16] D. Knuth, The Art of Computer Programming, Volume II (3rd edition),
Addison-Wesley, New York, 1998.

[17] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, New York, 2000.
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Bertrand’s postulate, 50

binary, 24

binomial coefficient, 16, 51, 60

binomial theorem, 17

Birthday Problem, 75

bit, 24

Blum-Blum-Shub, 164

Caesar cipher, 91

cancellation law, 9, 56

Carmichael number, 167

Catalan’s conjecture, 61

checkdigit, 70

Chinese remainder theorem, 62, 106

Cipolla’s algorithm, 146

co-prime, 29

composite, 44

continued fraction, 36, 176

convergent, 177

cousin primes, 49

cubic residue, 125, 151

decimal, 23

Des Knaben Wunderhorn, 5

Diffie-Hellman, 96

Diophantine equation, 29

existence of solutions, 38

solution by continued fraction, 36

solution by matrix reduction, 39

Dirichlet’s theorem, 48, 113

division with remainder, 20

divisor, 19

Euclid’s algorithm, 28

Euler criterion, 121

Euler’s function, 82

even parity bit, 70, 161

factor, 19

Factor theorem, 101

factorization, 45, 73

Fermat primes, 49

Fermat’s Last Theorem, 154

Fermat’s theorem, 78

Fibonacci number, 13, 22, 31, 61, 187

frequency analysis, 91

fundamental theorem of arithmetic, 45

Gauss’s lemma, 123, 129

gcd, 27

geometric sum, 15

Goldbach’s conjecture, 49

greatest common divisor, 27

Hensel’s lemma, 104

hexadecimal, 25

Hull-Dobell theorem, 163

iff, 67

induction, 10

inverse, 57

irrational number, 21

ISBN, 70

Jacobi symbol, 140

Knuth’s up-arrow, 88
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lattice points, 130

LCG, 162

lcm, 33

least common multiple, 33

Legendre symbol, 122, 140

Lehmer generator, 164

linear congruential generator, 161

Mersenne prime, 49, 88

middle square algorithm, 161

Miller-Rabin test, 173

modulus, 53

Möbius function, 86

Möbius Inversion Formula, 88, 119

mod, 53

multiple, 19

multiplicative function, 85

octal, 25

one-time pad, 94

ord, 109

order, 109

parity, 21

parity bit, 70

partial quotient, 177

perfect number, 88

perfect square, 51

over a modulus, 137

Pollard’s Rho, 73, 175

primality test, 167, 170

prime factorization, 45, 73

prime number, 44

infinitude of, 47, 50, 51, 125, 144

prime number theorem, 50

primitive root, 110

PRNG, 160

pseudoprime, 167

pseudorandom number generator, 160

public key, 95

Pythagorean triple, 152

quadratic reciprocity, 126

for Jacobi symbols, 142

quadratic residue, 120, 145

over composite moduli, 133

quotient, 20

rational number, 13

regular continued fraction, 177

relatively prime, 29, 32

remainder, 20

RSA, 97

seed, 160

sexy primes, 49

simple continued fraction, 177

Solovay-Strassen test, 170

square-free, 51

symmetric key, 95

Tonelli-Shanks algorithm, 146

twin primes, 48

unique factorization, 45

unit, 44

UPC, 71

Vigenère cipher, 91

well-ordering, 10

Wilson’s theorem, 80

zero divisor, 58
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