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ABSTRACT
CaMus2 is a multi-user multi-phone extension of the Ca-
Mus system. Mobile camera phones use their cameras to
track position, rotation, height, and other parameters over
a marker sheet to allow interactive performance of music.
Multiple camera phones can use the same or separate marker
sheets and send their interaction parameters via Bluetooth
to a computer where the sensor information is converted
to MIDI format to allow control of a wide range of sound
generation and manipulation hardware and software. The
semantics of the mapping of MIDI message to performance
parameters of the camera interactions are fed back into the
visualization on the camera phone.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—input devices and strategies, interaction styles,
screen design; H.5.1 [Information Interfaces and Pre-
sentation]: Multimedia Information Systems—Audio in-
put/output ; H.5.3 [Information Interfaces and Presen-
tation]: Group and Organization Interfaces—collaborative
computing, synchronous interaction

General Terms
Design, Human Factors

Keywords
Mobile phones, camera phones, music performance, collab-
oration, camera-based interaction, small displays, spatially
aware displays

1. INTRODUCTION
Mobile technology is a common place commodity and of-

ten these devices have vast potential for both sound gener-
ation and for new modes of interaction. The role of mobile
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phones as entertainment devices becomes increasingly im-
portant, as reflected in better audio codecs for high-quality
music reproduction and higher storage capacities. The wide-
spread availability of mobile phones enables the ad-hoc col-
laboration of non-expert music performers. Yet there are
few examples of attempts to turn mobile devices into inter-
active music performance devices.

CaMus is an implementation of an interactive paradigm
for mobile camera phones which allows interactive perfor-
mance and flexible mapping to arbitrary MIDI capable sound
software and hardware [12]. A camera phone is tracked over
a marker sheet and serves as a spatially aware display [4]
into a virtual interaction space. The marker sheet provides
a fixed reference frame for the virtual space and the mov-
able device display is used as a dynamic peephole [9]. Mul-
tiple sounding elements, including instruments and sound
effects, can be freely moved in this space. The position and
orientation in the physical space controls parameters of the
sounding elements. The actual sound generation takes place
on a nearby PC that is connected via Bluetooth. The basic
mapping of position and orientation parameters to music is
predefined with off-the-shelf MIDI sound synthesis software.

In this paper we describe how the basic CaMus system
was extended to allow simultaneous and collaborative per-
formance of multiple phones. We call the collaborative ver-
sion CaMus2. Multiple camera phones connect to a Blue-
tooth enabled PC that then maps camera interaction para-
meters to MIDI format controls, which can be easily mapped
to a wide variety of MIDI-enabled software and hardware.
In addition CaMus2 allows the mobile phones to be informed
about the semantics of the mapping of interaction parame-
ters to sound generation and modification parameters and
can now share, modify and display this information. On
the technical side we have enabled the use of dynamic digi-
tal zoom to increase the range of the height parameter and
extended the grid surface area.

Mobile technology for music performance has been used
in various ways. Most of these have so far been with an
emphasis on playback [1, 2, 8, 16, 17, 18], and mobile music
interactions with a strong input component are yet in their
infancy [7]. An example of an interaction paradigm based on
mobile technology is GpsTunes [14] where walking naviga-
tion is supported by variation in musical playback. It in turn
is closely related to the Sonic City project, which however
does not use a mobile device for sensing [6]. “miniMIXA”
from SSEYO (www.sseyo.com) is a music mixer for mobile
devices. However, it does not use camera-based input.



Figure 1: Setup of a collaborative CaMus perfor-
mance.

Mobile performance is however a strong emerging commu-
nity [5] where new frameworks are starting to emerge [15]. A
recent example of mobile technology being center of a very
interactive piece was the Pocket Gamelan technology where
mobile devices were suspended on cords [13].

2. MAKING CAMUS COLLABORATIVE
Musical instruments often are played together, making

the music playing experience a collaborative one. The joint
playing can either be supported by common musical scores
or knowledge of a musical piece, or mediated by interper-
sonal communication in a chamber music setting or a con-
ductor in a large ensemble setting. A number of new musical
instruments have been designed with the primary concern
of collaboration in mind, see [10, chapter 2.7] for a review.

Mobile technology often comes with inherent communica-
tion methods and collaborative music making can use these
methods to enable or support performing together. The
original CaMus system could in principle be played together,
but there was no inherent support for joint activity and the
infrastructure was strictly separate. In the original CaMus
system the virtual planes of interaction in a sense constitute
a score. Yet when two such systems are played together
there is no inherent support for joint structure of the score
or playing different aspects of a synchronized score.

The goal of making CaMus collaborative was to struc-
turally support joint performance through mobile interac-
tions. We implemented two features in order to achieve
this: (1) a networking protocol that allows to change, share
and join CaMus performance information over the wireless
networking capability of the mobile camera phones and (2)
allow the exchange of semantic information between partici-
pants in the networked setup to give each participant mean-
ingful information about the context and the dynamics of
the music performance.

Bluetooth (www.bluetooth.org/spec) allows multiple si-
multaneous connections to an RFCOMM server. In order
to use this to make CaMus collaborative, we extended the
receiver software on the personal computer from the original
architecture [12] to allow multiple serial Bluetooth connec-
tions to be used. The computer opens and registers the
serial devices as needed upon startup in the local SDP data-
base. The mobile camera phones then get to select which of
the found serial channels are to be used for communication
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Figure 2: Bluetooth wireless network between mo-
bile camera phones running the marker recognition
software and the personal computer running MIDI
based sound synthesis software.

of this particular phone with the computer. Each phone re-
tains the channel as identifier for itself within the network
to communicate settings with the PC and other devices.
All connections currently go through the PC (see Figure 2)
but direct communication between mobile camera phones
through the same serial Bluetooth protocol is planned.

The interaction parameters received from the various cam-
era phones via the serial Bluetooth channels are then in turn
converted into MIDI channels and can be used by any MIDI-
enabled software and hardware. Parameters can be mapped
to the same or separate sounds or effects and hence perform-
ers can jointly manipulate one sound or contribute different
sounds or effects through the same architecture.

The PC usually is used to support semantic exchange with
the mobile phones. As the mapping of interaction parame-
ters to MIDI data and then sounding results is ultimately
placed on the PC, the PC also has to serve the mobile camera
phones with this information to provide appropriate visual
feedback to the user. The PC provides this data before a
performance starts to each participant in the network. Fur-
thermore mobile camera phones can send changes in seman-
tics back to the PC to allow editing of this information and
to allow sharing it with other participants in the network.
The protocol is in principle set up to allow direct communi-
cation between any participant in the network in preparation
for performance pieces that solely rely on the mobile devices
for all aspects of the performance.

The protocol is bidirectional. Each participant can send
or request information and no participant takes in princi-
ple a privileged role. Dedicated roles are however possi-
ble, as for example a PC can serve as a shared host for
semantic information. Each communication starts with an
opcode that identifies the function of the exchange. Upon
connection a new participant informs the other end of a
connection link of its identity using the CONNECT opcode.
Thereafter either side of a connection can send performance
data via SEND MOVEMENT and SEND PARAMETERS
opcodes. Using the REQUEST SEMANTICS opcode any



Figure 3: Three different filters (low pass, delay,
and overdrive) with their semantics are located at
different places in the workspace.

participant can request semantic information of other partic-
ipants in the network, to which either SEND SEMANTICS
or NO SEMANTICS is returned, depending whether the re-
spondent has the information available. On the fly editing
of sounds or effects can be shared in similar fashion. For
example DELETE TARGET informs a peer in the network
that a target was removed from the performance space.

3. SOUND SPACE VISUALIZATION ON
SMALL DISPLAYS

Visualizing interactions on a mobile device is challeng-
ing due to the limits of the available display area. In the
original CaMus system we implemented a number of visu-
alization strategies to help guide interactions in a virtual
plane using virtually placed targets and circular arcs called
halos to indicate their range of influence [12]. In experi-
ments we showed the general efficiency in comparable mobile
navigation tasks [11] but it also indicated needs for exten-
sions. Specifically additional semantic information is needed
to make the mapping of interactions with the camera phone
to sounding events more accessible to the performer. Fur-
thermore the experiments showed that the physical limits of
the vertical interaction impacted the performance of users
in interactions. To this end we extended the technology to
increase the vertical interaction range.

3.1 Visualization of Target Semantics
In order to improve the visualization on the camera phone

display we introduce semantic information and a communi-
cation protocol to share this information between partici-
pants in the Bluetooth network. The semantic information
carries the mapping of interaction parameters from the tar-
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Figure 4: The workspace consists of three layers:
Navigating through layers is done by vertical move-
ment gestures. Targets can be dragged between lay-
ers.

get detection system to sounding sources and sound manip-
ulation parameters.

The visual targets of the original CaMus system now will
display a textual description of the function of the target.
For example a target may represent a low-pass filter (see
Figure 3). In this case the relevant semantic information can
be presented inside the target square by the visualization.

In addition for each target, semantic information of the
control parameters related to the target can be exchanged.
These control parameters are [12] x and y distance from the
target, Euclidean distance d from the target, height h over
the target sheet, rotation angle α, and tilt angles θx and θy

relative to the x- and y-axis, respectively. Each of these can
be given a semantic name. For example distance d can be
named “Volume”. Furthermore, the raw input data can be
mapped to a new value range. For example height may be
between 40 and 160 but the control parameters used by the
MIDI software are 0-127. Through the exchange the mobile
phone is informed what the mapping ranges are, and if the



mapping is linear or logarithmic. This information can be
requested for any participant from the network. Currently
the personal computer serves to host and provide this infor-
mation, but the protocol in use is designed to allow exchange
and modification of this data by all participants in the net-
work.

Rendering a complex workspace can put a lot of comput-
ing load on the mobile device. However, there are initiatives
for standardizing scalable graphical user interfaces for mo-
bile devices, for example SVG Tiny (www.w3.org/TR/SVG-
Mobile) and OpenGL ES (www.khronos.org/opengles). If
graphics coprocessors are capable of rendering complex scenes,
the load on the main processor can be reduced. With the
workspaces we displayed (see Figure 3), consisting of a cou-
ple of targets, some text and the background grid, the de-
vices we used had no problems.

3.2 Interaction on Multiple Layers
We found that it is beneficial to divide the workspace into

multiple layers that are stacked upon each other. Each layer
can have its own targets. Only the targets of the current
layer are manipulated in an interaction. The settings of the
other layers remain unchanged. This allows users to group
conceptually related items on the same layer and to interact
with them independently, without influencing other targets
at the same time. For example, instruments could be moved
to one layer and sound effects to another.

Users can navigate to the next higher layer by making a
quick up-flick gesture with the phone and to a lower layer
via the same gesture in the opposite direction. Objects can
be dragged to other layers by selecting them with the joy-
stick button, keeping the button pressed and doing the flick-
gesture. A sequence through the three layers is illustrated in
Figure 4. Initially, one target is located in each layer. The
user is initially located at layer 1 (left bottom screenshot).
With two flick-up gestures (arrows 1, 2) layers 2 and 3 are
reached in sequence. The user now selects the target (ar-
row 3), drags it down to layers 2 and 1 (arrows 4, 5), and
finally releases it at layer 1.

4. EXTENDED GRID TRACKING WITH
DYNAMIC DIGITAL ZOOM

Camera phones are tracked over a grid of visual mark-
ers that provides a fixed frame of reference for the virtual
workspace within which the user interacts. The approach is
an extension to the one described in [12]. The absolute posi-
tion and orientation of the device within the physical space
above the grid can be tracked with low latency and high pre-
cision. While moving within the space the device display is
continuously updated in real time and virtual objects seem
to have a fixed position in physical space. The graphics is
rendered perspectively, as if looking through the device onto
the background surface (see Figure 5). The device acts as a
window into the virtual workspace. This setup is known as
a spatially aware display [4, 19]. The space can be shared by
multiple phones or multiple spaces with different semantics
can be set up. Interaction takes place single-handed, as is
in line with current mobile phone interaction styles.

4.1 Extended Tracking Surface
The grid defines a global coordinate system, with one unit

corresponding to a single black-and-white cell (ccu = code
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Figure 5: The grid defines a global coordinate sys-
tem for absolute positioning. (a) Each marker stores
its index position in the grid (i,j) from which the grid
coordinates of the corners are computed. (b) The
homography is computed from the largest possible
area.

coordinate unit). Each marker has a size of 6×6 ccu, spaced
in a regular array of 8×8 ccu. Each marker stores its own
index position within the grid. The markers in the top row
(left-to-right) have index positions (0,0), (0,1), etc. From
the index position (i, j) the grid coordinates of the marker
corners are computed (see Figure 5a): left-top (8i, 8j), right-
top (8i + 5, 8j), right-bottom (8i + 5, 8j + 5), left-bottom
(8i, 8j + 5). Each marker has a raw capacity of 16 bits.
With 2 parity bits this leaves 2×7 bits to store index coor-
dinates. The maximum grid size is thus 128×128 markers
or 1024×1024 ccu. Suitable printing sizes are 1.5 mm to
2.0 mm per black-and-white cell, which yields a maximum
grid area of 1.54 m to 2.05 m.

The size of individual markers and their spacing in the
grid is such that uniform position and orientation detec-
tion during movement are ensured. The markers are small
enough that at any focus point on the surface, at least a
single marker is completely contained in the camera view.
The grid also provides the basis for perspective rendering of
the workspace.

A perspective mapping (planar homography) between the
camera image coordinate system and the grid coordinate
system requires at least four points whose coordinates are
known in both coordinate systems. The corners of the mark-
ers serve for this purpose, since we know their position in
the camera image and, via the index position of the marker,
their position in the grid. However, since the markers ap-
pear very small in the camera image, basing the perspective
mapping on the features of a single marker would yield a
very unstable rendering. We thus use features of potentially
different markers that are closest to the image corners, in
order to base the perspective mapping on the largest possi-
ble area. The red lines in Figure 5b show on which points
the mapping is based in different situations.

4.2 Extended Tracking Distance
In the original implementation, the vertical tracking range

(the distance of the camera lens to the grid) was limited to



between 2 and 10 cm. This proved insufficient for effective
interactions along the z-dimension. In the current exten-
sion we use the digital zoom feature that is present in many
camera phones to substantially extend the vertical tracking
range.

In contrast to optical zoom, which changes the optical
characteristics of the lens system and thus influences image
formation before the light reaches the optical sensor, digital
zoom manipulates an image after it has been acquired by the
sensor. Digital zoom increases the apparent focal length at
which an image was taken by cropping an area at the image
center with the same aspect ratio as the original image. The
cropped area is rescaled to the original dimensions by inter-
polation. No optical resolution is gained in this process, but
digital zoom is done by the camera before any compression
and does not have to be done by the main processor of the
device, it essentially gives high-quality rescaling for free.

The Symbian camera API allows to set the digital zoom
level between 0 and some device-dependent maximum value.
In an experiment we kept the physical distance to an ob-
ject in the camera view constant, continuously changed the
digital zoom level, and measured the size at which the ob-
ject appeared in the camera view (sizezoomed). We found
that sizezoomed = sizeunzoomed × ek×level, or equivalently
distancezoomed = distanceunzoomed × e−k×level. For Nokia
the 6630 (6× digital zoom) k = 0.0347 (R2 = 0.9983), for
the Nokia N70 (20× digital zoom) k = 0.0386 (R2 = 0.9992),
and for the Nokia N80 (20× digital zoom) k = 0.0345 (R2 =
0.9974).

During grid tracking, digital zoom is continuously ad-
justed, such that markers appear in a size that is best suited
for detection. The algorithm tries to keep the size at which
markers appear in the camera image constant. If no mark-
ers are detected in a camera frame, a different zoom level
is chosen. The algorithm is complicated by the fact that
changes to the zoom level via the camera API do not re-
sult in immediate changes in the next camera frame. In-
stead, the new digital zoom setting becomes valid only 2 to
5 frames after the adjustment is made. Therefore, the algo-
rithm chooses the setting that is most likely to yield smooth
distance changes. The details of the algorithm are given
below. The frame index (frame) is a sequence number for
frames from the camera. The zoomed distance (distZoom)
is provided by the marker recognition system, if at least one
marker is detected in the camera image. It depends on the
current digital zoom setting.

g l oba l s t a t e :

int l e v e l ;
int levelNew , levelNewFrame ;
int d , dFrame ;
int dPrev , dFramePrev ;

void AdjustDigitalZoom ( int frame , int distZoom )
{

i f ( no markers found ) {

i f (more than N frames without markers ) {

// try d i f f e r e n t zoom l e v e l
levelNew = ( l e v e l + Range / 4) mod Range ;

// new zoom l e v e l not immediately va l i d
camera−>SetDigitalZoom ( levelNew ) ;

// guaranteed to be va l i d 7 frames from now
levelNewFrame = frame + 7 ;

}

} else {

distNoZoom = distZoom / exp(−k l e v e l ) ;

i f ( l e v e l 6= levelNew ) {

// in t rans i t i on to new l e v e l
dNoZoomNew = distZoom / exp(−k levelNew ) ;

// ex t rapo la t e d is tance based on old va lues
dExtrap = d+(d−dPrev )/( dFrame−dFramePrev ) ;
de ltaOld = abs ( dExtrap − distNoZoom ) ;
deltaNew = abs ( dExtrap − dNoZoomNew ) ;

// choose new one i f i t i s c l o s e r
i f ( deltaNew < deltaOld or

frame ≥ levelNewFrame )
{

distNoZoom = dNoZoomNew ;
l e v e l = levelNew ;
i f ( levelNewFrame > frame ) {

// de f ine how long to keep new s e t t i n g
levelNewFrame = frame + 1 ;

}
}

}

// remember previous dis tance value
dPrev = d ;
dFramePrev = dFrame ;

// compute the new unzoomed dis tance value
d = (3 distNoZoom + dPrev ) / 4 ;
dFrame = frame ;

i f ( frame ≥ levelNewFrame ) {

// distZoom va l i d
distNoZoom = distZoom / exp(−k l e v e l ) ;

// se t zoom l e v e l to i d ea l va lue
levelNew = −1/k ln ( dZoomIdeal/distNoZoom ) ;

// new zoom l e v e l not immediately va l i d
camera−>SetDigitalZoom ( levelNew ) ;

// guaranteed to be va l i d 7 frames from now
levelNewFrame = frame + 7 ;

}
}

}

4.3 Current State of the Implementation
The CaMus2 system has been implemented for Symbian

S60 devices. On a Nokia 6630 or a Nokia N70, markers are
recognized in view finder mode with a frame size of 176×144
pixels at a rate of 10-15 frames per second, depending on the
complexity of the rendered scene. With the dynamic digital
zoom method the vertical recognition range for a grid with
a cell size of 1.5 mm increases from 10 cm to 30 cm for a
Nokia 6630 and to 50 cm for a Nokia N80. Even though
we use fixed focus cameras the method works reliably over
the full distance range, since the marker recognition algo-
rithm is tolerant to out of focus (blurred) images. At larger
distances the perspective mapping of the grid gets more un-
stable, which could be mitigated by filtering and smoothing
the perspective mapping.

Overall, the marker grid provides a fixed reference frame
for visual tracking in a 3-D physical interaction space of 150
× 150 × 30 cm. Multiple devices can be tracked with low
latency and high precision. Since each device determines its



position on its own, the method is scalable to a large num-
ber of devices. Moreover, the approach runs on off-the-shelf
camera phones and does not require additional hardware.

5. CONCLUSIONS
In this paper we presented the extension of the CaMus sys-

tem for performance of music with mobile camera phones for
multiple users. Multiple camera phones communicate with
a personal computer through a Bluetooth network sending
performance parameters derived from a visual tracking sys-
tem. This information is then mapped to MIDI to connect
to arbitrary MIDI-enabled sound software or hardware.

In order to enhance the contextual information for the
performer, we have added semantic information that can be
shared by all participants in the network and displayed on
the mobile camera phone’s visualization. Different aspects
of the performance can be placed on multiple separate lay-
ers. This way performers can separate sounding functions
from effect functions and can choose to share a common
performance space or separate it as needed for a given per-
formance context.

Technologically we have extended the range of the height
allowable by the system through the use of dynamic digital
zoom to improve the possible performance. This is in part
result of an interface study which showed that the confine-
ment of the vertical movement was a limiting factor [11].

As immediate future work we plan to implement the sound
synthesis and manipulation engine completely on the mobile
device itself and hence remove the need for a personal com-
puter to serve as the sound source. This has already been
prepared by the portation of the sound synthesis toolkit
STK to Symbian OS [3]. As the mobile device itself defines
the mapping semantics of interaction parameters to sound-
ing results, we plan to implement editing of this information
on the phone itself. At the same time, the communication
will be extended to allow direct exchanges between multi-
ple mobile devices in the absence of a personal computer.
Through this network semantics information is planned to
make sharable among all users of the CaMus2 system and
allows each phone to visualize the performance context of
all participants interactively and while this context is edited
on the fly.
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