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Abstract

Emotion affects our understanding of the opinions and
sentiments of others. Research has demonstrated that
humans are able to recognize emotions in various do-
mains, including speech and music, and that there are
potential shared features that shape the emotion in both
domains. In this paper, we investigate acoustic and vi-
sual features that are relevant to emotion perception in
the domains of singing and speaking. We train regres-
sion models using two paradigms: (1) within-domain,
in which models are trained and tested on the same do-
main and (2) cross-domain, in which models are trained
on one domain and tested on the other domain. This
strategy allows us to analyze the similarities and differ-
ences underlying the relationship between audio-visual
feature expression and emotion perception and how
this relationship is affected by domain of expression.
We use kernel density estimation to model emotion as
a probability distribution over the perception associ-
ated with multiple evaluators on the valence-activation
space. This allows us to model the variation inherent
in the reported perception. Results suggest that activa-
tion can be modeled more accurately across domains,
compared to valence. Furthermore, visual features cap-
ture cross-domain emotion more accurately than acous-
tic features. The results provide additional evidence for
a shared mechanism underlying spoken and sung emo-
tion perception.

1 Introduction
Emotion expression and perception are vital components
of social and musical communication (Cowie et al. 2001;
Scherer 2003; Juslin and Sloboda 2001). Research in emo-
tion perception has demonstrated that humans are able to
recognize emotions in various domains, including speech
and music. However, the relationship between audio-visual
cues and emotion perception across domains is still an open
question. In this paper, we aim to provide clarity by inves-
tigating the acoustic and visual features that are relevant to
the perceived emotion of two types of vocal communica-
tions: singing and speaking. We conducted within-domain
and cross-domain regression and feature correlation stud-
ies to analyze the commonalities and differences present in
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emotion expression across communication domains. Within-
domain analyses build separate models for the singing and
speaking domains, whereas cross-domain analyses focus on
generalizing a model from one domain to the other. The abil-
ity of a model to generalize gives us insight into the link
between emotion perception in the singing and speaking ex-
pression domains.

Significant progress has been made on both speech and
music emotion recognition (Schuller et al. 2011; El Ayadi,
Kamel, and Karray 2011; Kim et al. 2010). Some re-
searchers have studied the similarity between music and
speech emotion perception (Juslin and Laukka 2003; Ilie
and Thompson 2006; 2011), yet few works (Scherer et al.
2013) have concentrated on comparing speaking and unac-
companied singing. Since music is generally only acousti-
cally recorded, prior works primarily focus on acoustic fea-
tures. Therefore, analysis on the role of visual features in
cross-domain emotion perception is under-explored.

In this work, we collected a corpus of singing and speak-
ing audio-visual recordings of three performers with ex-
perimental control over lexical content and melody to en-
sure the consistency of the data across communication types
and target emotions. We assessed the emotion content us-
ing Amazon Mechanical Turk. We estimated the distribu-
tion of human evaluations using kernel density estimation to
model emotion as a probability distribution on the valence-
activation space (Yang and Chen 2011). We selected fea-
tures relevant to within-domain and cross-domain emotion
perception using mRMR (minimum Redundancy Maximum
Relevance), with the correlation coefficient as the relevance
measure for the former and the cross-domain correlation co-
efficient (Weninger et al. 2013) for the latter. We built regres-
sion models using the selected features for valence and ac-
tivation, both individually and jointly as a two-dimensional
emotion distribution, to assess the extent to which emotion
perception can be predicted by the selected features.

The results demonstrated that activation can be modeled
more accurately both within and across domains, compared
to valence. Further, results suggest that visual features cap-
ture cross-domain emotion more accurately than acoustic
features. The results provide additional evidence for a shared
mechanism underlying spoken and sung emotion perception.
The novelty of this paper includes: (1) the construction of the
first dataset consisting of lexically and musically consistent



speaking and singing recordings with rich emotions using
the same performers; (2) the introduction of visual features
into cross-domain emotion perception analysis; (3) the ex-
tension of mRMR to cross-domain scenarios.

2 Related Works
2.1 Emotion Perception from Music
Many works have been done in music emotion recognition
(MER) in recent years (Kim et al. 2010; Yang and Chen
2012). Most works on MER concentrated on acoustic fea-
tures. Baume (2013) evaluated the acoustic features used in
MER, and found that spectral features contribute the most to
prediction accuracy. A very recent work demonstrated that
the facial expressions of singers also influence the emotion
perception of the audience (Quinto et al. 2014). Therefore,
it is important to introduce visual features when analyzing
emotion perception from singing expressions.

2.2 Emotion Perception from Speech
There have been studies looking at the emotion infor-
mation encoded in audio (Schuller et al. 2011; Le and
Mower Provost 2013), video (Metallinou et al. 2010; Kim
and Mower Provost 2014) and audio-visual cues (Sebe et al.
2006; Mower, Mataric, and Narayanan 2011). Both acoustic
and visual features are demonstrated useful for predicting
speech emotion perception.

2.3 Cross-Domain Emotion Perception
Prior works have assessed the similarity between music and
speech emotion perception. A meta-analysis of 104 studies
of vocal expression and 41 studies of music performance
found potential for a shared emotion perception mechanism
between music and speech (Juslin and Laukka 2003). Ilie
and Thompson (2006; 2011) found that the manipulation of
certain acoustic features of music and speech, such as loud-
ness and rate, results in similar emotion perception. Loud
excerpts were judged as more pleasant, energetic, and tense.
Fast music and speech were judged as having greater energy.
Weninger et al. (2013) investigated the shared acoustic fea-
tures in speech, music and sound domains and introduced
the cross-domain correlation coefficient as a measure of rel-
evance for cross-domain feature selection. Their research
suggests that there are likely shared and divergent proper-
ties in emotion perception across domains of expression.

The comparison between emotion expressions of speak-
ing and unaccompanied singing is relatively less explored.
Research has indicated that high-level musical features,
such as music structure and melodic complexity, influence
emotion perception (Krumhansl and Agres 2008; Narmour
1992). This indicates that datasets that do not control for
such variations may be influenced by these factors. There-
fore, it is important to control these factors when study-
ing the similarities and differences existing between non-
musical and musical vocal emotion expression. Recently, a
study comparing speaking and singing stimuli adopted spo-
ken data recorded from French-speaking professional ac-
tors and sung data constructed from three professional opera

singers (Scherer et al. 2013). The authors retained similar-
ity in vocal content by using the same phrases for both
types. They found a high degree of similarity in the value
of acoustic parameters for energy, spectral flatness and jitter
between singers’ and actors’ portrayals of emotion. How-
ever, factors that can also influence emotion expression,
such as differences in performers and melodies, were not
taking into account. Cross-domain emotion perception of
speech and music has focused primarily on acoustic fea-
tures (Juslin and Laukka 2003; Ilie and Thompson 2011;
Weninger et al. 2013; Coutinho and Dibben 2013).

3 Dataset
3.1 Data Collection
We collected a corpus of speaking and singing perfor-
mances. We recruited musical theater students that have
completed coursework in the School of Music, Theater &
Dance that included training in spoken and sung theatrical
production. The finished dataset includes three performers
(1 female, 2 male). The actors performed both domains in
the same location under consistent visual and acoustic con-
ditions. The vocal data were recorded via an Electro-Voice
N/D 357 microphone and the video data were recorded using
a high-definition Canon Vixia HF G10 camcorder.

Our dataset uses fixed lexical content. We identified seven
semantically neutral sentences and embedded each sentence
into four passages, each associated with a target emotion
from the set of angry, happy, neutral and sad. This embed-
ding allowed us to create an environment that would facil-
itate emotionally evocative performances. The consistency
of the lexical content of the embedded target sentence al-
lows for an analysis of emotion content while controlling
for variation in lexical content. We composed seven stylisti-
cally neutral melodies in a singable range to match the seven
passages for the singing performances. The target sentences
were accompanied by the exact same melody. The remain-
der of the passage included minor differences across the four
emotional variations to allow for differences in the lexical
information. This resulted in 168 (2 domains of vocal ex-
pression× 3 performers× 7 sentences× 4 target emotions)
excerpts in total. We segmented out the target sentence from
the remainder of the passage for both speaking and singing
performances. The average duration of the target sentences
in the singing and speaking recordings are 3.04 ± 0.87 and
1.57± 0.37 seconds respectively.

3.2 Evaluation
We evaluated the target sentences using Amazon Mechani-
cal Turk. The evaluation included the original audio-visual
clips, only the audio information, and only the video infor-
mation, which resulted in 504 utterances (168 × 3 types
of stimuli). The evaluators assessed the emotion content
across the dimensions of valence (positive/negative emo-
tional states), activation (energy or stimulation level), and
dominance (passive vs. dominant) (Russell 1980; Mehra-
bian 1980) using a 9-point Likert scale. The evaluators also
assessed the primary emotion of the clips from the set of



angry, happy, neutral, sad and other. We only used eval-
uations of valence and activation in this work due to the
high degree of correlation between the activation and domi-
nance dimensions. We collected 10,531 evaluations in total,
with 183 unique evaluators. Each utterance was evaluated by
20.9± 1.7 participants.

4 Methodology
4.1 Data Cleaning
The challenge of using human evaluation is to separate dif-
ferences in opinions from noise. We used several methods to
clean the evaluation data before further analysis.

We first removed the top rating and bottom rating of
each clip for valence and activation. We then calculated the
weighted kappa to identify evaluators whose evaluations are
likely noise given the evaluations of other individuals. This
method was demonstrated effective in (Mower Provost, Zhu,
and Narayanan 2013). The weighted kappa between two
evaluators A and B are given by

K = 1−
∑k

i=1

∑k
j=1 wijpo,i,j∑k

i=1

∑k
j=1 wijpc,i,j

(1)

where k = 9 since we used a 9-point Likert scale, wij =

2|i−j| when i and j are different, po,i,j is the observed prob-
ability of evaluator A choosing i and evaluator B choosing
j, while pc,i,j is the chance probability. The score of each
evaluator was calculated by taking the mean of the weighted
kappa between this evaluator and all other evaluators who
had assessed the same clips. We performed a z-test to iden-
tify outlier evaluators (α=0.05) (Grubbs 1969). We removed
the two evaluators with z-score higher than the critical value.
After that, we did z-normalization for each evaluator so that
their evaluations have zero mean and standard deviation of
one. For each utterance, we identified outlier evaluations us-
ing a z-test with a significance level of 0.05 over the valence
and activation dimensions. Using these methods, the total
number of evaluations was reduced to 8,540. Each utterance
was evaluated by 16.9± 1.9 participants.

4.2 Dimensional Emotion Expression
We calculated the average valence and activation for each
utterance. As emotion perception is by nature subjective, we
worked with the distribution of evaluations, in addition to
average evaluations. We applied density estimation to the
Valence-Activation (“V-A”) space to estimate the distribu-
tion of the individual evaluations for each utterance. This
allows us to explicitly take the variation inherent in the re-
ported perception into account. We used the kernel density
estimation (KDE) to approximate the evaluator distribution.
We used KDE instead of a method that first introduces bin-
ning grids and then counts the evaluations that fall into each
grid to generate a density histogram. The histogram gener-
ated using the latter method highly depends on the position
of the binning grids, which can lead to biasing. KDE was
demonstrated effective in estimating the V-A distribution as-
sociated with popular music (Yang and Chen 2011).

We first found a continuous function for each utterance
that approximates the distribution of the evaluations of that

Figure 1: KDE. (a) distribution of evaluator judgment; (b)
KDE approximation (DGT); (c) G×G grid-estimation.

utterance (Figure 1(a)). In each utterance, KDE assigns en-
ergy to each of the human evaluations. In this way, the con-
tribution of each evaluation is smoothed out from a single
point into a region of space surrounding it. Aggregating the
smoothed contributions gives an overall picture of the struc-
ture of the data and its density function, which we call the
density ground truth (“DGT”, Figure 1(b)). The function to
calculate the density value of a position p is given by

yi(p) =
1

Ei

Ei∑
e=1

K(p− qie) (2)

where Ei is the number of evaluators that annotated utter-
ance i, qie is the evaluation of evaluator e on utterance i, and
K() is a bivariate Gaussian with zero mean and diagonal
covariance (Botev et al. 2010).

Since the prediction of a continuous function is extremely
challenging, we used a two-dimensional piecewise linear ap-
proximation of this continuous function. We created this ap-
proximation by drawing G equally spaced partitions across
both valence and activation, resultingG×G individual grids
(Yang and Chen 2011). The mean of the DGT values within
each grid was used to represent the density of this grid (Fig-
ure 1(c)). We transform the 2D density estimation of each
stimulus to a probability distribution by normalizing the
value of G×G grids to sum to one.

4.3 Feature Extraction
We extracted audio-visual features to predict how individu-
als perceive the emotion in song and speech.

Acoustic Features We adopted the INTERSPEECH 2013
Computational Paralinguistics Evaluation (ComParE) fea-
ture set (Schuller et al. 2013). The set includes 4 energy,
41 spectral, 14 cepstral (MFCC) and 6 voicing-related low-
level descriptors (LLDs). A variety of functions were ap-
plied to the LLDs and delta LLDs in order to summarize the
evolution of the contours over time. We used OpenSMILE
(Eyben, Wöllmer, and Schuller 2010) to extract the above
6,373 features.

Visual Features We extracted the visual features related
to facial expression using CERT to get the estimation of the
frame-by-frame intensity of 26 action units and 2 action unit
groups (Littlewort et al. 2011). Action units are the funda-
mental actions of individual muscles or groups of muscles.
Example facial action units that we used include inner/outer
brow raise, eye widen, blink, lip corner pull, etc.



Figure 2: The face bounding box and corresponding saliency
map for three consecutive frames. The saliency map changes
with expression.

We are also interested in the distribution of visual saliency
on the face because changes in visual saliency can cause vi-
sual attention to differ across emotions and faces (Scheller,
Büchel, and Gamer 2012). Visual saliency (“saliency”) is
the perceptual distinctness that draws the viewer’s atten-
tion to some parts of the face (Itti, Koch, and Niebur 1998).
We calculated the saliency maps for all video stimuli. We
first detected the face from the first frame of the video and
tracked it in the following frames (Viola and Jones 2001;
Tomasi and Kanade 1991; Kalal, Mikolajczyk, and Matas
2010). We then modified the bounding box to be the same
size across frames and tilted it to be a rectangle that can
be cropped from the original frame. Then, the whole face
saliency of each frame was calculated using pixel intensity,
flicker, and motion information of the current and previ-
ous frame (Harel, Koch, and Perona 2006). Researches have
demonstrated that there are differences between emotion as-
sociated with the upper and lower face (Ross, Prodan, and
Monnot 2007). Therefore, we divided the face into the up-
per and lower half and calculated the average saliency of the
upper region, lower region, and the ration between the upper
and lower saliency for each frame.

We applied statistics including mean, standard deviation,
max, min, range, interquartile range, mean absolute devi-
ation, skewness and kurtosis to action units, saliency, and
delta of these contours to generate a description of these fea-
tures for a whole video. This resulted in 558 features in total.

4.4 Feature Selection
We reduced the dimensionality of the feature set using
mRMR (minimum Redundancy Maximum Relevance) for
continuous variables. mRMR consists of two steps: (1) cal-
culate the correlation between the target value and each fea-
ture to generate a pool of relevant features; (2) use the F-test
correlation quotient to search for the best features in mRMR
optimization conditions (Peng, Long, and Ding 2005).

We replaced the Pearson’s correlation coefficient by the
cross-domain correlation coefficient (CDCC) (Weninger et
al. 2013) in stage (1) for cross-domain feature selection. This
is the first method that extends mRMR to perform cross-
domain tasks. The equation of CDCC is given by

CDCCf,i,j =
|r(i)f + r

(j)
f | − |r

(i)
f − r

(j)
f |

2
(3)

where r(i)f is the correlation of feature f with domain i.
The number of features selected was decided by optimiz-

ing over the training data. For audio-only, video-only and
audio-visual stimuli, the numbers range from 50 to 300, 20
to 40 and 50 to 250 respectively.

4.5 Regression
We used ν − SV R with a radial basis function kernel im-
plemented in Libsvm (Chang and Lin 2011). We performed
two separate estimation tasks: (1) prediction of average va-
lence/activation ratings and (2) prediction of the distribution
of the evaluations in the V-A space. ν − SV R is a type of
support vector regression that performs optimization using ν
as the penalty parameter, where ν represents a lower bound
on the fraction of samples that are support vectors.

We estimate the density distribution by training G × G
regressors for each task. As ν − SV R is not constrained to
output non-negative values, we transformed the output to a
probability distribution by truncating negative values to zero
and normalizing the estimation over all grids to sum to one.

4.6 Evaluation Method
We evaluated the models using leave-one-performer-out-
cross-validation. For each round, we selected the record-
ings of two performers as the training set, and the remaining
performer as the test set. The parameters are tuned on the
training set using leave-one-utterance-out-cross-validation.
We used the coefficient of determination (R2) of the model
when applied to the test set to measure the goodness of fit
of the regression models. For density distribution, we calcu-
lated the R2 between the DGT and the estimated emotion
distribution for each utterance and then took the mean as the
final result.

5 Results
5.1 Performance Study
We evaluated the performance of two regression tasks: (1)
within-domain prediction, where models were tested on the
same domain they were trained on; (2) cross-domain predic-
tion, where models were trained on one domain but tested on
the other. Domain-specific features and cross-domain fea-
tures refer to features selected using Pearson’s correlation
and CDCC in the first stage of mRMR respectively.

We compared (1) the absolute prediction residual of in-
dividual utterance for valence/activation, and (2) the sin-
gle utterance R2 for density between models trained using
domain-specific and cross-domain features for each predic-
tion task using the paired t-test. The results is an indication
of the significance of the difference in performance.

In within-domain predictions (Table 1(a)), models using
domain-specific features achieve an R2 of 0.94 for activa-
tion using both acoustic and visual features. All predictions
of models trained with domain-specific features have an R2

higher than 0.5 except for valence of the speaking domain.
Similar to prior works (Yang et al. 2008), prediction of acti-
vation always outperforms valence, which indicates that ac-
tivation is easier to estimate.



Audio Video Aud-Vis
Domain DSF CDF DSF CDF DSF CDF

V SI 0.57** 0.19 0.58 0.54 0.76** 0.52
SP 0.75** 0.55 0.37* 0.21 0.65 0.66

A SI 0.79 0.73 0.74 0.72 0.94** 0.85
SP 0.95** 0.83 0.82** 0.58 0.94* 0.90

Den SI 0.88** 0.80 0.71** 0.62 0.83** 0.74
SP 0.86** 0.74 0.61** 0.54 0.83** 0.67

(a) Within-domain prediction R2

Audio Video Aud-Vis
Train Test DSF CDF DSF CDF DSF CDF

V SI SP 0 0 0.29 0.44 0.14 0.38**
SP SI 0 0 0.35 0.24 0.18 0.29

A SI SP 0.08 0.36** 0.55 0.54 0.29 0.81**
SP SI 0.31 0.30 0.41 0.68** 0.54 0.53

Den SI SP 0.27 0.43** 0.46 0.52** 0.35 0.49**
SP SI 0.20 0.31** 0.51 0.60** 0.33 0.48**

(b) Cross-domain prediction R2

Table 1: Performance of (a) within-domain and (b) cross-
domain predictions. DSF: models using domain-specific
features, CDF: models using cross-domain features, V: va-
lence, A: activation, Den: density distribution, SI: singing,
SP: speaking. ** and * mean that one model (DSF/CDF)
is significantly better than the other in the same task under
significance level of 0.01 and 0.05, respectively.

In cross-domain predictions (Table 1(b)), models trained
with cross-domain features have significantly higher accu-
racy than those trained with domain-specific features in
most cases. This suggests that by embedding CDCC into
mRMR, we successfully increased the generalizability of
cross-domain models. Estimation of activation is more ac-
curate than valence. In addition, visual features work better
than acoustic features or even combined audio-visual fea-
tures. The difference between the performance of the cross-
domain and within-domain prediction is the smallest in the
video-only stimuli. This suggests that visual information is
expressed similarly in both domains.

Models trained with domain-specific features outperform
models trained with cross-domain features in within-domain
prediction. Yet, these same models have lower accuracy
in cross-domain prediction. This suggests that there is a
trade-off between generalizability and domain-specific per-
formance.

5.2 Analysis of Results
We grouped features by the type of their LLD and show their
distribution in Figure 3 to study the audio-visual cues that
contribute most to our ability to estimate perception. Spec-
tral features and cepstral features are the most important
acoustic features. Energy-related features are more relevant
to activation than valence. The models trained to recognize
video-only emotion perception are dominated by action unit
features. Saliency features contain more information regard-
ing valence than activation. Both acoustic and visual fea-
tures play important roles in emotion perception from audio-
visual stimuli, but emotion perception of the singing domain
relies more heavily on visual information, especially for va-
lence, compared to the spoken domain.

We conducted a feature correlation study to investigate the

Figure 3: Features relevant to valence and activation of all
types of stimuli. CD: cross-domain features; DC: domain-
specific features. Features were grouped into 6 categories by
Low Level Descriptor.

Audio Video Aud-Vis
Domain DSF CDF DSF CDF DSF CDF

V SI 0.31 0.23 0.40 0.39 0.37 0.30
SP 0.28 0.24 0.33 0.34 0.28 0.22

A SI 0.41 0.40 0.50 0.47 0.48 0.47
SP 0.51 0.40 0.54 0.47 0.48 0.45

(a) Within-domain feature-emotion correlation
Audio Video Aud-Vis

i j DSF CDF DSF CDF DSF CDF

V SI SP 0.29 0.24 0.21 0.14 0.25 0.14
SP SI 0.28 0.22 0.17 0.09 0.20 0.15

A SI SP 0.22 0.19 0.21 0.12 0.24 0.14
SP SI 0.29 0.15 0.22 0.11 0.22 0.09

(b) Absolute difference in feature-emotion correlations
across domains

Table 2: (a) Within-domain average features-emotion cor-
relations. (b) Cross-domain average |r(song)f − r

(speech)
f |.

V: valence, A: activation, SI: singing, SP: speaking, DSF:
domain-specific features, CDF: cross-domain features.

differences in performance between the domain-specific and
cross-domain models on within-domain and cross-domain
prediction tasks. Two types of correlations are calculated:
(1) the Pearson’s correlation coefficient between emotion
perception and the selected features; (2) a sub-component
of CDCC, |r(song)f − r(speech)f |, where r(song)f is the correla-
tion between feature f and the emotion perception in singing
domain. The larger (1) is, the more relevant the features are;
the larger (2) is, the less likely that the features are shared by
the speaking and singing domains. Table 2 shows the results
for average valence/activation prediction. Figure 4 visual-
izes the correlations between features and density distribu-
tion as 2D contour maps.

Table 2(a) shows that the correlation between domain-
specific features and emotion perception is higher than
that between cross-domain features and emotion perception.
This corresponds to the performances of the feature sets
on within-domain prediction. Similarly, Figure 4(a) shows
that the correlation contours of domain-specific features



(a) Within-domain feature-emotion correlation contour

(b) Cross-domain correlation difference contour

Figure 4: In (a), lighter color means higher correlation. In
(b), lighter color means higher difference between singing
and speaking domain. DSF: Domain-specific features, CDF:
cross-domain features.

are lighter, which means the feature-emotion correlation is
higher compared to cross-domain features. The correlation
for activation is always higher than for valence, which sug-
gests that the acoustic and visual features we extracted are
more relevant to the prediction of activation perception than
valence perception. In figure 4(a), the regions with high and
low activation are lighter in all contours, which indicates that
the extreme values of activation perception can be more ac-
curately estimated.

Table 2(b) shows that the absolute difference between
feature-emotion correlations across domains in the valence
dimension is larger for acoustic feautures, compared to vi-
sual features. This suggests that acoustic features have larger
differences across domains. In contrast, this absolute dif-
ference in correlations across domains is small for cross-
domain visual features. We can also observe this from Figure
4(b). The difference contours of cross-domain visual fea-
tures are clearly darker, which indicate smaller differences
across domains. We note that the difference in correlation
is greater for domain-specific features across domains, com-
pared to cross-domain features. This indicates that the cross-
domain feature selection method we used is able to capture
features shared by both domains.

6 Conclusion and Discussion
In this paper, we presented a novel cross-domain singing-
speaking dataset. We estimated the emotion distribution on
the valence-activation space using individual evaluations in
addition to the conventional method of using average val-
ues. We selected features for domain-specific and cross-
domain models using mRMR with two different relevant
measures: Pearson’s correlation coefficient and the CDCC.
The latter one extended mRMR to cross-domain tasks. We
built domain-specific and cross-domain models to predict

valence, activation, and the density distribution of emo-
tion across the V-A space. In within-domain prediction, we
achieved the highest R2 of 0.94 (audio-visual, activation)
and only one lower than 0.5 (video, valence). In cross-
domain prediction, models using cross-domain features out-
performed models using domain-specific features, which in-
dicated that we have successfully captured some similarity
between speaking and singing domains.

Our results suggest that activation can be estimated more
accurately across domains, compared to valence. Previous
works have indicated that acoustic features capture activa-
tion information better than valence information for both
music and speech (Mower Provost, Zhu, and Narayanan
2013; Yang et al. 2008). We found not only is activation
more encoded in acoustic features, it is also more shared
across expression domains, compared to valence.

Our results also demonstrated that visual features cap-
ture cross-domain emotion more accurately than acoustic
features. The small differences in the performance between
models using domain-specific features and models using
cross-domain features in cross-domain prediction suggest
that there may be a underlying shared perception model
across the speaking and singing expression domains.

In this paper, we focused on utterance-level analysis.
Previous works have shown that different phoneme groups
are modulated differently by emotions (Busso, Lee, and
Narayanan 2007; Kim and Mower Provost 2014). In our fu-
ture work, we will examine how individual phonemes are
shaped by emotion across domains.

One limitation of our work is size of the dataset. The small
number of performers makes it hard to generalize. We plan
to extend our dataset to include a larger number of perform-
ers and additional expression domains, such as instrumental
music. In this way, we would be able to analyze the sim-
ilarity and difference in emotion perception across speak-
ing (non-musical, vocal), singing (musical, vocal) and in-
strumental music (musical, non-vocal) expression domains.
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