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Abstract—Speech and song are two types of vocal communica-
tions that are closely related to each other. While significant
progress has been made in both speech and music emotion
recognition, few works have concentrated on building a shared
emotion recognition model for both speech and song. In this
paper, we propose three shared emotion recognition models for
speech and song: a simple model, a single-task hierarchical model,
and a multi-task hierarchical model. We study the commonalities
and differences present in emotion expression across these two
communication domains. We compare the performance across
different settings, investigate the relationship between evaluator
agreement rate and classification accuracy, and analyze the
classification performance of individual feature groups. Our
results show that the multi-task model classifies emotion more
accurately compared to single-task models when the same set
of features is used. This suggests that although spoken and sung
emotion recognition tasks are different, they are related, and can
be considered together. The results demonstrate that utterances
with lower agreement rate and emotions with low activation
benefit the most from multi-task learning. Visual features appear
to be more similar across spoken and sung emotion expression,
compared to acoustic features.

I. INTRODUCTION

Speech and song are often considered overlapping forms of
vocal expression. For example, in ancient Greek, the words for
singing and speaking do not have the distinct meanings they
do today [1]. Further, emotion is expressed over both song
and speech. Previous works have looked into the acoustic and
visual cues in spoken and sung emotional communication [2]–
[4], and significant progress has been made in both speech and
music emotion recognition [5]–[9]. However, few works have
concentrated on building shared emotion recognition models
for song and speech. A shared model is desirable because it
generalizes across types of vocal communications, which may
help combat data scarcity.

In this work, we predict emotion expressed in speech and
song using shared models and analyze the commonalities
and differences present in emotion expression across these
two communication domains. We propose three models for
shared emotion recognition from speech and song: (1) a simple
model, where a single classifier is built to recognize emotions
in both domains; (2) a single-task hierarchical model, where
domain classification is performed first, followed by emotion
classification of speech and song; (3) a multi-task hierarchical
model, where the independent emotion classifiers in (2) are
considered together in a multi-task setting. Domain refers to
speech and song in this paper. For models (2) and (3), domain

information is required only for the training data. Finally, we
use two different feature selection techniques, one selecting
features on all training data, regardless of domain, and the
other selecting features separately for speech and song.

The results show that the multi-task hierarchical model
outperforms the other two models when the same set of
common features is used, and can either outperform or obtain
comparable results compared to models using features specifi-
cally selected for each domain. This supports the relatedness of
speech and song emotion classification. We find that separate
feature selection for song and speech works better than com-
bined feature selection in the single-task hierarchical model,
but does not outperform the multi-task hierarchical model.
This indicates that emotion expressions in song and speech
modulate some features differently, but also share feature
modulations. In addition, utterances with lower agreement
rate and emotions with low activation benefit more from
multi-task learning compared to high agreement and high
activation utterances. Classification using individual feature
sets demonstrated that visual features are more consistent
across speech and song than acoustic features. The novelty of
this paper includes: (1) combining speech and song emotion
recognition into a unified framework; (2) introducing multi-
task learning to emotion recognition from different domains
of vocal communications.

II. RELATED WORKS

A. Music and Speech Emotion Recognition

Previous works on music and speech emotion recognition
have investigated the emotion information encoded in audio
[10], [11], video [7], [12] and audio-visual cues [8], [9]. Both
acoustic and visual features have been demonstrated useful for
speech emotion recognition. Although most works on music
emotion recognition depend on acoustic features [6], a study of
the use of facial movement to communicate emotion shows the
importance of facial expressions in emotional communication
during singing performances [13]. In spite of the fast progress
of both speech and music emotion recognition, few works have
considered emotion recognition from musical (song) and non-
musical (speech) vocal communication as related tasks and
built shared emotion recognition models.



B. Comparison between Singing and Speaking Emotion Com-
munication

Past researchers have looked at the similarity between music
and speech emotion communication. Juslin and Laukka [14]
conducted a meta-analysis of studies analyzing speech and
music performance. They found that some acoustic features
play similar roles in both music and speech emotion commu-
nication. For example, anger is associated with fast tempo,
high sound level and elevated high-frequency energy in both
music and speech. Ilie and Thompson [15], [16] found that
the manipulation of certain acoustic features of music and
speech, such as loudness and rate, resulted in similar emotion
perception. For example, loud excerpts were judged as more
pleasant, energetic, and tense. The work of Weninger et al. [17]
investigated the shared acoustic features in speech, music and
sound and introduced the cross-domain correlation coefficient
as a measure of relevance. Their results indicate that there may
be shared and divergent properties in emotion communication
across domains of expression.

Researchers have analyzed feature-level properties, compar-
ing spoken and sung emotion expressions. Scherer et al. [2]
compared emotion expression in singing and speaking. They
found that there were significant differences in the acoustics
across emotion classes in sung communication. Moreover, they
found a high degree of similarity, comparing the patterns of
sung expressions and spoken expressions of emotion. Our pre-
vious work [18] investigated emotion perception in singing and
speaking using within-domain and cross-domain prediction
models. The results suggested that activation is perceived more
similarly across domains, compared to valence. Furthermore,
visual features capture cross-domain emotion more accurately
than acoustic features.

Livingstone et al. conducted experiments and analyses on
the similarities and differences in the acoustic [3] and visual
[4] cues between spoken and sung emotion expression. They
found that emotion is conveyed similarly in many acoustic
features across speech and song. They also reported differ-
ences in several acoustic parameters, including vocal loudness,
spectral properties and vocal quality [3]. In [4], they found
that emotion-dependent movements of the eyebrows and lip
corners are similar between speech and song, yet the jaw
movements were coupled to acoustic intensity and thus show
difference across spoken and sung emotion expression. They
also found that facial expressions conveyed emotion more
accurately than vocal expressions for sung stimuli. These
findings provide evidence for the links between speech and
song, and give support to the notion of building a shared model
for speech and song emotion recognition. However, it is not
yet clear how the similarities and differences between spoken
and sung expressions of emotion can be used to build a shared
model.

C. Multi-class and Multi-task SVM

Support Vector Machine classifiers (SVM) were originally
designed for binary classification. There are currently two
types of approaches for multi-class SVM: one builds and

combines multiple binary classifiers, while the other consid-
ers all data in one optimization problem [19], [20]. Typi-
cal methods of the former approach includes one-against-all
[21], one-against-one [22], [23] and directed acyclic graph
SVM (DAGSVM) [24]. Experiments comparing these two
approaches showed that the combinations of binary classi-
fiers outperformed the all-in-one multi-class optimization in
both classification accuracy and training/testing time, and
demonstrated that one-against-one method and DAG are more
suitable for practical use [25].

In [26], Evgeniou et al. extended single-task SVMs to multi-
task scenario. This extension is based on the assumption that
there are T related tasks that share the same space. It solves
multiple tasks together by imposing a regularization constraint
on the average model and controlling the differences between
the tasks using additional model parameters. Empirical results
show that this multi-task SVM outperforms earlier multi-
task learning methods as well as single-task SVM. Evgeniou,
Micchelli and Pontil [27], [28] improved the idea of [26]
by proposing multi-task kernels. They developed multi-task
kernels to extend the single-task learning methods that use
kernels to multi-task learning. These methods all require that
the tasks are label-compatible (tasks sharing the same set of
labels). The work of [29] lessened the requirement for a shared
space between tasks. Ji and Sun proposed a multi-task multi-
class SVM based on the single-task version of multi-class
SVM that considers all data in one optimization formulation
[20], [25]. The main advantage of this method is that it can
support label-incompatible multi-task learning (tasks having
different sets of labels), since the multi-class classification
problem does not depend on a set of binary classifiers.

III. DATASETS

We use the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) [30] and the University of
Michigan Song and Speech Emotion Dataset (UMSSED) [18].

A. The RAVDESS Dataset

The RAVDESS dataset is used in [3], [4] for investigating
the similarities and differences in acoustic and visual signals
of emotional singing and speaking. It contains audio-visual
recordings of 24 performers (12 male, 12 female) speaking
and singing the same two sentences with different emotions at
normal and strong emotional intensity, each with two repeti-
tions. The speech recordings consist of 8 emotions, including
neutral, calm, happy, sad, angry, fearful, disgust and surprise.
The song recordings consist of the first 6 emotions. Three
melodies were composed for the singing performances: one
each for neutral, positively valenced and negatively valenced
emotions. The melodies only differ in two notes in the middle.

The emotion content of the dataset was evaluated by 350
human participants, each utterance receiving 10 ratings from
10 different participants. The participants were asked to iden-
tify the emotion expressed by the performer from the set of
the target emotions, or indicate none is correct. An agreement
rate ranging from 0 to 1 was calculated for each utterance.



(a) Simple Model (b) Single-task Hierarchical Model (c) Multi-task Hierarchical Model

Fig. 1. Three emotion classification models: (a) simple model, (b) single-task hierarchical model and (c) multi-task hierarchical model. In (a), testing data enter
a single emotion classifier trained on all training data, regardless of domain. In (b), a domain classifier and two separate domain-specific emotion classifiers
are trained. Testing data is first classified into speech or song domain, and then enter the corresponding classifier accordingly. In (c), a domain classifier and
a multi-task classifier are trained. The task which the testing data belong to is decided by the domain classification result.

A score of 1 means total consensus between evaluators and
the target emotion, while a score of 0 means complete lack of
consensus. The evaluators also rated the emotional intensity
and the emotional genuineness of the performer.

We only used utterances with normal intensity to avoid us-
ing exaggerated performances. We further decrease the dataset
to address two concerns: (1) there are two emotions unique
to speaking and (2) one performer has only speaking data.
These characteristics introduce dependencies between domain,
emotion, and performer that could bias the results. Therefore,
we eliminated the disgust and surprise utterances and dropped
the performer with only speaking data. This results in 1104
audio-visual utterances in total (2 domains × 23 performers ×
6 emotions × 2 sentences × 2 repetitions). The target emotion
of performers is used as ground truth because the perceived
emotion labels are not yet available. The average agreement
rate of the target emotion is 0.69. The chance rate of agreement
and classification accuracy are both 16.7%. See [3], [4], [30]
for additional details.

B. The UMSSED Dataset

The UMSSED Dataset consists of audio-visual recordings
of three performers (1 female, 2 male) singing and speak-
ing seven semantically neutral sentences [18]. Each sentence
is embedded into passages associated with angry, happy,
neutral and sad emotions to facilitate emotionally evocative
performances. Seven melodies were composed to match the
passages, one each for the seven sentences. The four emotion
variations of each target sentence are accompanied by the
exact same melody. This results in 168 utterances in total
(2 domains × 3 performers × 4 emotions × 7 sentences).
The target sentence was segmented out from the remainder of
the passage and evaluated using Amazon Mechanical Turk by
183 evaluators. Each utterance was evaluated by 20.9 ± 1.7
participants. The evaluators were required to assess the pri-
mary emotion of the utterance from the set of angry, happy,
neutral, sad and other, and to rate the valence, activation and

dominance level. We used the target emotion of performers
as ground truth to match the RAVDESS data. The average
agreement rate of the target emotion is 0.62. The chance rate
of agreement and classification accuracy are both 25%. Please
see [18] for additional database details.

IV. METHODOLOGY

A. Feature Extraction

Audio-visual features were extracted to predict emotion
expressed in song and speech.

1) Acoustic Features: We used the low level descriptors
(LLDs) described in the Interspeech 2013 Computational
Paralinguistics Evaluation (ComParE) feature set [31]. The
feature set includes 4 energy, 41 spectral, 14 cepstral (MFCC)
and 6 voicing-related LLDs. We used openSMILE [32] to
extract the 65 LLDs. We applied statistics including mean,
standard deviation, max, min, range, interquartile range, mean
absolute deviation, skewness and kurtosis to the non-silence
part of the LLDs and delta LLDs to generate utterance-level
acoustic features. This resulted in 1170 features.

2) Visual Features: We extracted the probabilities of 20
facial action units (AUs), left and right unilateral AUs of 3 AUs
within the 20 (Lip Raise, Lip Corner Pull and Dimpler), and 2
AU groups (Fear Brow and Distress Brow) at the frame-level,
using CERT [33]. Action units are the fundamental actions
of individual muscles or groups of muscles. We applied the
same set of statistics as above to the frame-level LLDs and
delta LLDs, which results in 504 utterance-level features.

B. Classification Models

We present three emotion classification models as shown in
Fig. 1. The simple model (Fig. 1a) creates a single classifier,
independent of domain. The two hierarchical models (Fig. 1b
and 1c) use domain during training. The single-task model
(Fig. 1b) trains a separate emotion classifier for each domain.
The multi-task model (Fig. 1c) trains a multi-task classifier
to jointly predict emotion across both domains. In the testing



phase, the testing data are separated based on the predicted do-
main. The data are analyzed using the classifier corresponding
to the estimated domain (Fig. 1b and 1c).

We adopted the directed acyclic graph SVM (DAGSVM)
[24] as our single-task multi-class emotion classifier.
DAGSVM is identical to the one-against-one SVM in the
training phase. It constructs a binary classifier for each pair
of classes, thus for a multi-class problem with k classes,
k(k − 1)/2 classifiers are trained. In the testing phase, the
DAGSVM uses a rooted binary directed acyclic graph that
contains k(k − 1)/2 internal nodes and k leaf nodes. Each
internal node represents a binary classifier. Each test case starts
from the root node and moves to the left or right depending
on the output of the classifier until a leaf node indicating the
predicted class is reached. One advantage of DAGSVM is that
it has a shorter testing time than the one-against-one method,
but still has similar classification performance [25]. We used
the implementation of [25], which is built on LIBSVM [34].

We used the regularized multi-task SVM [26] for the second
stage of our multi-task hierarchical model. We did not select
the more recent multi-task SVM in [29] because its main
advantage is the ability to support label-incompatible tasks,
while in this paper, the tasks are label-compatible.

The method of Evgeniou et al. [26] extends single task
SVMs to multi-task scenario by explicitly taking the relation-
ship between learned weights in different tasks into account.
For T related tasks that share the same feature space X and
label space Y , this method learns T classifiers w1, ..., wT ,
where wt is specific to task t. The wt can be written as
w0 + vt, where w0 is the shared information across all tasks.
The values of w0 and vt can be obtained by solving the
following optimization function

min
w0,vt,εt,i

λ1
T
||vt||22 + λ2||w0||22 +

T∑
t=1

mt∑
i=1

εt,i, (1)

s.t.∀t, i, yt,i(w0 + vt) · xt,i ≥ 1− εt,i, εt,i ≥ 0. (2)

Here, t is the index of the task, i is the index of the utterance,
εt,i is the error term, λ1 and λ2 are two non-negative constants
that control the relationship between the tasks. Solving the
dual form of the above optimization function is equivalent
with the standard C-Support Vector Classification (C-SVC),
but replacing the kernel function with

Kφ(i)φ(j)(xi, xj) = (δφ(i)φ(j) +
1

µ
)k∗(xi, xj), (3)

where k∗(xi, xj) stands for regular kernel functions, φ(i) is
the task xi belongs to, δφ(i)φ(i) = 1 if φ(i) = φ(j) and 0
otherwise, and µ is a parameter for controlling the similarities
between tasks. In the two extreme cases, the tasks are the same
when µ→ 0, and are completely decoupled if µ→∞.

There are two parameters that must be selected: the cost
parameter C for the training error, as in the standard C-SVC,
and the parameter µ. In this work, we used the RBF Gaussian
kernel for k∗(xi, xj), and thus introduced another parameter
γ that controls the bandwidth of the Gaussian function.

V. EXPERIMENTAL SETUP

A. Performer Normalization

For the 1674 utterance-level features, we used performer
dependent z-normalization across all utterances of the same
performer such that each feature of each individual performer
has zero mean and standard deviation of one. This method
is commonly adopted in emotion recognition to mitigate the
intrinsic differences in the vocal characteristics and facial
muscle movements of speakers [9], [35]

B. Cross Validation

We used different cross validation paradigms for the two
datasets to measure the performance of the models. For
UMSSED, we used leave-one-performer-out cross validation
(one performer as testing data, others used for training data).
As the RAVDESS has very limited lexical variability, we
used leave-one-performer-and-sentence-out cross validation to
avoid overfitting to specific lexical content. In each round,
one sentence from one performer serves as testing data.
The training data are composed of the other performers and
other sentence. Each performer is associated with two cross-
validation folds, one for each sentence. The parameter tuning
process was performer-independent and based only on the
training set. The parameters of the models were selected
using a grid search by optimizing the 5-fold cross-validation
accuracy of the training data.

C. Feature Selection

We reduced the dimensionality of the feature set by select-
ing task-related features using Information Gain [36] on the
training data. The number of features selected was decided
by maximizing the average cross-validation accuracy of the
training data. We selected features across domain (song and
speech) for the simple model and the emotion classification
phase of both the single-task hierarchical model (st-hier)
and the multitask hierarchical model (mt-hier). We selected
domain-specific features for the single-task hierarchical model
with separate feature selection (st-hier-sfs). The mean and
standard deviation of the number of features selected for
domain and emotion classification are 150±141 and 283±144,
respectively.

VI. RESULTS AND ANALYSIS

A. Performance of Different Models

Table I shows the emotion classification accuracy of the
simple model, single-task hierarchical model (st-hier), single-
task hierarchical model with separate feature selection (st-hier-
sfs) and the multi-task hierarchical model (mt-hier) on the
RAVDESS and UMSSED datasets. The domain classification
used for the latter two models has an accuracy of 99% on
RAVDESS and 97% on UMSSED. We can observe that when
all three models use the same features, the mt-hier model
outperforms the other two in both datasets. The difference
is statistically significant for RAVDESS, where significance is
asserted at α = 0.05 (paired t-test, p=0.002 for simple and



TABLE I
EMOTION CLASSIFICATION ACCURACY OF DIFFERENT MODELS (%)

Dataset simple st-hier st-hier-sfs mt-hier
RAVDESS 81.61 81.25 83.15 83.15
UMSSED 70.83 70.83 71.43 74.40

mt-hier, p=0.044 for st-hier and mt-hier). The performance
increase for mt-hier is not significant for UMSSED. This
may be due to the fact that this dataset only contains three
performers. This result provides evidence that song and speech
emotion classification are different, but related, tasks. By
adding the relationship into the model, we can outperform
models that either consider them as the same task, or consider
them as completely unrelated tasks.

With separate feature selection for song and speech emotion
classification, the st-hier-sfs model works better than st-hier
in both datasets (significant for RAVDESS, paired t-test,
p=0.046). However, the mt-hier model using features selected
on combined song and speech data can achieve the same
accuracy as the st-hier-sfs in the RAVDESS dataset, and out-
performs all other methods in the UMSSED dataset. This may
indicate that the features that are most important to emotion
classification in song and speech have some differences, but
also share similarities.

B. Performance and Agreement Rate

We are interested in the relationship between classification
accuracy and performer-evaluator agreement rate, and the
benefit multi-task learning brings for utterances with different
agreement rates. We compared the agreement rates between
correctly classified and incorrectly classified utterances using
the simple model and mt-hier model in both RAVDESS
and UMSSED datasets. We found that correctly classified
utterances have significantly higher agreement rates than in-
correctly classified utterances using two-sample t-test under
significance level of 0.01, regardless of model and dataset.
Table II shows the emotion classification accuracy of low (0
to one third, inclusive, noted as [0,1/3]), medium (one third
to two third, open and inclusive, noted as (1/3,2/3]) and high
agreement rate ((2/3,1]) utterances using simple model and
mt-hier model in both RAVDESS and UMSSED datasets. It
can be observed that classification accuracy and agreement
rate are positively correlated. Comparing the accuracy of
simple model and mt-hier model, we found that although
all low, medium, and high agreement utterances have higher
classification accuracy in mt-hier, low and medium utterances
benefit more from using multi-task approach.

Fig. 2 visualizes the confusion matrix of the classification
results on RAVDESS dataset (2a) and UMSSED (2b) dataset
of all utterances from both domains, using the simple model
and mt-hier model. It can be seen that emotions with high
activation (e.g. angry, happy, fearful) are easier to classify
than emotions with low activation (e.g. neutral, sad) for the
simple model. One interesting observation is that emotions
with low activation benefit more from the multi-task approach
than emotions with high activation. For example, the accuracy

TABLE II
EMOTION CLASSIFICATION ACCURACY OF LOW, MEDIUM AND HIGH

AGREEMENT RATE UTTERANCES (%)

RAVDESS UMSSED
simple mt-hier simple mt-hier

Low agreement [0,1/3] 70 74.17 60.61 63.64
Medium agreement (1/3,2/3] 77.5 80.39 65.96 70.21

High agreement (2/3,1] 85.55 85.84 77.27 80.68

of the neutral class is boosted to 81% from 62% for speech
utterances, and the accuracy of the sad class is increased by
10% for the sung utterances in the UMSSED dataset when
multi-task approach is used, as shown in Fig. 2b.

C. Performance of Individual Feature Groups

We group features by the type of their low level descrip-
tor (LLD) and show the domain classification and emotion
classification accuracy in Table III and Table IV, respectively.
Acoustic features are grouped into energy-related, spectral,
MFCC and voicing-related features based on the categorization
in [31]. We separate out RASTA-style auditory spectrum
from spectral features since they are calculated differently.
Previous research has demonstrated that there are differences
between emotion associated with the upper and lower face
[37]. Therefore, we categorized facial action unit features into
upper-face and lower-face action units. We compare features
for emotion classification using single-task SVM classifiers
were trained using all utterances, only spoken utterances and
only sung utterances. We did not use hierarchical models to
eliminate the influence of domain classification accuracy on
emotion classification accuracy.

As shown in Table III, all five groups of acoustic features
can predict domain accurately. Among them, voicing related
features have the highest accuracy across both datasets. On
the other hand, the prediction accuracies of visual features are
relatively low. Lower face action units are better distinguishers
of domain, compared with upper face action units.

In Table IV, we notice that in both datasets, energy-
related features, spectral features and voicing features can
predict emotion in song more accurately than in speech, which
may suggest that they contain more emotion-specific patterns
related to the singing voice. In addition, the lower face visual
features are effective across both domains, outperforming the
models trained on only speech or only song. The upper face
features exhibit this pattern only for the RAVDESS data. This
suggests that the visual features may exhibit more similarities
across domain, compared to the audio features. Other patterns
of accuracy are not very consistent between the two datasets.
Possible explanations include that the number of emotion
labels of the two datasets are not the same, and that the melody
matching methods are also different.

VII. CONCLUSION AND DISCUSSION

In this paper, we proposed three shared emotion recognition
models for speech and song: the simple model, the single-
task hierarchical model and the multi-task hierarchical model.
We studied the commonalities and differences present in



(a) Confusion Matrix: RAVDESS (b) Confusion Matrix: UMSSED

Fig. 2. Confusion matrix of the classification results on (a) RAVDESS and (b) UMSSED of all utterances, utterances from speech and utterances from song
using simple model and mt-hier model. The darker the color, the higher the accuracy/confusion. A: Angry, H: Happy, N: Neutral, S: Sad, C: Calm, F: Fearful.

TABLE III
DOMAIN CLASSIFICATION ACCURACY OF EACH FEATURE GROUP (%)

Feature group RAVDESS UMSSED
Energy 94.75 95.83
Spectral 98.19 90.48
MFCC 97.46 95.83
Voicing 99.09 98.21
Rasta 96.69 89.29

Upper face 71.56 58.93
Lower face 78.61 80.95

TABLE IV
EMOTION CLASSIFICATION ACCURACY OF EACH FEATURE GROUP (%).
PERFORMANCES GIVEN BY SINGLE-TASK SVM CLASSIFIERS TRAINED
USING ALL UTTERANCES (ALL), ONLY SPOKEN UTTERANCES (SPEECH)

AND ONLY SUNG UTTERANCES (SONG).

RAVDESS UMSSED
Feature group All Speech Song All Speech Song

Energy 37.86 34.78 40.22 60.12 55.95 61.90
Spectral 50.82 48.01 51.99 60.12 52.38 61.90
MFCC 53.80 48.73 62.68 47.02 51.19 46.43
Voicing 45.38 38.41 53.62 43.45 39.29 51.19
Rasta 34.33 30.43 32.97 51.19 61.90 44.05

Upper face 71.83 69.20 70.83 55.95 48.81 58.33
Lower face 66.85 65.40 64.67 64.88 52.38 53.57

emotion expression across these two communication domains
by comparing the performance of these difference settings,
investigating the relationship between agreement rate and
classification accuracy, and analyzing the classification per-
formance of individual feature groups.

The fact that classification accuracy benefits from multi-task
learning suggests that despite the differences between speech
and song emotion recognition, they are related and can be
considered using a shared model. The single-task hierarchical
model performs better when using features selected separately
for speech and song compared to combined feature selection,
yet it does not exceed the multi-task hierarchical model. This
may indicate that although there are some differences in the
important features for speech and song emotion recognition,
more similarities can be found. Classification accuracy of ut-

terances with lower agreement rate increases more with multi-
task learning. Therefore, it is possible that multi-task learning
can help distinguish emotions in ambiguous situations.

Classification using individual feature sets demonstrated that
acoustic features are better distinguishers of domain than vi-
sual features. The emotion classifier using visual features from
both domains is more accurate than the one operating on only
spoken or only sung data (lower face features for RAVDESS
and UMSSED and upper face features for RAVDESS). This
suggests that visual features are more similar across domain,
compared to acoustic features. This is in accordance with
the findings in [18] that visual features work better in cross-
domain emotion prediction. Among visual features, domain
classification using lower face action units performs better than
classification using upper face action units, which may suggest
that upper face action units are more similar in speech and
song. This also agrees with the findings in [4] that emotion-
dependent movements of the eyebrows and lip corners are
similar between speech and song, yet the jaw movements show
difference across speech and song emotion expression.

A limitation of this paper is that we only adopted datasets
with acted emotion. We plan to use more datasets, including
non-acted datasets, and perform cross-corpus analysis in our
future work for better generalizability. In this paper, we
discussed the situation in which the multi-task model uses
the same features as the simple model, where features are
selected on all the training data, regardless of domain. There
have been methods for multi-task feature learning as described
in [38]–[40]. Therefore, it would be interesting to learn multi-
task features for speech and song emotion recognition and
compare them with features selected using traditional single-
task feature selection methods.
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