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In a companion article found in this issue of Com-
puter Music Journal (Essl et al. 2003), we intro-
duced the theory of banded waveguides, showing
the advantages of this synthesis technique that al-
lows efficient simulation of highly inharmonic vi-
brating structures. In this article, we provide an
overview of different musical instruments that
have been modeled efficiently using banded wave-
guides. Additional detail can be found in Cook
(2002); Essl and Cook (1999); Essl and Cook (2000);
Essl (2002); Kapur et al. (2002); Serafin et al. (2002);
and Serafin, Wilkerson, and Smith (2002). Links to
software implementations of these models avail-
able online can be found in the conclusion of this
article.

First, we discuss a banded-waveguide model of
bar percussion instruments followed by a model of
a musical saw. Next, we show how to use banded
waveguides to model bowed glasses and bowls, and
we conclude by presenting models of a Tabla and a
bowed cymbal.

Bar Percussion Instruments

In this section, we discuss the simulation of bar
percussion instruments using banded waveguides.
This type of instrument was the first to be modeled
using this approach. In fact, banded waveguides
were originally invented to model the case of
bowed bar percussion instruments. The problem of
efficiently modeling this instrument had not been
solved, nor had it previously received experimental
attention. Both the development of the synthesis
method for this case and experimental measure-
ments of bowed bars were reported in detail in Essl
and Cook (2000). It was realized that the difficul-
ties that vibrating solid bars pose can be overcome
by modeling the resonant modes of bars as spec-
trally separated closed traveling waves, as described
in detail in Essl et al. (2003).

In the past, struck bar percussion instruments
have been modeled using resonant modal filters
(Wawrzynek 1989; Cook 1997) or additive sinusoi-
dal synthesis (Serra 1986; van den Doel and Pai
1998). Acoustical properties of bar percussion in-
struments have been studied using finite difference
and element methods (Bork 1995; Chaigne and
Doutaut 1997; Doutaut, Matignon, and Chaigne
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1998; Orduña Bustamante 1991; Bretos, Santa-
marı́a, and Moral 1999; Bork et al. 1999), but these
methods are too computationally expensive to run
in real time and thus have not been used for inter-
active performances. Finite element methods have
also been used to model combined visual and
acoustic simulations of sounding objects, including
bar percussion instruments (O’Brien, Cook, and
Essl 2001). For summaries and reviews of the re-
search on bar percussion instruments, see Moore
(1970), Rossing (1976), and Fletcher and Rossing
(1998). Some of the results described in this section
have also been presented in Essl and Cook (1999),
Essl and Cook (2000), and Essl (2002).

Modeling Bowed Bars

As explained in the companion article on theory
(Essl et al. 2003), banded waveguides are filter
structures that consist of a simple band-pass filter
and delay line for each significant mode to be mod-
eled. Banded waveguides can be constructed from
physical dynamics or from modal measurements.

Figure 1. A banded wave-
guide structure as proposed
in Essl and Cook (1999).

Figure 2. Sonogram of the
simulated bowed bar. Note
how many partials appear in
the spectrum owing to the
nonlinearity of the excitation
mechanism.
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The original banded-waveguide structure as pro-
posed in Essl and Cook (1999) is shown in Figure 1.

Here and in later applications, we use the modal
measurement approach. For details on dynamical
derivations and interpretations, refer to Essl (2002).
The uniform bar measurement yields the well-
known stretching of the inharmonic partials of a
uniform bar (1:2.756:5.404:8.933 and so on) as
heard from glockenspiels (Fletcher and Rossing
1998). Marimba, xylophone, and vibraphone bars
are undercut, stretching the partials into harmonic
ratios of either 1:4:10 or 1:3:6 (Moore 1970).

Using these frequencies, the length of the delays
as well as the frequencies of the band-pass filters of
all banded wave paths are tuned, forming the com-
plete resonator model. When including interaction
models as described in the companion article, the
full banded-waveguide synthesis model is con-
structed. The resulting spectrum of a bowed bar
simulation using the lowest four partials can be
seen in Figure 2. Note that same structure models
both the struck and the bowed bar without modifi-
cation, and alternating or combined playing styles

are easily possible without changing the model’s
parameters.

Musical Saw

As another application of one-dimensional banded
waveguides, we propose a model of a musical saw
(Serafin et al. 2002). When an ordinary handsaw is
bent into an ‘‘S’’-shape, an interesting acoustical ef-
fect can occur. Tapping the blade of the saw reveals
that, beyond a certain critical degree of curvature, a
very lightly damped vibration mode appears that is
confined to the middle region of the ‘‘S.’’ This con-
fined mode can be excited by a violin bow to pro-
duce the characteristically pure sound of the
musical saw. Scott and Woodhouse (1992) provide a
detailed description of the vibrational behavior of
an elastic strip with varying curvature.

The origins of the musical saw go back to the
early 20th century, thanks in particular to Leon
Weaver. Later on, June Weaver started playing the
saw using a violin bow in a lap style, as shown in
Figure 3.

Figure 3. One of the au-
thors playing a saw.
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Modeling a Musical Saw

Figure 4 shows the spectrogram of the sound ob-
tained from a Stanley 26-inch crosscut saw bowed
at the curvature. The saw was blocked on one side
using a clamp and bent as shown in Figure 5. This
S-shape allows certain modes to be confined to the
vicinity of the inflection by a process of reflection
from points of critical curvature. The microphone
was placed in front of the player at about 20 cm
away in the same horizontal plane as the curvature
point.

The tone produced is almost sinusoidal, and the
player controls the fundamental frequency by
changing the curvature of the blade. Increasing the
curvature produces higher fundamental frequency.
The vibrato is obtained by slightly moving the ex-
tremity of the saw in the hand of the player. While
the saw is bowed, many partials appear in the spec-
trum, but when the bow is released, the fundamen-
tal frequency resonates primarily.

Considering its relatively simple spectrum, the
musical saw can be easily implemented using one
banded waveguide excited by the same friction-
driven mechanism explained in Essl et al. (2003). In
this way, the model of the musical saw is a simpli-
fied version of the model of the bowed bar. The
spectrum of the simulated saw is shown in Figure
6. Note how, as in the recordings of the real instru-
ment shown in Figure 4, when the saw is sustained

by the bow, a rich spectrum appears, but when it is
released only the fundamental frequency appears.

To achieve vibrato, the digital waveguide uses
third-order fractional delay interpolation (Laakso et
al. 1996), so the length of the waveguide can
change almost continuously.

Wine Glasses and Glass Harmonicas

Another instrument for which the theory of banded
waveguides efficiently applies is the glass harmon-
ica (Essl and Cook 2002; Serafin et al. 2002; Essl
2002; Cook 2002). Glass harmonicas can be found
in two forms. The first, invented by Benjamin
Franklin in 1757 and shown in Figure 7, adopts
glass bowls turned on their horizontal axis on a
common spindle so that one side of the bowl dips
into a trough of water. The second one, which is
the one we model, is a combination of wine glasses
of different sizes, as shown in Figure 8.

Melodies can be played on a set of tuned glasses
(filled with appropriate amounts of water or care-
fully selected by size) simply by rubbing the edge of
the glass with a moist finger. The glasses can also
be excited using a violin bow (Rossing 1994). Figure
9 shows the spectra of a wine glass hit with a hard
mallet, bowed with a cello bow, and rubbed with a
wet finger, respectively. Note how the modes’s lo-
cations are consistent with the ones described in
Rossing (1994).

Modeling a Glass Harmonica

A wine glass is a three-dimensional object, and dis-
turbances travel along the object in all dimensions.

Figure 5. Configuration of
a saw fixed at both ends.

Figure 4. Sonogram of a
bowed saw tone. The saw
is bowed for about one sec
and then left to resonate.

Whereas the fundamental
has a long decay time, the
higher harmonics are
quickly damped.
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The object is however axially symmetrical, and the
dominant modes are essentially circular modes
(Rossing 2000). Energy travels along the rim of the
glass, creating a closed path as described in Essl et
al. (2003). Essentially, the rim represents a bar bent
into a circular shape, closing onto itself at both
ends. Hence the path is quasi-one-dimensional.

In order to model waves propagating along the
rim of a wine glass, we use a network of circular
banded waveguides (CBW), each waveguide being
tuned to the fundamental frequency of the corre-
sponding mode. A CBW is a connection of two
waveguides band-limited by a band-pass filter. The
output of each waveguide is connected to the input
of the other waveguide in a loop, as Figure 10
shows.

Figure 10 illustrates the situation in which only
one mode is present. In the simulated instrument,
many modes appear that are connected to the exci-
tation model as described in Essl et al. (2003).

Tibetan Singing Bowl

The Tibetan singing bowl is another related instru-
ment that can be modeled using banded wavegui-
des (Essl and Cook 2002; Serafin et al. 2002;
Serafin, Wilkerson, and Smith 2002; Essl 2002).
The Tibetan bowl has lately seen a strong interest

Figure 6. Sonogram of a
synthetic bowed-saw tone.
The saw is bowed for
about 1.5 sec and then left
to resonate. Note that, as

in the real instrument, the
fundamental has a long
decay time while the
higher harmonics are
quickly damped.

Figure 7. Benjamin Frank-
lin’s glass harmonica,
which he called ‘‘armon-
ica,’’ as seen in the Frank-

lin Institute Science Mu-
seum in Philadelphia.
Picture courtesy of Ed
Gaida.

Figure 8. Wine glasses be-
ing played by rubbing the
edge of the glasses.
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in the computer music community (Wilkerson,
Ng, and Serafin 2002; Burtner, Serafin, and Topper
2002; Tanaka and Knapp 2002).

Oral tradition dates the singing bowl back to
560–180 BCE in Tibet. These bowls have been
found in temples, monasteries, and meditation
halls throughout the world. Traditionally, bowls
are made of metal and are hand-hammered round
to produce beautiful tones and vibrations. Today,
they are also available in glass and can be made us-
ing machine-manufacturing processes. They are
used in music, relaxation, meditation, and healing.

The Tibetan singing bowl’s modes are geometri-

Figure 9. Spectrum of a
small wine glass. Top: fre-
quency response; center:
bowing with a cello bow;
bottom: rubbing with a
wet finger.

Figure 10. Digital wave-
guide network structure of
the bowl resonator repre-
senting one mode. Each

bi-directional delay line
contains the waves propa-
gating along both sides of
the bowl.
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Modeling the Tibetan Bowl

To create a virtual bowl that faithfully reproduces
its real counterpart, we recorded the Tibetan bowl
shown in Figure 11 while hit at eight different posi-
tions as shown in Figure 12. For each position, the
resulting spectra are shown in Figure 13.

Clearly, a number of higher modes lie close to-
gether, yielding audible beating. The beating can be
seen more clearly in Figure 14.

Considering the strong similarity between the
structure of the bowl and the wine glasses, we used
circular banded waveguides to implement the bowl
model. As explained in Essl et al. (2003), beatings
can be implemented using detuned banded wave-
guides. The spectrum of the synthetic bowl is
shown in Figure 15. Note the long decay time and
the beatings. (The characteristic rubbing interac-
tion can be added to the model the same way as
was done for the wine glass described earlier. The
interaction in Figure 10 then uses a friction model
instead of a impulsive striking model.)

Indian Tabla Drums

Banded-waveguide synthesis can also be used for
two-dimensional structures. As an example, the

Figure 11. The Tibetan
singing bowl used for the
recordings.

Figure 12. Eight different
positions at which the
Tibetan bowl was struck.

cally close to spherical segments. In typical perfor-
mance, the bowl is rubbed with a wooden stick
(which may be wrapped in a thin sheet of leather)
along its rim. Depending on the rubbing velocity
and initial state of the bowl (i.e., certain modes
may be already ringing), various modes can be
excited.
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Indian Tabla drums as depicted in Figure 16 are dis-
cussed in Essl (2002) and have been used in con-
junction with a novel electronic Tabla controller
(Kapur et al. 2002).

The Tabla is a pair of drums with a number of
interesting characteristics. The modes of the first
four to six partials are harmonic, unlike what one
might expect from a circular membrane. To
achieve this harmonic tuning, the Tabla drums are
manufactured using membranes of non-uniform
thickness (Rossing 2000). There are a number of

typical performance strokes to Tablas. One inter-
esting stroke is a modulating form of the ‘‘Ga’’
stroke, which is performed on the larger, right
drum, called ‘‘bayan.’’ The palm of the hand rests
on the drum. After the drum has been excited with
a quick impact from the fingertips, the player
pushes the palm down and toward the center of the
drum, thereby achieving a characteristic upward
pitch-bending sound (Rossing 2000). The small
drum is called ‘‘dahina.’’

Figure 13. Spectra of the
eight different positions at
which the Tibetan bowl
was hit.
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Table 1. Spectral Frequencies of Dominant Partials
of Measured and Simulated Tablas Given as fn:f1

(i.e., as a Ratio Relative to the Fundamental
Frequency)

Bayan Dahina

n measured simulated measured simulated

2 2.00 2.02 2.89 2.87
3 3.01 3.03 4.95 5.01
4 4.01 4.05 6.99 6.73
5 4.69 4.72 8.01 8.00
6 5.63 5.65 9.02 8.70

Modeling the Tabla

As discussed in the companion article, the trajecto-
ries that lead to closed paths can be constructed for
circular membranes. Even in dimensions higher
than one, closed paths lead to modes of vibration
using the principle of closed wavetrains (Essl et al.
2003).

The results of modal comparison between real
drums and propagation simulations can be found in
Table 1. The strokes performed are open-membrane

strokes in the center on both the bayan and the
dahina. This was in turn modeled as impulsive ex-
citation.

Using this principle of closed wavetrains, we can
infer how dynamical interactions of strokes relate
to pitch changes through path-length changes.
Here, we are particularly interested in the ‘‘Ga’’
stroke. In this case, the pitch-bending technique di-
rectly corresponds to shortening the physical path
of waves traveling on the membrane, which can be
directly implemented in a banded-waveguide
model.

The results for more complicated pitch-bending
strokes can be seen in Figure 17. The simulation
sounds comparable to the recorded stroke. It should
be noted that the simulation method is robust to
the pitch-bending manipulation. In fact, much
more extreme bends than the one depicted here are

Figure 14. Beating upper
partials in spectrogram of
a recorded Tibetan bowl.

Figure 15. Spectrogram of
the synthetic Tibetan
bowl.

Figure 16. The Indian
Tabla Drum consisting of
the larger bayan (left) and
the smaller dahina (right).
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(a) (b)

possible. High-pitched, large-scale bends on our
propagational model perceptually resemble water-
drop sounds, suggesting a much wider range of in-
teresting application for behaviors of this type.

Cymbals

As our final example, we discuss the modeling of
cymbals using banded-waveguide meshes. As de-
scribed in Fletcher (1994), the vibration of a cymbal
is very similar to the vibration of flat, circular
plates. Although modes are clearly distinguishable
at low-frequency modes, they often mix with one
another at high frequencies.

The nonlinear coupling between vibrational
modes, moreover, is quite strong, which makes
many partials quickly appear in the spectrum. This
is true no matter how the cymbal is excited.

Fletcher (1994) investigated nonlinearities in
cymbals. The results of exciting a cymbal with a
sinusoidal shaker show that, while at low frequen-
cies the radiated sound is concentrated at the fun-
damental of the exciting frequency, increasing the
amplitude also increases the relative levels of all
partials. At a critical excitation amplitude, the
spectrum develops a complete set of sub-harmonics,

and transitions to fully chaotic behavior can appear.
The mathematical problem of analyzing cymbal

behavior in detail is rather complex. The frequency
response of a bowed cymbal presents a large num-
ber of potentially active modes.

Figure 18 shows the frequency response of an or-
chestral cymbal of diameter 41 cm bowed with a
violin bow. The recording was made in a quiet
room, and the microphone was placed about 0.3 m
from the cymbal. Several prominent peaks com-
prise the more steady oscillation of the cymbal, and
there is still much energy at high frequencies
where modes are very dense.

Modeling the Bowed Cymbal

Bowed cymbals and bowed plates lend themselves
well to being modeled with a banded-waveguide
mesh structure as described in the companion arti-
cle. Low modes are excited by the bowing, and en-
ergy is transferred nonlinearly to high-frequency
modes, which are chaotically coupled. The manner
of excitation of these strong lower modes relies on
a detailed mechanical interaction of the bow and
the rim, and thus an interface between the bowing
and the resonating plate that preserves the loca-

Figure 17. Spectrogram
showing the upward bend-
ing of a modulated Ga
stroke. The fundamental
bends from 136 to 162 Hz
(left, measured) and 134 to
171 Hz (right, simulated).
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tions of the bow-cymbal contact is needed. Banded
waveguides allow individual modes to be con-
trolled in time, frequency, and space. The shim-
mering, noise-like high-frequency modes are not a
direct consequence of the bow excitation, so a
banded-waveguide mesh can be used as an approxi-
mation of a dense modal region, as explained in
Essl et al. (2003).

Bowed cymbals can produce a wide range of
sounds with small variations in bowing force, ve-
locity, and position. In certain cases, the cymbal
produces a noisy growl, and modes are very dense

throughout the spectrum. In this case, a waveguide
mesh with sufficient mode density at the lower fre-
quency range would be too large to be imple-
mented in real-time with present technology.

Banded-waveguide structures allow exact tuning
of partial frequencies and hence avoid problems of
waveguide meshes with grid dispersion and the re-
lated difficulty of tuning modes exactly (van Duyne
and Smith 1993; Savioja and Välimäki 2000). In
this application, owing to the density of modes in
the range modeled by the mesh, these difficulties
can be neglected.

Figure 18. An example of a
bowed cymbal. Top: time-
domain waveform without
the attack. Bottom: fre-
quency response.
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Conclusion

In this article, we described physical models of dif-
ferent musical instruments based on banded wave-
guides. These models have been implemented in
the Synthesis Toolkit (Cook and Scavone 1999),
Pure Data (Puckette 1997), and Max/MSP platforms
(Zicarelli 1998), and can be downloaded online at
ccrma-www.stanford.edu/software/stk and ccrma-
www.stanford.edu/�serafin/software.html.
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