
Communication, Control, and State Sharing in Networked
Collaborative Live Coding

Sang Won Lee
Computer Science and Engineering

University of Michigan
2260 Hayward Ave

Ann Arbor, MI 48109-2121
snaglee@umich.edu

Georg Essl
Electrical Engineering & Computer Science and

Music
University of Michigan

2260 Hayward Ave
Ann Arbor, MI 48109-2121

gessl@umich.edu

ABSTRACT
In the setting of collaborative live coding, there emerges
a number of issues: (1) the need for communication, (2)
issues of conflicts in sharing program state space, and (3)
remote control of code execution. This paper proposes so-
lutions to these problems. In the recent extension of Ur-
Mus - a programming environment for mobile music ap-
plication development- we introduce a paradigm of shared
and individual namespaces safeguarded against conflicts in
parallel coding activities. We also develop a live variable
view that communicates live changes in state among live
coders. Lastly, we integrate collaborative aspects of pro-
gramming execution into built-in live chat, which enables
not only communication with others, but also distributed
execution of code.

Keywords
live coding, network music, mobile music, collaborative mu-
sic making

1. INTRODUCTION
In this paper, we discuss various extensions to a live cod-
ing environment in order to facilitate aspects of networked
collaborations. Specifically, these extensions are (1) intro-
duction of individual and shared namespaces in conjunction
with a live variable view to help networked live coders man-
age and visualize program state, and (2) a live coding chat
environment that supports remote code execution among
live coders as well as non-coding instrument performers.

Music is inherently a communicative and collaborative
art among composers, performers, instrument builders and
listeners. The same can be said for live coding, a crucial
aspect of which is communication among live coders, instru-
ment performers and the audience. Further, the presence of
networked programmers poses challenges of managing pos-
sible programming conflicts that might arise from misun-
derstanding or miscommunication. The goal of this work
is to provide structural support within the live coding edit-
ing environment as well as in live-coded artifacts (e.g.mobile
apps) support that mitigate these risks by providing critical
information or explicit control.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

2. COLLABORATIVE LIVE CODING
We can define collaborative live coding as live coding prac-
tice that involves more than one musician performing, in a
collaborative manner, live coding music (see some concep-
tual examples in Figure-1). Such collaboration enriches the
range of the live coding music’s expressivity just as if musi-
cians were playing as an ensemble. A mode of collaboration
in live coding can be group improvisation where two musi-
cians perform, respond to each other based on what they
hear at the moment and shape music into a coherent piece.
In this mode, live coders are connected through feedback
loop created in sonic space, depicted in Figure 1-(a).

2.1 Live coding as Network Music
Collaborative live coding does not necessarily require net-
work capability. However, the fact that live coders play on
a laptop invites a variety of techniques that have been ex-
plored in the field of network music, given that network ca-
pability is a very basic function of modern computers. The
potential of live coding as network music was anticipated
from the inception of live coding [4].

Network music researchers have proposed ways to classify
networked music-making environments; live coding could
benefit from applying the dimensions used in classifying net-
work music. Indeed, doing so could shed light on and ex-
pand mode of collaborative live coding. Barbosa proposed
a way to classify computer-supported collaborative music
based on synchronisms (synchronous / asynchronous) and
tele-presence (local / remote) [1]. Weinberg classified in-
terconnected music environments according to the roles of
computers and the level of interconnectivity among users
[15]. He also described a number of topologies depending on
relations among musicians (centralized / decentralized) and
the nature of interconnectivity (synchronous / sequential).
We borrow these concepts directly to understand existing
works of collaborative live coding and to associate with our
design choices in the rest of the paper.

2.2 Networked Collaboration within Live Coders
Many previous works have attempted to augment live cod-
ing music performance with network capability implemented
via live coding language and its programming environment.
In a live coding scenario, data transmitted over a network
need not to be audio. Rather, code text (or program state)
is used as elements of a network conversation and sound
can be displaced from the source by executing, remotely,
transmitted code. PowerBook Unplugged exemplifies an in-
terconnected and decentralized network ensemble by shar-
ing code over a wireless network among live coders [12].
Similarly, aa-cell added network capability to Impromptu,
to facilitate collaboration over the local and decentralized

Proceedings of the International Conference on New Interfaces for Musical Expression

263



network for sharing and executing code remotely [2]. In
a broader sense, reacTable can count as a collaborative
live patching environment where multiple users can build
a sound synthesis patch with shared tangible objects in a
local and centralized manner [8].

Aside from sharing and exchanging music (or code) over
the network, it is often times helpful during the session to
coordinate temporal synchronization (e.g., tempo, meter,
clock) between live coders. Sorensen introduced Impromptu
Spaces and take a decentralized approach to implement a
distributed memory that can be read and modified from
multiple computers [13]. The Spaces also provides a block-
ing procedure, which is useful for clock synchronization. It
follows the server-client structure in which one feeds syn-
chronized temporal information (e.g., metronome) and the
other processes use the primitives locally.

A course of works have been designed and developed for
collaborative live coding. Wang introduced a concept of
collaborative audio programming space called Co-Audicle,
and suggested design frameworks for it [14], although we
cannot find that the system has ever been implemented to
fulfill a networked and collaborative live coding scenarios.
While it offers no fully-functional programming language
as do other live coding languages, Freeman’s LOLC is de-
signed for large-scale, collaborative improvisation based on
a simple command-line-like language [6]. It takes a hy-
brid strategy of utilizing both the decentralized structure for
sound generation (each machine plays its own sound) and
the centralized structure for providing a shared sonic envi-
ronment. The dual server-client applications accommodate
large-scale laptop ensembles and the server application pro-
vides a shared environment for code exchange, instant chat,
distribution of musical patterns, and a synchronized global
clock for client applications. The server application chooses
to selectively visualize the state of collaboration rather than
project the computer screens of all players.

Based on Barbosa’s classifications, many of the aforemen-
tioned examples fall into the local/synchronous category.
However, Gibber enables a live coding environment on a web
browser so that multiple live coders online can collaborate
in remote setup by sending code and remotely executing it
[11]. The most recent version of Gibber1 includes a Google
docs-like editor where one can write code and read code of
others in real-time, enabling multiple performances at the
same time if two collaborators are in different geo-locations.
It applies the decentralized structure of running Gibber ma-
chines on multiple web browsers; each machine shares code
text with other machines but has its own state. For ex-
ample, clocks of connected machines are not synchronized
and two different machines can play different music based
on how the live coders choose to execute the code shared.

It seems that collaboration between live coders over a net-
work is a natural choice. Many environments offer shared
sonic environment at many levels (code text, sound, func-
tion, variable, clock, etc.) as well as communication chan-
nels such as live chat. There remain interesting questions
in how live coding environments and languages can further
facilitate such collaboration.

2.3 Collaboration with Instrument Perform-
ers

In the field of NIME, it is not difficult to find an ensem-
ble where instrument performer(s) collaborates with laptop
musicians in various forms (e.g., live patching, laptop or-
chestra). There can be many types of collaborative sce-
narios between live coders and non-live coding musicians

1http://gibber.mat.ucsb.edu/

Figure 1: Possible Scenarios for Collaborative Live
Coding. An arrow between two nodes means that
two musicians are connected over network. Note
that these are just a few examples from many pos-
sibilities.

(For example, Figure 1-(c),(d),(e)), we had difficulty find-
ing, however, examples where live coding musicians and in-
strument performers play in a mixed ensemble. Perhaps, it
is a rare case because of the fundamental difference in con-
trol and mapping between live coding and playing musical
instruments. The algorithmic control of sound in live coding
imposes multi-layered, gradually evolving music in musical
aesthetic. The inclination behind this aesthetic comes from
the mapping between physical control and sound in live cod-
ing. Although, an algorithm can play a multi-layered, pos-
sibly infinite number of onset events in generative music,
there is a certain delay between the time one starts the
gesture (programming/typing) and the time the change is
finally made in music (execution of new code), we often re-
fer to this as a lack of immediacy. This delay makes a live
coder want to loop a musical pattern in the background so
as to minimize silence during a performance. In contrast,
in playing a musical instrument, a performer’s gesture gen-
erates onset immediately and there is, in general, no delay
between the gesture and sound. On the other hand, acous-
tic instrument players would struggle to play multi-layers of
sound similar to what a live coder can easily achieve. We
believe there will be a definite contrast when live coding
music is played with instrumental music.

We anticipate this collision of making music to lead, in
the near future, to the creation of unique computer music
performances. Nevertheless, another approach could cir-
cumvent the challenge by forming a sequential relationship
between live coders and instrument performers. Or live cod-
ing musicians can mediate the sonic outcome of an acoustic
instrument, either by providing a musical medium for in-
strument performers to perform with or by processing an
acoustic outcome of musical instruments with algorithms
(note that the order of sequence differs for the two cases).
The authors are interested in the former, a sequential rela-
tionship where a live coder mediates the musical expression
of an instrumental musician in certain ways.

Recently, the author participated in developing an exten-
sion of LOLC, SGLC [10]. In this extended environment,
laptop musicians generated real-time music notation on the
fly by typing commands in the environment and instrumen-
tal musicians sight-read the generated score for collabora-
tive improvisation. Here the outcome of text-based interac-
tion is real-time notation, not music. The generated music
score is rendered in various forms so that it gives space for
instrument performers to interpret (e.g., open-form score,

Proceedings of the International Conference on New Interfaces for Musical Expression

264



such as graphical or textual score). The user study showed
that the system effectively integrates acoustic instrument
players into a mixed ensemble. We believe the idea of me-
diation can be easily transformed to a collaborative live-
coding scenario. The outcome of live coding need not be
generative music; it can be a medium to instrumental mu-
sicians.

A previous work of the authors follows a similar mode
of sequential collaboration between a live coder and an in-
strument performer [9]. In this scenario, the outcome of
live coding is a musical instrument on a mobile device and
the instrument performer plays the live-coded mobile mu-
sic instrument. In this mode of performance, a live coder
by herself cannot generate sound; an additional instrument
performer is needed to do so. The sound is coming from
the musical instrument built on the fly (see Figure 1-(d)
and (e)). The sonic result of the performance is drastically
different from traditional live coding music. While the in-
strument musician can only play one layer of sound with the
instrument, the outcome of improvisation can demonstrate
the immediate expressivity of having a musical instrument.
Indeed, this would be challenging to reproduce in the tra-
ditional mode of live coding.

In our aforementioned paper, we also explored design
challenges coming from the interdependent relationship be-
tween a live coder and instrument builder and an instrument
performer. We suggested a set of programming techniques
for live coders to coordinate smooth collaboration with the
musicians who use the dynamically changing musical instru-
ment. In the improvisation piece performed, there was also
a sequential collaboration in the opposite direction from the
instrument performer to live coders as well. A live coder
captured a snippet of the expressive play of the instrumen-
tal musician, took trace of interaction data of the motif,
and used it to create a pattern running in the background.
The performance showed a wide spectrum of collaboration
available in collaborative live coding scenario.2

3. PROGRAMMING ENVIRONMENT FOR
COLLABORATIVE LIVE CODING

The question of how to make a live coding environment fa-
cilitate this mode of networked collaboration is what gave
rise to the goal of this work. Following our previous work
reported in [9], we utilize the programming environment for
mobile music applications UrMus [5]. The code editor of
UrMus is implemented as a web application running on a
mobile phone so that a user can code on any web browser
(usually running on a laptop) and transmit code over a lo-
cal wireless network to be interpreted on the device. In this
remote programming environment, multiple coders can im-
plement a mobile music instrument together on the fly. An
example of two live coders and one instrument performer is
depicted in Figure 1-(e).

Through a course of rehearsals and the performance from
the previous work, we realized a number of improvements
remained to be made to the environment so as to support
collaboration and communication in this setting. We devel-
oped an extended programming environment designed for
this specific mode of performance. The design goal of the
extension is to improve UrMus so that it will support collab-
orative improvisation and communication for this setting.
The remainder of this paper describes a concrete extension

2A video of a rehearsal for the concert is available at http:
//youtu.be/B9VYA_6spoI, which was selected as the 3rd
prize in live coding demo contest in LIVE workshop, ICSE
2013. Additionally the shortened video footage of our actual
performance is available at http://youtu.be/r_BGC4Wsm6c.

Figure 2: Centralized Architecture of Collaborative
Live Coding

to the programming environment. We first introduce the
overall structure of the network, go over new features added
to the environment and explain the design choices that were
made.

3.1 Centralized State Space
Wang introduced two models of collaborative audio pro-
gramming space-server-client and peer-to-peer [14]. These
terms are also related to the classification of network music
in centralized and decentralized approaches that Weinberg
suggested [15]. In a centralized approach, there is only one
program state space that generates the outcome of live cod-
ing. Live coding musicians connect to the machine and re-
motely execute code over the network. Since only one state
space is running on one machine, no additional process is
needed to either share information or synchronize clocks.
Whereas in a decentralized approach, there exist multiple
machines used by multiple live coders. In this case, each
machine has its own state and generates an individual out-
come. Therefore it requires a separate mechanism to share
information between live coders (e.g., additional server ap-
plication or distributed memory).

UrMus inherently supports a centralized model. Live
coders on laptops (multiple clients) can connect to the mo-
bile device (server) and transmit code text to the device
wirelessly. Figure 2 demonstrates the system architecture
of this work. UrMus is based on lua [7], a light-weight in-
terpreter language so that whenever code is run, the code
will be evaluated and executed on top of the current state
space thus far accumulated (see Figure 3-(a).) For exam-
ple, if a live coder submitted code that assigned a value to a
string variable named str, any live coder who submits code
afterwards will have access to str. Note that although the
editors is web-application, this is different from the envi-
ronment of Gibber. Here the web-editor on the laptop is a
dumb terminal that holds code text and the mobile device is
the machine that synthesizes sound and renders a graphical
user interface.

3.2 Individual and Shared Namespace
In the last example from the previous section, we can al-
ready find a problem when multiple programmers code in
a centralized state space. What if someone else creates a
variable named str without realizing a variable with such
a name already exists? See another example in Figure 3-
(a). For the collaborative live coding environment with a
centralized approach, it is desirable to control this risk, oth-
erwise a collaborator may accidentally overwrite the state

Proceedings of the International Conference on New Interfaces for Musical Expression

265



Figure 3: Example of possible namespace control.
a) There is only one state space leaving open the
risk you inadvertently modify someone else’s state
space. See there are two count variables, the later
produced of which will overwrite the earlier one.
b) Having a separate namespace per each live coder
will prevent this collision but then how will they col-
laborate without shared state? c) There is a shared
namespace that all live coders have access to. A
live coder can share either a variable or function
to be shared with other live coders. For example,
Bob can choose to share a function ”setFrequency”
so that Alice can execute that function.

that someone created. One non-technological solution to
this problem is live coders continually paying attention to
other peoples’ code text and being careful not to make con-
flicts as a part of live coding practice. This introduces extra
cognitive loads for live coders and limits the improvisational
aspects of live coding. Another naive solution to this is to
make each live coder have individual state space which will
prevent conflicts (see Figure 3-(b)). However, this solution
obstructs basic ways to collaborate by isolating a live coder
from the centralized state space. For instance, a live coder
in an independent state space cannot perform critical net-
work music gestures such as Borrowing and Stealing [3].

Our solution to this issue is to give each individual live
coder his/her own namespace and to create a shared names-
pace separately that everyone has access to. Each live coder
can selectively transfer any program state (e.g., variables,
functions) of his/her own to the shared space (see Figure 3-
(c)). In this way, live coders need not worry about some-

one else corrupting their code by mistake. Note that this
approach requires additional user input to select a set of
state to be shared, hence facilitating communication be-
tween coders. For example, borrowing is possible but steal-
ing is not without user’s permission; one has to ask the
owner to share a certain state. This is contrary to the al-
ternative where information is open to anyone but the envi-
ronment only alerts a live coder whenever there is a collision.
We chose the more controlled option of having a coder make
explicit decision on which states to share rather than react
to system alerts. However, we recognize the other option
also has its own strength in its open structure.

For implementation, we utilize lua’s functionality of spec-
ifying a namespace (or environment in lua term) with a
function called setfenv()3. Whenever a live coder connects
to the mobile device, the mobile device assigns a unique
namespace for each live coder. Therefore, whatever code
executed by a live coder will change the state within the
namespace that is associated with the live coder. We modi-
fied urMus to search the shared namespace in case that the
code could not be evaluated within an individual namespace
so that each live coder has access to his/her own namespace
and the shared namespace.

3.3 Live Variable View
Live variable view is similar to other programming environ-
ments (e.g., Eclipse) that show you a list of variables and
functions except that it shows the value of each variable at
the moment. It is also similar to the debugging mode in
a programming environment where you can see the state
of the program at a certain point, except that you do not
need to stop at a breakpoint. The live variable view dis-
plays variables, functions available in the state space at the
moment, and expressions a programmer is interested in. In
Figure 4, the live variable view is located in the top left cor-
ner of the editor. If a variable is abstract data typed (e.g.,
array, urMus GUI widgets), it shows all the elements inside
the container in a hierarchical tree structure. An expression
can be any code text that can be interpreted and returns
a value such that you are able to evaluate any information
you are interested in during the live coding session.

The state space in live coding can change over time for
many reasons, including code execution on-the-fly, time-
varying variables such as audio data, and user interaction
influencing the program (such as pressing a button). The
view updates, by default, any value changed by code execu-
tion. The live button right next to each entry can be used
if a programmer wants to see the value of the associated
entry in real time. For example, if there is a variable that
contains audio sample data, you can see the actual sample
value in real time.

As stated in the previous section, there are as many indi-
vidual namespaces as there are live coders plus the shared
namespace. Live variable view will have each namespace
presented in each tab. Figure 4 shows three tabs are avail-
able in the view. Also handled in the live variable view are
sharing variables, functions or expressions. One must sim-
ply check the checkbox in front of an entry that one wants
to share and press the share button at the bottom. Once
shared, the entry will appear in the shared namespace tab
and any live coder will have access to any entry in the shared
namespace.

Having live update of variables (or expressions) in live
coding helps communication in two aspects. First, it pro-
vides a live view of the program state constructed and shared
by each individual. The benefit of this is that it provides

3http://www.lua.org/pil/14.3.html

Proceedings of the International Conference on New Interfaces for Musical Expression

266



Figure 4: Screen capture of new urMus programming environment on a web browser. Live Variable View
(topleft), Live Chat (bottomleft), code editor (right).

a summarized viewport of the program’s running state and
supplements code text sharing, which does not easily reflect
the current state. We plan to utilize the live variable view
as a gateway to share code text hierarchically so that one
can re-use and modify other live coders’ code.

Furthermore, live variable view enables additional com-
munication with the instrument performer on the mobile
phone. As we suggested in [9], it is important for live coders
to have visual feedback from the instrument performer so
that live coders understand the play of the performer, which
might affect a live coder’s decision on how to shape the
musical instrument. Live variable view can offer a flexible
monitoring tools of user interaction. For example, one can
create a simple function that returns a type of musical ges-
ture that the instrument performer is involved in and add
the function as an expression (e.g., clicked, dragged, waved,
etc.)

Implementation of live variable view is a composite re-
sult of web technologies such javascript/jQuery/AJAX and
modification on urMus lua API. It keeps track of all vari-
ables and functions declared using lua meta-method and
meta-table.4 At the time of code execution, the live vari-
able view makes a request to retrieve a list of variables that
are newly created so that live variable view keeps the list of
all the variables in a namespace. Immediately after updat-
ing the list of variables/functions, the web editor iterates all
the entries in the view and retrieves the value of each vari-
able (or expression) from the corresponding namespace. We
added a functionality for the urMus application to transmit
any data in XML format to the web editor of client. Option-
ally, all the entries with live button pressed will be updated
continuously; otherwise values are only updated per code
execution. The entries with the live button pressed will be

4http://www.lua.org/pil/13.html

updated with continuous polling from the state space. We
purposely design live update of variables/expression as an
option (like a check-box) so that it will minimize the net-
work traffic and unnecessary performance degradation in a
mobile device by updating all variables/expressions listed.

3.4 Live Chat and Distributed Code Execu-
tion

Utilizing live chat is a common way to support communi-
cation between live coders [9, 6, 11, 14]. In this work, we
improve chat support in the live coding environment by in-
tegrating numerous aspects of collaborative programming
and by making chat windows informative similar to what
information one obtains from a console in a programming
environment. Through a live chat window, live coders will
be notified when someone executes code, shares a variable,
or rejects a code execution. (Rejection is discussed below.)
All the chat and log messages appear on the mobile device
as well, so that the instrument performer is included in the
communication loop and receives the notification.

In addition, live chat enables code execution triggered by
the networked instrument performer. In other words, any
code typed into the chat window will not be executed imme-
diately but will create a message window on a mobile device
so that the networked performer can instead execute the
code. As the system delegates the networked performer to
execute the code, the performer can decide when to pull the
change; otherwise, a code change at an arbitrary moment
could interfere with current interaction on the instrument.
The message window will state the name of the submitted
function and display two buttons - run/reject. The instru-
ment performer simply presses one of the two buttons and
runs (or rejects) the newly submitted code (see the message
window at the bottom of the screen in Figure 5). With
this distributed code execution, the instrument performer

Proceedings of the International Conference on New Interfaces for Musical Expression

267



Figure 5: Screenshot of an example application
(tone matrix) on a mobile device. The chat mes-
sage appears at the top of the screen. The remote
code execution message window is presented at the
bottom.

can participate in the coding process by deciding when to
execute and having the option to reject. Note that the de-
cision will be fed back to the live coders and will influence
forthcoming changes. For a live coder to distribute code
execution to another live coder is easy. One can write code
into a subroutine function and simply share the function
with others. The other live coder can then run the func-
tion with extra code. This will be useful when one wants to
synchronize execution of more than one person’s code.

4. CONCLUSIONS
In this work, we have introduced an extension of the pro-
gramming environment to facilitate collaborative live cod-
ing, especially when musicians are connected over network.
The new features have been added to support communica-
tion between live coders and a networked performer. The
system provides individual and shared namespace and offers
ways to distribute code execution to collaborators.

There are numerous possible directions for future work.
In particular we are interested in exploring structural sup-
port for collaborative live coding by interpreting the pro-
cess as a live performative co-design problem. Augment-
ing the chat with quantitative methods that help evaluate
design decisions may help accelerate the design process, a
useful proposition in a live setting. Our current system al-
ready collects design decisions by allowing an instrument
performer to accept or reject code segments for execution.
Information from a course of performances could be used
to classify successful code sequences via machine-learning
methods. From this one can create a dynamic library that
offers fast lookup suggestions of code that can be rapidly
inserted into an ongoing performance.

Furthermore we are interested in scaling up the current
work. One can imagine that networked live coding could
become a crowd-scale performance. How can collaborative

coding be structured when one has to expect hundreds or
more of participants to operate jointly?

Finally, coding as performance is a temporal progress.
Support for navigation across a time dimension could offer
increased control and interactivity. In particular we are in-
terested in temporal navigation of the state-space along the
lines of undo/redo functions, further expanding this concept
towards general code notation and state visualization.

5. REFERENCES
[1] Á. Barbosa. Displaced soundscapes: A survey of

network systems for music and sonic art creation.
Leonardo Music Journal, 13:53–59, 2003.

[2] A. R. Brown and A. C. Sorensen. aa-cell in practice:
An approach to musical live coding. In Proceedings of
the International Computer Music Conference, pages
292–299. International Computer Music Association,
2007.

[3] C. Brown and J. Bischoff. Indigenous to the net: early
network music bands in the san francisco bay area.
Available at crossfade. walkerart. org/brownbischoff,
2002.

[4] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised Sound,
8(03):321–330, 2003.

[5] G. Essl. UrMus – An Environment for Mobile
Instrument Design and Performance. In Proceedings
of the International Computer Music Conference
(ICMC), Stony Brooks/New York, June 1-5 2010.

[6] J. Freeman and A. Troyer. Collaborative textual
improvisation in a laptop ensemble. Computer Music
Journal, 35(2):8–21, 2011.

[7] R. Ierusalimschy. Programming in lua. Roberto
Ierusalimschy, 2006.

[8] M. Kaltenbrunner, S. Jorda, G. Geiger, and
M. Alonso. The reactable*: A collaborative musical
instrument. In Enabling Technologies: Infrastructure
for Collaborative Enterprises, 2006. WETICE’06.
15th IEEE International Workshops on, pages
406–411. IEEE, 2006.

[9] S. W. Lee and G. Essl. Live coding the mobile music
instrument. In Proceedings of New Interfaces for
Musical Expression (NIME), Daejeon, South Korea,
2013.

[10] S. W. Lee and J. Freeman. Real-time music notation
in mixed laptop–acoustic ensembles. Computer Music
Journal, 37(4):24–36, 2013.

[11] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. In Proceedings of the
International Computer Music Conference (ICMC),
Ljubljana, Slovenia, 2012.

[12] J. Rohrhuber, A. de Campo, R. Wieser, J.-K. van
Kampen, E. Ho, and H. Hölzl. Purloined letters and
distributed persons. In Music in the Global Village
Conference (Budapest), 2007.

[13] A. C. Sorensen. A distributed memory for networked
livecoding performance. In Proceedings of the
International Computer Music Conference, pages
530–533, 2010.

[14] G. Wang, A. Misra, P. Davidson, and P. R. Cook.
Coaudicle: A collaborative audio programming space.
In In Proceedings of the International Computer
Music Conference. Citeseer, 2005.

[15] G. Weinberg. Interconnected musical networks:
Toward a theoretical framework. Computer Music
Journal, 29(2):23–39, 2005.

Proceedings of the International Conference on New Interfaces for Musical Expression

268




