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ABSTRACT
Visual information integration in mobile music performance
is an area that has not been thoroughly explored and current
applications are often individually designed. From camera
input to flexible output rendering, we discuss visual perfor-
mance support in the context of urMus, a meta-environment
for mobile interaction and performance development. The
use of cameras, a set of image primitives, interactive visual
content, projectors, and camera flashes can lead to visually
intriguing performance possibilities.
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1. INTRODUCTION
Although mobile device interaction is tremendously visual,
they inherently suffer from a limitation on screen real es-
tate. However, this restriction is mitigated by the growing
popularity of tablet devices and portable projectors; there
are even some mobile phones on the market with integrated
pico projectors. This indicates a general consumer inter-
est in transcending these visual limitations and making the
mobile experience more communal.

The purpose of this paper is to make the visual modal-
ity an accessible part of mobile music performance. This
includes both the built-in cameras as sensor input as well
as the screen and projected images as output. When in-
corporated into a flexible graphics and data-flow engine,
it becomes possible to rapidly develop performances that
seamlessly integrate computer vision, sound synthesis, and
rich visual output. With the use of many mobile devices
with projectors, visual display becomes more modular and
a coordinated effort. The relative position of performers
and the choice of projectable space expand what mobile
performances are even conceivable.

For our implementation of these visual concepts, we have
worked in the context of urMus, a meta-environment of mo-
bile device programming for artistic purposes [7, 9, 8]. The
goal of urMus is to make the design of all aspects of mobile
phone interactions and performances easy and flexible at
the same time.
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2. RELATED WORK
The use of the camera for mobile phone interaction has been
explored extensively, but not in a musical context [21, 20,
10, 19, 24, 18, 17]. There have also been non-mobile studies
on mapping computer vision features to sound [13, 3]. In
a musical context, phone cameras have been used for mo-
tion detection when mobile phones at the time did not have
built-in accelerometers or other motion sensors [22, 23]. In
one paper, the mobile phone was played as a wind instru-
ment using the microphone as the wind sensor. Covering the
camera (detectable by overall brightness) would act as clos-
ing a tone-hole in the wind instrument [12]. A predecessor
to urMus, SpeedDial, was a Symbian mobile synthesis map-
ping environment which used the camera as an abstracted
sensor and allowed overall camera brightness to be mapped
to control a range of synthesis algorithms [6]. Mobile music
making itself is an ongoing topic of interest [26, 25, 2].

There have also been several studies into the new types of
interaction and experiences provided by coupling a portable
projector with mobile devices [27, 15, 1]. Work by Cao
has explored multi-user portable projector interaction and
different types of projectable spaces [5, 4].

3. VISUAL INPUT
Digital cameras on contemporary mobile devices have high
image quality and offer very fast rates of capture. One
can interpret the information provided by the camera as
literal – images that represent a world are to be interpreted
and displayed as presented – or this information can be
abstracted and used to drive performance. The goal of this
work is to explore both options.

In order to enable each interpretation, we give access
to camera information though two possible routes. One
method is a part of a data stream pipeline where camera
images are reduced to single numbers which in turn can be
used to control sound synthesis. Rather than using detailed
visual information, broad features of the camera image are
used to provide control. The second method is access to
the full camera image itself. This data is accessible via a
rich OpenGLES-based rendering system that can be used to
create new and diverse visual content. In this section, we
will discuss how the information from the camera is received
from the operating system and processed.

3.1 Access to Video Data
For iOS devices, official APIs to access video data were
made available with the iOS 4.0 software update in the AV-
Foundation Framework. Since our current implementation
is only for these devices, this is what will be discussed here.
Upon application launch, an AVCaptureSession is created
for the rear-facing camera with a request to process fifteen
frames per second. Most importantly, the AVCaptureSes-
sion is configured to process these frames asynchronously
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Figure 1: The Roberts Edge Detector masks and
the first order derivatives they approximate.

on a secondary dispatch queue. This ensures that the user
interface and other signal processing tasks (such as audio
output) are not interrupted. Moreover, the secondary dis-
patch queue drops late video frames when the system cannot
handle the requested fifteen frames per second. In practice,
this happens quite often but is completely transparent to
the user.

There are also three configurable aspects of the video cap-
ture process. The first is camera selection. Most iOS de-
vices only have a rear-facing camera, but the iPhone 4 and
fourth-generation iPod Touch have an option to select the
front-facing camera as well. Currently, it is not possible to
get data from both sources at once. The other two aspects
allow the choice between an automatic or fixed setting for
both the white balance and exposure. This has interest-
ing implications for certain low-level visual features. For
example, if overall brightness was being used to drive the
frequency of a sine oscillator, a fixed white balance and ex-
posure would be necessary to achieve a low frequency when
the camera was covered and a high frequency when pointed
at a light source. However, automatic white balance and
exposure settings would result in the sonification of these
processes – something that could be desirable.

3.2 Visual Features
There is no standard set of visual features that are applica-
ble to performance situations. In the context of the urMus
environment, features need to be expressed as a floating
point value (or array of values) between negative one and
one. To maintain generality and for computational consid-
erations, the features developed are low-level in nature.

The first four features are overall brightness, red sum,
blue sum, and green sum. Their computation is nearly self-
explanatory. For a pixel buffer with n rows and m columns,
the overall brightness is computed as follows.

brightness =
1

3nm

nX
i=1

mX
j=1

(red(i, j) + green(i, j) + blue(i, j))

The image processing community has developed many
ways to quantify color in an image. Sometimes this involves
different color spaces, color independent of brightness, and
the biological processes behind color perception. Interesting
situations arise: should a bright white wall have a higher
“red” feature than a rose petal? For simplicity, we simply

Figure 2: Examples of 2D rendering in urMus: A
tiled canvas drawing program (left). The text image
showing the standard drawing elements (right).

sum the components in the respective RGB channels and
divide by the maximum. As mentioned above, having a
locked white balance and exposure for these four features is
most likely desirable.

Another feature is simply named “edginess.” Like the
color sums, there is no standard image processing technique
to determine how edgy an image is. For our implementa-
tion, the Roberts Edge Detector is used to approximate the
first derivates between adjacent pixels. Figure 1 shows the
masks and corresponding first order derivative approxima-
tions for this detector. The Roberts detector is one of the
oldest edge detectors and is frequently used in embedded
applications where simplicity and computational speed are
paramount [11]. The final “edgy” feature is the normalized
sum of the gradient magnitude at each pixel location where
the gradient magnitude of a 2D function f(x, y) is given by
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Other low level image features can be easily incorporated
into urMus at this stage. Certain features, such as optical
flow, have already been investigated for mobile devices and
would be natural for inclusion [22]. Higher level features,
such as the x and y coordinates of a detected face, could also
be considered. However, these more complex features have
a much higher computational complexity and would greatly
reduce the rate at which images are processed. Since all of
the features are calculated for each camera frame received,
the feature with the highest complexity will be the limiting
factor.

4. VISUAL OUTPUT
One goal of urMus is to provide an environment in which
rich interactive media content can be written and designed.
Part of that goal includes trying to find the right kind of
programming language abstraction to make visual program-
ming immediate and easy, yet as flexible as possible. This is
in the spirit of visual programming and code as art as em-
bodied in the design of Processing [16]. OpenFrameworks,
a set of libraries in C++ has also been ported and used with
iOS devices and is quite popular for mobile art projects [14].
The goal is to be much closer to the concept of Processing
and other specialized environments for art programming by
gearing not only the API but also the environment and lan-
guage for the task at hand.



Figure 3: Examples of live camera feeds within mul-
tiple regions in urMus subject to a range of texture
and color transformations.

urMus already comes with a rich and flexible graphical
layout system that uses the concept of textures to create
visually appealing details [9]. In order to allow visual pro-
gramming, a texture in urMus acquires two functions. The
first is that of a canvas. Graphical manipulation primitives
can be applied to a texture to render into it. Currently ur-
Mus supports a set of graphical drawing primitives that is
close to the set offered by Processing for 2D rendering. For
the second function, textures also serve as brushes that can
be used with any rendering primitive. This makes it easy
to generate fairly complex visual content with simple prim-
itives thanks to the use of complex and possibly changing
textures. Furthermore, one can explore iterative and recur-
sive painting ideas by repeatedly changing the texture roles
of brush and canvas. Finally, as each texture can be flexibly
moved, resized, and rotated on screen via the layout engine,
one has versatile interactive control.

The camera image should be a flexible component of a
visual mobile part piece. Current solutions often are inflex-
ible. In most mobile situations, the camera input is just
directly mapped to the full size of the screen. In urMus the
camera image is directly fed into an OpenGL texture, which
can be used in arbitrary number of instances and indepen-
dently manipulated. This has a number of implications. For
one all the standard texture and region manipulation capa-
bilities of urMus do apply, such as tiling, rotating, stretch-
ing, and skewing that is possible by changes of texture coor-
dinates and size of the containing region. Furthermore the
camera texture can also be used as brush, hence one can ac-
tively draw and use all the 2D drawing primitives discussed
earlier in this paper. This flexibility gives the artist many
interesting ways to display what the camera “sees.” At the
same time the camera becomes part of the repertoire of vi-
sual information to create new content. These uses of the
camera are fully interactive and multiple instances of cam-
era images can be manipulated independently.

4.1 Rendering Primitives
The 2D rendering primitives of urMus can be roughly cat-
egorized into three groups. The first group consists of actual
drawing functions which are Point(x,y), Line(x1,y1,x2,y2),
Rect(x,y,w,h), Quad(x1,y1,x2,y2,x3,y3,x4,y4) and El-

lipse(x,y,w,h). These allow for the display of points,
lines, rectangles, arbitrary quadrangles, and ellipses. The
second set of functions influence how these primitives are
rendered: SetBrushColor(r,g,b,a) sets the brush color,
SetBrushSize(s) changes with width of the brush, and
SetFill(b) toggles whether or not the primitive is filled (if
it is a closed primitive such as a rectangle or ellipse). The
last set is texture control. If the command UseAsBrush() is
invoked on a texture then future drawing and brush com-

Figure 4: A ensemble setup of mobile projectors
and their driving mobile devices.

mands will use this texture as brush. This will continue
until another texture is assigned as brush. All these opera-
tions are member functions of a texture, hence any texture
can be drawn into, and any texture can be assigned to be the
current brush. Finally, as any texture is by definition part
of a region in urMus, it can be flexibly resized, positioned,
layered and tiled.

Figure 2 shows the results of examples written in urMus.
The leftmost example shows a tiled canvas drawing pro-
gram. The canvas consists of four independent regions,
which can be locked, unlocked and moved around on the
screen. The painting will take the changed position into ac-
count, leading to the ability to continuously reiterate over
the same image with different canvas arrangements, creating
changing symmetries. The right example is the generic 2D
rendering primitives text showing line, filled, and texture-
based drawing of all basic primitives available. The thick-
lined primitives are using a circular texture as brush and
alpha-blending is active.

4.2 Output Technologies
Our work has looked at three different ways to extend the
visual output capabilities of a mobile device for performance
situations. The mobile multi-touch screen itself already
serves as a rich and very useful display and larger portable
devices such as the iPad extend the visual possibilities. Yet
advances in mobile projector technologies are allowing to
further expand and change the types of visual display that
are possible.

This technology is still in its infancy but is already quite
useful. We use Aaxa Technologies pico projectors which of-
fer 33 lumens of intensity at a battery-time of roughly 30
minutes. This is too low for use in an ordinary lit room,
but quite useful in rooms with dimmed lighting conditions.
With this technology it becomes possible to tile multiple im-
ages, project on arbitrary surfaces and objects and create
varied visual content while on the move (see Figure 5). The
projectors can serve as much as a flash-light as a display.
The mobile projectors are connected to the device using a
video-to-dock connector and OpenGL content can be ren-
dered onto external displays at interactive rates. Currently
we are using ten such projectors (six of which can be seen
in Figure 4).

The last form of output we have considered is the camera
flash. The iPhone 4 contains a powerful LED flash and the
feature is becoming standard on the latest mobile devices.



Figure 5: Two devices with pico projectors display-
ing a composite image based on their respective
camera inputs.

The flash can be set to turn on and off at a variable rate
which creates a stroboscopic effect.

4.3 Camera Integration
In the context of urMus, the graphical display is entirely
controlled by OpenGL which has the benefit of being cross-
platform. Also, it instantly gives the graphical versatility
we desire. Once the camera input has been rendered to an
OpenGL texture, any kind of transformation can be applied
without effecting other instances. As mentioned above, the
camera images are processed asynchronously on a secondary
thread which is necessary to keep the user interface respon-
sive. This presents a problem for the OpenGL pipeline be-
cause only one OpenGL context can exist on a thread at
a time. To work around this, a new context is created on
the secondary thread that uses the same sharegroup as the
main thread’s context. When two contexts are members of
the same sharegroup, all texture, buffer, and framebuffer
object resources are shared. When the very first frame of
camera pixel data is received, a texture is created, the pixel
data is copied into the texture with glTexImage2D(), and
the main thread’s context is made aware that it has access
to a camera texture. All subsequent camera frames render
into the texture using glTexSubImage2D() which redefines
a contiguous subregion of an existing two-dimensional tex-
ture image. This eliminates the need to re-create textures
with every new frame which saves computational costs and
also prevents interference between the actual display of the
texture on the main thread and the texture update process.
Following this approach it is possible to retain interactive
rates even if multiple copies of the camera texture are in
use.

Access to camera texture is made possible through an
extension of the texture API of urMus. By setting the Use-

Camera option of a texture instance, this texture will start
using the current camera texture for all its texture-based
operations. If the device offers multiple cameras (such as a
front and a back-facing camera), these can be selected using
the global SetActiveCamera(cam) API function. Currently
all active camera textures are affected by this, as it current
iOS devices do not allow multiple cameras to be active at
the same time.

Currently iOS cameras operate at 30 frames per second
and we found that multiple camera textures can be active
while retaining interactive and that the performance is inde-
pendent of the choice of camera. A test case with 30 active

Figure 6: Features of the camera image are used to
control audio.

camera textures of various sizes gave a performance of 25
frames per second display update on an iPod Touch.

The lamp of the flash can be made to oscillate at a fixed
rate using the SetTorchFlashFrequency(freq) global API.
Due to technical limitations of current iOS devices this
method is only available if the backfacing camera associ-
ated with the flash is used to drive camera textures.

4.4 External Display Integration
Since iOS 3.2 it is possible to be informed about an exter-
nal display being plugged in and its resolution. One can
then attach views that will be rendered on the external dis-
play. Currently in urMus, an external screen is automati-
cally detected and the OpenGL rendering is redirected to
the external display.

A test image with six live camera textures will render on
an external display at 30 frames per second or above using
an iPod Touch. This frame rate varies by less than 5 fps if
the resolution of the external display is changed.

5. EXAMPLES
A vast area of performances can be imaged using the tech-
niques discussed above, ranging from the use of the mobile
device’s display as visual augmentation to complex uses of
camera input coupled with multi-media outcomes. Next we
discuss but a few possible examples that we have imple-
mented so far using urMus.

5.1 Performing the Image
“Performing the Image” is a visual performance that uses
a prepared printed sheet with with color and textures to
allow performance of sound over the image. Using the live-
patching graphical interface of urMus, the performer can
change the sonic realization of the image on the fly with
simple multi-touch interactions by using features extracted
from the camera signal as sources to drive synthesis patches.
Color and edgy aspects of the camera image create a per-
formantive canvas which can be explored by moving over
different regions of the sheet (see Figure 6). This gives the
piece a synesthetic quality by transforming the visual into
the sonic.



Figure 7: Examples of the Visual in pieces of the Michigan Mobile Phone Ensemble.

5.2 Visual in Mobile Phone Ensemble Perfor-
mances

A key problem in mobile music performance is the explana-
tion of the performance to the audience. There is no canoni-
cal understanding of what mobile music performance should
be and very often visual communication is a big part of this
explanatory task. A good example of this is the piece Color
Organ, written by Kyle Kramer as part of a class taught
at the University of Michigan on the topic of using urMus.
As seen in the bottom right of Figure 7, four performers
stand in front of a back-projected screen showing a musical
staff. The performers hold the mobile device facing the au-
dience. The screen of the mobile device itself is critical for
explaining the piece to the audience. The performers lift
the devices and place them in the correct position on the
staff while colors express octave-matched notes.

Even static information can help strengthen the percep-
tion of a piece to the audience. In the piece JalGalBandi by
Guerrero, Dattatrhi, Balasubramanian, and Jagadeesh uses
visual projection to reinforce the sound. The piece trans-
forms traditional Indian performance into an ecological per-
ception of water and the visual display helps reinforce the
kinds of water sounds that are currently creating the sonic
experience (see bottom left of Figure 7).

Space Pong by Gayathri Balasubramanian and Lubin Tan
uses networked communication to pass a virtual ball be-
tween performers. While gestures to symbolize that a ball is
being passed around, the networked communication of the
piece is not apparent. After all the transitions of sounds
could have been due to actions of each individual performer
and not some exchange. Here the projected visual display
is also included in the network and depicts the interactions
and changes that are induced by the performer’s actions
and it creates a visual appearance of an virtual ball moving
in a virtual performance plane (see top right of Figure 7).

The importance of visual communication becomes even
more critical if the devices used are small. In the Ballad
of Roy G. Biv by Devin Kerr the screens of mobile devices
are turned into mobile colored dot arrays. The piece is

performed completely in the dark. Figure 7 shows a long
exposure shot of the performance. Each color has a musical
loop associated with it and the change of gestures in space
create phasing effects and interplay that is intricately linked
with the visual appearance of the piece (see top left of Figure
7).

6. CONCLUSIONS
In this paper we discussed a range of aspects regarding the
visual in mobile music performance. Visual information can
be used both as input and as output in musical perfor-
mance. In order to make it easy for artists to create new mo-
bile music performances with visual contributions, we have
discussed how both visual input and output is facilitated
within urMus, a mobile performance meta-environment. By
combining camera capture with the generic OpenGL texture
rendering engine, camera images are made flexible and ob-
jects of manipulation. Combined with textural rendering
primitives, the camera can become a brush. For output, we
discussed how textures can serve as both canvas and brush
and therefore lead to a range of visual performance ideas
such as rearranging canvases or recursive visual content.
The emergence of mobile projectors extends and liberates
the visual display, and multiple performers can join in cre-
ating content not just by what is shown, but also by where
it is directed or moved.

Current technology is still limited by the computational
power of the mobile device. While simple computer vision
algorithms can be easily implemented, richer visual features
are still too expensive to extract at interactive rates. Find-
ing ever more complex sets of visual control and display
remains a topic for future work as does the exploration of
the vast possibilities of mobile display technologies in inter-
active mobile performance.
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