
Live Writing: Asynchronous Playback of Live Coding and Writing

Sang Won Lee
University of Michigan, Ann Arbor

snaglee@umich.edu

Georg Essl
University of Michigan, Ann Arbor

gessl@umich.edu

ABSTRACT

We introduce Live Writing, asynchronous playback of a live coding performance or, more generally, writing. e con-
cept of Live Writing is realized in a web-based application which logs every keystroke that a writer makes and let the
writing later playable by the audience or the readers in real-time. e goal of Live Writing is twofold. One, it aims to
support collaboration between musicians by reproducing a live coding performance based on keystroke data logged in
the platform. is offers a new way for a live coder to archive live coding music and to communicate with others in
asynchronous fashion. Two, it aims to transform wrien communication into a real-time experience so that a writer can
display a writing to readers in a real-time manner as if it is being typed in front of the readers. We explain the design
and the implementation of the system and demonstrate two different use cases of the system: live coding and writing.

1. Introduction

Live coding music is a type of wrien communication between human and machine expressed in programming language.
At the same time, the algorithmic representation of music is a window into a composer’s thoughts. erefore, in the case
of collaborative live coding, code sharing is an important part of communication, understanding each other’s thoughts,
and exchanging ideas. Most of the times, the collaboration in this live coding practice occurs in real time, due to its live
nature and asynchronous communication being limited. However, being able to archive and replay live performances
can further expand and enable important aspects of live coding performance culture. Benefits include the ability to
(1) collaborate asynchronously, (2) incorporate last live performances into reinterpretation, reappropriation, and the
creation of a persistent performance corpus. Static code is an core outcome of expressing compositional ideas that arise
throughout the preparation process of a live coding performance. Nonetheless, program code itself does not represent
the entire progress of the music performance. Static code does not contains temporal information of code execution nor
captures a performer’s virtuosity, such as skills and techniques to utilize existing code quickly enough to make changes
in the music in a timely manner. In addition, some code wrien on the fly may not even exist in the final code that
remains aer the performance. While the screen recording of a live coder’s play may capture these kinds of real-time
gestures, it is fixed media in a non-symbolic format. Hence, it is impossible to get textual data from the recording so as
to copy and transform, for example, someone else’s code. is calls for representations that that capture the dynamic
and evolving character of live code production in a format that is readily modifiable. To this end, we developed the Live
Writing platform. e Live Writing platform logs all keystrokes made by a live coder with timestamp information in
order to reproduce the musician’s play later. e system can be used to archive any live coding performance ranging
from individual practice to actual performances in public. e term “asynchronous” collaboration in “live” coding sounds
contradictory. However, it seems potentially exciting to envision a live coding system such as one that will facilitate
asynchronous collaboration. In other words, how do we utilize technologies to help a musician communicate with other
musicians without needing to be present at the same time? As an extreme example, how could a live coder reproduce
a piece that has been wrien by a live coder who has since passed away. Naturally, this poses two questions: how to
notate a live coding piece and how to archive a live coder’s playing.

Our second goal with Live Writing is to transform, as the name suggests, general wrien communication into a real time
experience. Writing is rich form of communication and we live in an age when we produce large volumes of writing
through digital platforms such as the World Wide Web, and mobile devices. e Live Writing platform lets writers (not
necessarily just live coders and artists but anyone) present their writing to readers in the same way that it was typed
at the time of creation. e real-time rendering of writing gives much more expressive power to the writer and gives
readers the intimacy of peeking at someone’s computer screen in private. e core idea of Live Writing is to reveal the
incomplete stages of writing and of the textual dynamic as part of the wrien expression. For a quick demo of Live
Writing, visit http://www.echobin.com/?aid=aboutechobin. A screenshot of Live Writing platform is shown in Figure 1.

mailto:snaglee@umich.edu
mailto:gessl@umich.edu
http://www.echobin.com/?aid=aboutechobin


Figure 1: a screenshot of Live Writing example. e poem wrien by Pain.

In this paper, we introduce the background upon which the idea is built. We further motivate the core ideas, and describe
the current implementation. Demonstrated on the web browser are examples in the context of live coding as well as
writing. Finally, we conclude with future research opportunities offered by the system.

2. Asynronous Collaboration in Live Coding

2.1. Live Coding as Network Music

Networked communication and data sharing can facilitate collaboration among live coders. e potential of
networked collaboration in live coding has been present from the inception of live coding (Collins et al. 2003). Power-
Books_UnPlugged exemplifies an interconnected network ensemble by sharing code over a wireless network among live
coders and enabling sound dislocated from the code (Rohrhuber et al. 2007). Similarly, aa-cell added network capability
to Impromptu to facilitate collaboration over the local network for sharing and executing code remotely (Brown and
Sorensen 2007). e scale of collaboration in live coding has reached that of an ensemble (Wilson et al. 2014) and
a laptop orchestra (Ogborn 2014c). Recently, the authors made an extension to urMus (Essl 2010), a programming
environment for mobile music, to support multiple live coders, addressing issues that emerged for collaborative live
coding in general (Lee and Essl 2014a).

In our previous work, we applied existing frameworks coming from the tradition of network music to the previous
works of networked collaboration in live coding (Lee and Essl 2014b). For example, we used Barbosa’s framework to
classify computer-supported collaborative music based on synchronism (synchronous / asynchronous) and tele-presence
(local / remote), as shown in the Figure 2 (Barbosa 2003). is is used to learn opportunities in live coding and to
identify relatively underdeveloped areas in the classification. Most networked live coding performances fall into the
local/synchronous category, where live coders are co-located and play at the same time. Recently, researchers explored
remote/synchronous collaboration in live coding music: networked live coding at Daghstuhl Seminar (Swi, Gardner,
and Sorensen 2014), extramous, language-neutral shared-buffer networked live coding system (Ogborn 2014d), andGibber,
a live coding environment on a web browser, which supports remote code edit and run (similar to Google Doc) (Roberts
and Kuchera-Morin 2012). However, most previous live coding ensembles have focused on collaboration in synchronous
fashion (the lower half of the chart in Figure 2).



Figure 2: Classification Space for Network Music. Adapted aer (Barbosa 2003).



2.2. Music Notation in Live Coding.

In the traditional sense of music notation, where the objective is for a composer to communicate with performers in the
future, the music notation for live coding is not well-established for discussion. Traditional music notation is certainly
not well fied for notating live-coded music. is is because live coding is a highly improvisational and interactive form
of art where composition occurs at the time of performance; in live coding there is no clear distinction between composer
and performer. Rather, a live coder is “composer-performer.”

Indeed, the discussion of notation in live coding has been focused on its real-time usage at the performance. In this
context of real-time composition/performance, the code (either textual or graphical) serves as a music score and diverse
scoring approaches as code representation have been aempted (Magnusson 2011). Graphical visualization of the code
is effective for beer audience communication (McLean et al. 2010). In addition, the real-time music notation can be a
medium that connects live coding musicians and instrumental performers (Lee and Freeman 2013; Hall 2014).

2.3. Ariving a live coding performance.

It seems that, for the time being, the music notation for live coding music with the traditional goal of documenting a piece
may not need to reach a single conclusion. Instead, live coders should be able to archive live coding performances for the
following benefits: i) an archive of a live coding performance can be used to exchange ideas and data with collaborators,
ii) the collection of live coding pieces can be fruitful, from a long-term perspective, for the live coding community as a
way to transfer knowledge, providing inspiration and developing the field for posterity.

One immediate solution to archive a live coding piece is to save, as electronic files, the program code that was used in the
performance. However, the code alone is not enough for a live coder to document a music piece in a way that someone in
the future (including onesel) would be able to repeat the performance. Static code itself cannot reproduce a live coding
piece because it does not contain the performance aspects of algorithms execution. Furthermore, a certain amount of
virtuosity in live coding is involved with real-time manipulation of code, which is not well exposed in the final text
of the code. Practitioners use static code in combination with other tools such as audio recording, videotaping, screen
recording, or open form score (e.g., textual or graphical notes) as part of the documentation in rehearsal, composition,
and preparation steps of a performance.

Archiving a live coder’s performance will have more potential in the scenario of a live coding ensemble to support
asynchronous communication among the members. At the moment, the most obvious collaboration strategy that all live
coding ensembles take is a combination of rehearsals and individual practice. However, it will be practically challenging
to find the time (and the place) that every member of the ensemble can participate. e problem will worsen in scale,
such as in the case of a live coding orchestra (Ogborn 2014c). Alternatively, each musician can do at-home practice to
create new ideas for the ensemble and the individual. However, communication is delayed until the next gathering. To
that end, a live coding ensemble will benefit from developing a new format of archiving a music performance, which will
eventually support non real-time collaboration among members.

Lastly, archiving a live coding performance will enhance the composition process for a solo live coder. A live coder can
log each composition session to document the progress; the archive will help the composer capture new ideas, which
appear of a sudden and go away during the exploration and the improvisation.

2.4. Live Writing: Documenting and Replaying Textual Dynamics of Live Coding

e live coding piece performed on Live Writing platform will be logged in the keystroke levels with timestamp infor-
mation so that the generative music can be reproduced by the typing simulation. Given it is sequenced data rather than
fixed media, this differs from audio/video recording, and it is different from the music notation, as it can be used to
capture a particular performance. It provides symbolic information, which a musician can easily copy, duplicate, and
make changes to. e log file generated from LiveWriting platform is analogous to a MIDI sequence file, which describes
musical dynamics as an intermediate oen input-centric representation. Live Writing serves a similar function in terms
of capturing input-centric dynamics of text entry. Figure 3 shows the analogy between traditional music and live coding
in terms of ways to archive a music performance.

e highlight of Live Writing platform is that it provides temporal information of the live coding piece that static code
cannot. Replaying the code of a piece can inform the order of code wrien, the timing of execution, and the virtuosic
moves of a live coder, elements that would have been impossible to know in the final code. e playback feature could
help transfer practical knowledge of carrying out the piece and help people practice along with collaborator’s simulated
performance. e idea of Live Writing draws upon existing systems that enable asynchronous displays of code. In



Figure 3: e methods to archive music performances in traditional music and live coding.

particular, Live Writing platform is directly inspired by Ogborn (2014e)’s performance using Daem0n.sc system, which
types the text of a file automatically—in sync with the default metronome in Supercollider. Gibber provides a playground
in which people can publish and browse Gibber code so that the hub supports asynchronous collaboration in a broad
sense within the community (Roberts et al. 2014). In renoscope, Magnusson (2014) introduced code snippets in a piano-
roll-like notation where it is used as a secondary composition/performance interface, potentially a great archive format
to document a performance on the system. In non-artistic cases, Google Wave, which is no longer available, contained
the playback feature at the email transaction level so that one can understand the temporal order of email messages
especially for those who got included in the conversation later. Lastly, thecodeplayer.com implements keystroke level
playback of writing code but it is not currently accessible to the public to create contents(“ecodeplayer.Com”).

2.5. Beyond Arive: New Media for Collaborative Live Coding

e symbolic representation of the archived performance offers novel opportunities for asynchronous collaboration
among musicians. A live coder can access the code generated on the fly easily while a screencast or the final static
code cannot offer such data, i.e., copy the code in the middle of the playback simulation and paste it on one’s editor to
use existing code to develop ideas, and to create collaborative musical paerns. It can be used throughout the rehearsal
process for a live coding ensemble to sketch ideas and exchange code over emails, and to rehearse alongwith the ensemble
members asynchronously.

Keystroke log is a valuable asset for monitoring/analyzing a live coder’s performance. It is not only great for self-
reflection on one’s rehearsal/performance but also a useful material to analyze a live coder’s performance. e per-
formance log can be used to analyze live coding musicians’ play and learn complex behaviors that are not translated
easily from audio, static code and the artist’s statement, for example, the virtuosity of a performer in programming and
musical style. Such research has been done to create a performer’s fingerprint (Swi et al. 2014) and would have been ex-
pedited and enriched with the corpus of logged data accumulated in the system, otherwise, such data should be manually
annotated from the screencast.

Lastly, supplementing visualization/navigation techniques to be implemented in the future (the navigation bar, keystroke
density visualization, temporal typography) will offer an interactivity in the middle of playback of live coding. For
example, a reader can pause, modify, fork or remix a performance and create a unique live coding collaboration that can
occur over a long time. Forthcoming features of the Live Writing system will be discussed in detail at the end of this
paper.

3. Written Communication into a Real Time Performance

In this section, we switch the context of discussion from live codingmusic towriting in general. First, imagine a performer
going on stage and starting to write a poem (whether it is typed on a screen or wrien on a piece of paper, shared with the
audience). e live coding community would easily call this a live writing performance and the performer would need
nothing more than sheets of paper and a pen or a text editor on a laptop projected on a screen. Live Writing platform



allows users to dynamically present a writing; readers can read the article as if it is being typed right in front of them. It
does not necessarily need to be a synchronous performance in public but anything wrien in private (for example, poem,
essay, instant messages, email, or tweets) can be presented as if readers were watching the writer typing in real time.
e same platform that was used to archive live coding performances is repurposed for this new expressive art.

3.1. Keystroke Logging and Playba of Writing

e realization of Live Writing platform is to utilize keystroke logging on a computer. For a long time now, the idea
of logging user input from a keyboard has been a simple but powerful research method in many different contexts.
Keystroke Level Model (KLM) was an important aspect of research into modeling human performance in many human-
computer interaction tasks (Card, Moran, and Newell 1980). It was also used to analyze email organization strategy
(Bälter 2000). Keystroke dynamic has also been used for verifying identities. Habitual temporal paerns of key entries
provide a behavioral biometric useful for identifying individuals (Joyce and Gupta 1990; Monrose and Rubin 2000).

In helping analyze real-time writing behavior, keystroke logging has become a common approach in the field of writing
research. It provides a non-intrusive and inexpensive technique to monitor user inputs. Writing researchers have de-
veloped a number of keystroke logging applications—Inputlog(Leijten and Van Waes 2006) and ScriptLog(Strömqvist et
al. 2006) are two examples of such programs. Most keystroke logging applications include real-time playback recorded
keystrokes and it is an effective approach to help subjects account for their writing in retrospect, which is less intru-
sive than having them think aloud while writing (Latif 2008). ese applications are mainly for the research purpose of
real-time writing analysis rather than for writing in general public.

3.2. Live Writing : Writing as Real-Time Performance

e direct inspiration of the notion of live writing is live coding. Writing is an expressive process guided and adapted by
thoughts that evolve over time. By revealing the real-time writing process to readers, Live Writing lets a writer show the
thought process and the intermediate stages of the writing as it is typed, including typos, corrections, and deletions. is
principle is well captured in the following statement of the TOPLAP manifesto: “Obscurantism is dangerous. Show us
your screens.” We expand the same idea to writing in general. Showing the entire process of writing as it emerges sheds
light on the trajectory of thoughts and provides more expressive power than when reading final text. It is analogous to
revealing the thought process of a composer as a form of algorithm in live coding music.

e real-time rendering of writing in the same way that it was typed is certainly more expressive than static writing.
ere are various kinds of writer’s emotional states (such as contemplation, hesitation, confidence, or agitation) that can
emerge during the process of typing based on temporal paerns, for instance, pause, bursts, or corrective steps. e
fact that every single entry is shown in the final outcome transforms writing in general into a creative experience in
real-time, similar to musical improvisation. Indeed, such an improvisational nature is prominent on the World Wide
Web, for example, vlogging, podcasting, live game streaming, and video tutorials with screen recording and voice over.

It may be argued that calling this “Live” Writing is somewhat misleading as the Live Writing platform enables asyn-
chronous (that is apparently not “live”) uses. However, we hold that the very process of writing is the live act in this
case, and this liveness of the writing process is captured, hence justifying the use of “live” in this context. Moreover,
by explicitly capturing the the temporal dynamic of the writing process it suggests a changed mindset in the writer
with respect to the meaning and performative function of the writing process itself. A writer can now ponder the ar-
rangement of text over time and leverage the articulation of the temporal dynamics (like a composer organizing sound
to make music). is can be premeditated as in compositions, or improvised. Further it suggests a deliberation of the
delivery process even if the material is fixed, leading to an expressive layer of interpretation that transcends yet poten-
tially interrelates with the text. One can see this analogous to the notion of a “live” recording. e production process
is live, yet the reproduction method is not. is does by no means preclude the consideration of live writing in a fully
real-time synchronous performance seing. In fact we are currently exploring synchronous live writing piece as a form
of audiovisual performing arts, of which a visualization technique on typography is discussed elsewhere (Lee and Essl
2015).

4. Design and Implementation

Live Writing is implemented as a web application in order to be easily accessible from a variety of platforms and devices.
e web browser is chosen to make the platform language neutral (as long as the live coding language is textual). In
addition, the web browser is one of the most popular writing platforms today. Many live coding language environments



allows the editing part to be separated from the local machine and to reside on the web browser or web-based editors
(such as Atom, Sublime Text, or Brackets I/O). is would work, of course, for live coding languages built into the web
browser. We realize this system cannot support many live coders who use other popular editors (e.g. emacs). However,
we chose the web browser given it is a good platform-independent application and the use of web browser is on the
increase in live coding. Eventually, modern web-based editing APIs such as CodeMirror and ACE have been and will
be evolving to support many functions like shortcuts and macro to replace such editors or the Live Writing feature can
be easily implemented in across multiple editing environments if needed. It should be addressed that the system will be
limited to textual live coding languages but the idea can be extended to graphical languages.

e API is designed to extend existing an html object <textarea> or code editing APIs (e.g. codemirror, ace) so that it can
easily extend existing systems on the web browsers. In the following section, the implementation of the application for
the writing purpose is described first. Demonstrated later in this section is an archiving and playback example built on
top of Gibber.

4.1. Live Writing App for Written Communication

For the writing purpose of Live Writing, the application is publically available for anyone to use http://www.echobin.
com/. e current implementation is craed with minimal design; it has only one clean slate, an initial dialog with brief
description, screen-sized <textarea> objects, and a few buons hidden on the side (see Figure 1). Once a user presses the
start buon, all keystrokes and mouse cursor clicks made inside the <textarea> will be recorded on the local machine.
And then, by pressing the post buon on the right side, the user can post the piece of writing. Once the data is posted,
the user is given the link that accesses the real-time playback of the writing. e link contains the article ID and anyone
with the link can view the playback of the writing. erefore, access control of the writing is up to the writer and whom
he or she chooses to share the link with, an action that can be easily done via email, a facebook post, or instant messages.

e web application is realized in javascript/jery/AJAX and node.js. We released the code as an open-source API so
that any html <textarea> can be extended to feature keystroke logging and playback by including one javascript file. e
server runs node.js script which handles the static files and store/retrieve recorded keystrokes log in json format. All the
other functions of keystroke logging and playback is implemented and run in the client machine which the writer uses.
e logged data is not stored in the server until the user chooses to post the writing. Alternatively, a user can choose
to download the log file instead of posting to the server, if the user wants to keep the logged data locally. Anyone who
has the log file will be able, by uploading the file, to replay the writing. Providing raw data in the file will be useful for
extracting high-level information such as keystroke dynamics or behavioral paern when processed. We hope that this
supports researchers wanting to use this as a keystroke-logging application.

To implement playback, the keystrokes logged are simulated by specifically reproducing what the keystroke would
change in the content of <textarea>. In other words, a web browser does not allow, for security reasons, javascript
to generate the exact same keystroke event. Instead, for example, to reproduce a user’s pressing of the “s” key, it has
to append the “s” character to where the cursor is in the <textarea> at the moment. Note that the <textarea> used in
keystroke logging is again used for playback. Improvements to the website are in progress so that a user can customize
the writing not only visually (font type, size etc.) but also through its playback seing (e.g.„ playback speed, navigation
across time, etc.).

4.2. Playba of live coding : Gibber code on codemirror

To demonstrate the archiving and replaying features of Live Writing, this study has chosen Gibber (Roberts and Kuchera-
Morin 2012), a live coding environment on a web browser. It could have been possible to create the same features with
other live coding languages (e.g., Supercollider) that can be edited on a web browser and communicated with the live
coding engine by sending textual data to the localhost. Because Gibber is built into the web browser, it makes the demo
accessible to public without any configuration and installation. Lastly, for the code-editing environment, the study uses
Codemirror (Haverbeke 2011). Codemirror comes with a set of features readily available for programming (e.g., syntax
highlighting, keymap binding, autocomplete).

e user experience in the Gibber demo is similar to that of the writing web application introduced above. In terms
of implementation, however, a few differences from the writing scenario should be noted. is uses high-level events
(onchange, cursor activity) supported from codemirror instead of low-level events (e.g., keyUp, keyDown, keyPress) in
<textarea>. In addition, the pressing of shortcut keys related to code execution (Ctrl-Enter, Ctrl-.) is separately stored
as a message so that simulated typing will trigger a code run to get audiovisual outcome while playback. e working
demo is available at http://www.echobin.com/gibber.html. For a simple playback demo without entering Gibber code,
visit http://www.echobin.com/gibber.html?aid=OKDMWHgkDCdAmA which shows the demo captured in Figure 4.

http://www.echobin.com/
http://www.echobin.com/
http://www.echobin.com/gibber.html
http://www.echobin.com/gibber.html?aid=OKDMWHgkDCdAmA


Figure 4: Screen captures of Gibber Demo Audiovisual outcome generated automatically by playback of Gibber code over
time (from le to right). is demo is available at http://www.echobin.com/gibber.html?aid=OKDMWHgkDCdAmA

5. Conclusion

In this paper, we have introduced Live Writing, a web-based application which enables keystroke logging for real-time
playback of the writing. e motivation for this idea is to facilitate asynchronous collaboration among live coders and
to archive a live coding performance in an informative way. Additionally, the Live Writing platform is repurposed for
general wrien communication and has potentially turned a writing activity into a live coding like performance.

ere are a number of directions that we can take for future research. We plan to integrate Live Writing editor with
existing live coding environments and evaluate the usage of features in practice. It would be desirable to investigate the
system usage in a collaboration scenario like live coding ensemble. On the other hand, with the features of playback, we
would be able to build a live coding gallery in which users publish their piece and people can enjoy the live coding piece
remotely and asynchronously. In addition, we want to make the playback feature not interfere with key entry so that a
spectator can write text while keystrokes are replayed. is will create unique opportunities in a crowd-sourced music
piece that grows over time by people’s participation in a system that is similar to github.

Another ongoing effort is to explore the idea of live writing and to deliver a live-writing performance and a participatory
audiovisual art on a web browser. Currently, temporal typography based on a web browser is in development to augment
the text editor with animated fonts (Lee and Essl 2015). It will afford novel ways of visualizing text in combination with
music and algorithms, associated with the content of writing. To explore the idea of live-writing poetry, an audiovisual
piece is in preparation for a public concert. In addition, visualization of the text will be used to visualize the program
state as well as music in the context of live coding.

Lastly, the Live Writing application will be further developed for general programming and evaluated in terms of human-
computer interaction. We believe that the playback feature of the editor will aract programmers to use the editor
for numerous reasons (self-evaluation, fine-grained version control, online tutorial, collaboration, programming chal-
lenge/interviews). Improvement of the editor in progress includes the navigation bar, typing density visualization, and
automated summary. e collection of source code published to the server can be used to mine valuable information (i.e.,
temporal progress of good/bad coding style) in the context of soware engineering and pedagogy in computer science

References

Bälter, Olle. 2000. “Keystroke Level Analysis of Email Message Organization.” In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 105–112. ACM.

Barbosa, Álvaro. 2003. “Displaced Soundscapes: a Survey of Network Systems for Music and Sonic Art Creation.”
Leonardo Music Journal 13: 53–59.

Brown, Andrew R, and Andrew C Sorensen. 2007. “Aa-Cell in Practice: an Approach to Musical Live Coding.” In
Proceedings of the International Computer Music Conference, 292–299. International Computer Music Association.

Card, Stuart K, omas P Moran, and Allen Newell. 1980. “e Keystroke-Level Model for User Performance Time with
Interactive Systems.” Communications of the ACM 23 (7): 396–410.

Collins, Nick, Alex. McLean, Julian. Rohrhuber, and Adrian. Ward. 2003. “Live Coding in Laptop Performance.” Organ-
ised Sound 8 (03): 321–330.

Essl, G. 2010. “UrMus – An Environment for Mobile Instrument Design and Performance.” In Proceedings of the Interna-
tional Computer Music Conference (ICMC). Stony Brooks/New York.

http://www.echobin.com/gibber.html?aid=OKDMWHgkDCdAmA


Hall, Tom. 2014. “Live Digital Notations for Collaborative Music Performance.” In Proceedings of the Live Coding and
Collaboration Symposium 2014. Birmingham, United Kingdom.

Haverbeke, M. 2011. “Codemirror.” http://codemirror.net/.

Joyce, Rick, and Gopal Gupta. 1990. “Identity Authentication Based on Keystroke Latencies.” Communications of the
ACM 33 (2): 168–176.

Latif, Muhammad M Abdel. 2008. “A State-of-the-Art Review of the Real-Time Computer-Aided Study of the Writing
Process.” IJES, International Journal of English Studies 8 (1): 29–50.

Lee, Sang Won, and Georg Essl. 2014a. “Communication, Control, and State Sharing in Collaborative Live Coding.” In
Proceedings of New Interfaces for Musical Expression (NIME). London, United Kingdom.

———. 2014b. “Models and Opportunities for Networked Live Coding.” In Proceedings of the Live Coding and Collaboration
Symposium 2014. Birmingham, United Kingdom.

———. 2015. “Web-Based Temporal Typography for Musical Expression and Performance.” In Proceedings of New Inter-
faces for Musical Expression (NIME). Baton Rouge, United States.

Lee, Sang Won, and Jason Freeman. 2013. “Real-Time Music Notation in Mixed Laptop–Acoustic Ensembles.” Computer
Music Journal 37 (4): 24–36.

Leijten, Mariëlle, and Luuk Van Waes. 2006. “Inputlog: New Perspectives on the Logging of on-Line Writing Processes
in a Windows Environment.” Studies in Writing 18: 73.

Magnusson, or. 2011. “Algorithms as Scores: Coding Live Music.” Leonardo Music Journal 21: 19–23.

———. 2014. “Improvising with the renoscope: Integrating Code, Hardware, GUI, Network, and Graphic Scores.” In
NIME.

McLean, A., D. Griffiths, N. Collins, and G. Wiggins. 2010. “Visualisation of Live Code.” Proceedings of Electronic Visuali-
sation and the Arts 2010.

Monrose, Fabian, and Aviel D Rubin. 2000. “Keystroke Dynamics as a Biometric for Authentication.” Future Generation
Computer Systems 16 (4): 351–359.

Ogborn, David. 2014c. “Live Coding in a Scalable, Participatory Laptop Orchestra.” Computer Music Journal 38 (1): 17–30.

———. 2014d. “Extramuros.” https://github.com/d0kt0r0/extramuros.

———. 2014e. “Daem0n.” https://github.com/d0kt0r0/Daem0n.sc.

Roberts, C., and J.A. Kuchera-Morin. 2012. “Gibber: Live Coding Audio in the Browser.” In Proceedings of the International
Computer Music Conference (ICMC). Ljubljana, Slovenia.

Roberts, Charles, Mahew Wright, J Kuchera-Morin, and Tobias Höllerer. 2014. “Rapid Creation and Publication of
Digital Musical Instruments.” In Proceedings of New Interfaces for Musical Expression.

Rohrhuber, Julian, Alberto de Campo, Renate Wieser, Jan-Kees van Kampen, Echo Ho, and Hannes Hölzl. 2007. “Pur-
loined Leers and Distributed Persons.” In Music in the Global Village Conference (Budapest).

Strömqvist, Sven, Kenneth Holmqvist, Victoria Johansson, Henrik Karlsson, and Åsa Wengelin. 2006. “What Keystroke-
Logging Can Reveal About Writing.” Computer Key-Stroke Logging and Writing: Methods and Applications (Studies in
Writing) 18: 45–72.

Swi, Ben, Henry Gardner, and Andrew Sorensen. 2014. “Networked Livecoding at VL/HCC 2013.” In Visual Languages
and Human-Centric Computing (VL/HCC), 2014 IEEE Symposium on, 221–222. IEEE.

Swi, Ben, Andrew Sorensen, Michael Martin, and Henry Gardner. 2014. “Coding Livecoding.” In Proceedings of the 32nd
Annual ACM Conference on Human Factors in Computing Systems, 1021–1024. ACM.

“ecodeplayer.Com.” http://thecodeplayer.com.

Wilson, Sco, Norah Lorway, Rosalyn Coull, Konstantinos Vasilakos, and Tim Moyers. 2014. “Free as in BEER: Some
Explorations into Structured Improvisation Using Networked Live-Coding Systems.” Computer Music Journal 38 (1):
54–64.

http://codemirror.net/
https://github.com/d0kt0r0/extramuros
https://github.com/d0kt0r0/Daem0n.sc
http://thecodeplayer.com

	Introduction
	Asynchronous Collaboration in Live Coding
	Live Coding as Network Music
	Music Notation in Live Coding.
	Archiving a live coding performance.
	Live Writing: Documenting and Replaying Textual Dynamics of Live Coding
	Beyond Archive: New Media for Collaborative Live Coding

	Written Communication into a Real Time Performance
	Keystroke Logging and Playback of Writing
	Live Writing : Writing as Real-Time Performance

	Design and Implementation
	Live Writing App for Written Communication
	Playback of live coding : Gibber code on codemirror

	Conclusion

