
Computer Music through the Cloud: Evaluating a Cloud Service
for Collaborative Computer Music Applications

Antonio Deusany de Carvalho Junior, Marcelo Queiroz
Instituto de Matemática e Estatı́stica

Universidade de São Paulo
dj,mqz@ime.usp.br

Georg Essl
Electrical Engineering and Computer Science

University of Michigan
gessl@umich.edu

ABSTRACT

Cloud computing offers a new level of very large scale dis-
tributed networking offering unprecedented level of networked
participation and performance. This makes cloud services an
attractive candidate for computer music concerts and appli-
cations. However, important network measures that are rele-
vant for computer music performances, such as latency, have
as yet not been explored in detail in this context. This pa-
per presents results of an evaluation regarding the round-trip-
time (RTT) for exchange messages through Pusher cloud ser-
vice using mobile devices at different places on the American
continent, exploring their use for very long distance collab-
orative performances. Average RTT varied from 230 to 578
milliseconds. Minimum round-trip time clocked in at 166ms
in one of our tests between USA and Brazil. The details of our
study can help develop collaborative network performances
that can build strategies to incorporate expected latency pat-
terns into either the back-end architecture or into aspects of
the performance itself.

1. INTRODUCTION

New technologies can break the rules of old paradigms with
possible solutions for classic problems. Cloud computing is
an example of a tremendously successful solution for large
scale problems that were not feasible before it. Cloud com-
puting has gained confidence and popularity, and its use has
become an easily accessible commodity. Although it is ap-
plicable for many computational problems, evaluation of the
characteristics of cloud services for computer music applica-
tions is still lacking.

At first sight, the structure of the cloud is useful for com-
puting scientific algorithms, but we can also make use of the
fast data distribution between different locations. This ap-
proach can help many applications to behave as a respon-
sive computer music environment for collaboration through

Copyright: c©2015 Antonio Deusany de Carvalho Junior et al. This is an
open-access article distributed under the terms of the Creative Commons At-
tribution License 3.0 Unported, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are
credited.

the Internet. Another important point is that cloud comput-
ing creates an abstraction of the complex architecture that
would be needed for an efficient communication between a
large number of devices at the same time. Leveraging this
abstraction makes the creation of very large scale networked
performances substantially easier than before.

Musical collaboration often uses local and remote networks.
Local networks have the advantage of guaranteeing low la-
tency, making the technology relatively straight-forward to
use in a performance setting, yet numerous long-distance In-
ternet music performances have also been successfully con-
ducted in the past. In most of those cases we notice that a
specific network setup is necessary beforehand and the per-
formers also have to manually configure network settings in
order to suit their needs depending on many variables, such
as the number of participants, the number of data streams and
the exact nature of exchanged data. As opposed to that, bal-
ancing, scalability, and setup will be done behind the scenes
on cloud computing solutions.

An important challenge of long distance networking comes
from network latency in the communication between devices
from different locations. A latency of 100ms and above im-
plies some difficulty for network interaction even with expe-
rienced musicians [1], and if we have a sensitive ensemble
performance, this threshold may be as low as 20ms [2]. One
way to tackle this problem in local networks is using light-
weight networking protocols such as UDP [3, 4], that has a
low overhead and fast data diffusion. The potential for packet
loss can often be of minimal impact to the ability to perform
in practice.

In the case of long-distance networks there are no ready-
made solutions, and performers may well have to grapple
with the specific latency present in any given configuration.
In order to facilitate this baseline understanding our work
aims at evaluating the cloud computing latency and usability
in the long-distance case.

We developed a mobile application using a cloud service
for communication between mobile devices in different loca-
tions. We opted to exchange textual messages based on sym-
bolic data that can be synthesized on local devices, avoid-
ing audio transmission. One of our premises is that we can
take advantage of mobile devices processing capabilities, that
were already evaluated in previous works [5, 6]. This ap-
proach is also based on the heavy use of MIDI and OSC on

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 226 –

mailto:dj,mqz@ime.usp.br
mailto:gessl@umich.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

computer music performances, and its support by most pro-
gramming languages used on mobile music applications.

Although most cloud computing applications require a con-
figuration of virtual machines or web servers, we are explor-
ing push-based cloud services as an alternative. These are
widely used to service large scale distributed push-notifications
in mobile apps. In particular we are using the cloud service
offered by Pusher 1 for our work. Pusher makes the design of
large scale data distribution easy through accessible libraries,
providing a convenient gateway for developing scalable net-
worked data distribution solutions.

In the next sections of the paper we will introduce related
work before a discussion on cloud services and the Pusher
cloud service. The evaluation and results are going to be pre-
sented in Sections 5 and 6, respectively, and we will conclude
with the discussion and analysis of these results.

2. BACKGROUND AND RELATED WORKS

Experiments with network music date back to the 1970’s with
The League of Automatic Music Composers [7]. The set up
of this group of composers was based on desktop comput-
ers and a local network. Each member would be responsi-
ble for some musical feature during the performance, and the
interaction would take place through the local network, and
later, through phone lines. An important pioneering example
of mobile wireless networked performance is Golan Levin’s
“Dialtones” [8]. This performance, based on audience partic-
ipation with mobile devices, was achieved by the definition
of a ringtone for each participant on a determined seat, and
the use of an application to call specific devices at any time.
These kinds of music performances were only possible due to
the creative use of new technologies available at each period,
the commercialization of the personal computers and wired
networking in the first instance, and popularization of mobile
devices and wireless networking in the second case.

We have had an increasing number of important works dur-
ing the 21st century, and this fact may be associated to the
accelerated technological evolution of this period. Every new
product or feature presented to the market is used on musi-
cal performances and installations soon after receiving musi-
cian’s attention. Some examples are touchscreen sensors [9],
cameras [10], mobile sensors [11, 5, 12], smartphones with
all their features [13], laptops orchestras [14], and browsers
with HTML5 and new Javascript libraries [15, 16]).

New communication technologies also encourage musical
performances. Even advances in network protocol technolo-
gies and transmission media can alter and improve the possi-
bility space for music performances. The protocols used on
network music had great progress thanks to advances made
in network protocols starting with TCP, and then UDP, SCTP,
RTP, and RTSP [17]. Additionally, advances in communica-
tion regarding the quality of data transmission are impressive.
Nowadays, one of the most popular transmission medium is
the optical fiber used on gigabit Internet interconnection that

1 https://pusher.com/

reaches hundreds of billions of bits per second in some parts
of the network.

The use of local network novelties can be seen on “World-
scape laptop orchestra” [3]. Here the authors decided to use
the recent wireless standard 802.11n, due to its high frequency
band and datarate that improved laptop communication if com-
pared to old standards. Freeman’s “massMobile” [18], Alli-
son’s “Nexus” [19], and Hindle’s “SWARMED” [20] present
different ways of using web servers and web technology for
musical performances. In these works, web services fill the
gap between user interaction and local installations or per-
formances. An interesting aspect of “massMobile” [18] is the
use of 3G and 4G technologies to ease audience participation.

Cloud computing suggests itself as the next logical step in
network capability, ready to be used for music applications
and performances. The “CloudOrch” [21] as proposed by
Hindle is one of the first attempts to use the advantages of
cloud computing in musical ways. The idea was to deploy
virtual machines for client and server users, create websock-
ets for intercommunication, and stream audio from cloud in-
struments to both desktop computers and mobile devices us-
ing web browsers. The author dubbed it “a sound card in the
cloud” and presented latency results from 100 to 200ms be-
tween the Cybera cloud and the University of Alberta, Canada,
using the HTTP protocol. Although similar, our work took
full advantage of the cloud computing resources and focused
on cloud services that allow the use of virtual machines with
a high level of abstraction while retaining comparable perfor-
mance.

3. CLOUD SERVICES

An important core aspect of cloud computing relies on an ab-
straction of distributed servers in order to simulate a central-
ized network with resource replication and balancing. Early
on cloud computing was mostly used for scientific calcula-
tions, grid computing, or large scale computing. All these ap-
plication areas required substantial computational power and
hence benefited from many cores.

The cloud computing evolution pointed out the possibility of
cloud services as a solution for simple tasks. Cloud services
are services that are deployed on a cloud computing structure
to take advantage of its computation and distribution quali-
ties. A common use is the data replication service at web-
sites and mobile applications, so even if we have increasing
access at some moment, the cloud service can instantiate an-
other machine or machines to provide minimum latency and
avoid processing overhead on the servers.

In our work we decided to evaluate the push notification ser-
vice of Pusher. The main intention here is to provide an easy
way to exchange messages between mobile devices around
the world with minimum codification effort.

4. PUSHER CLOUD SERVICE

Numerous mobile applications have a focus on fast message
delivery to a high number of devices in many parts of the

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 227 –

https://pusher.com/

world. A good example of this service is an email applica-
tion that sends us a notification whenever we receive a new
message without requiring us to actively request new infor-
mation. This approach is called push notifications, and one
implementation of it is Pusher. This cloud service uses cloud
computing solutions in order to offer a service that delivers
messages through web sockets and HTTP streaming.

One of the advantageous features supported by Pusher API
is its support of HTTP Keep-Alive feature. Once connected
to Pusher cloud service, it is possible to send and receive mes-
sages to/from the cluster without starting a new connection,
saving the overhead of restarting new TCP connections. The
Pusher service offers the possibility of creating real-time ap-
plications considering all of its resources.

Although Pusher has many paid plans with more resources
available, we decided to evaluate the free plan and verify if it
can be used successfully in specific use cases. The free plan
has a limit of 100,000 messages per day and it counts the API
requests and messages delivered to each client. We can have
up to 20 clients connected at the same time and all clients
will send and receive messages only from the US-East cluster
server that is situated in Northern Virginia.

The service also has some restrictions for all plans, free and
paid alike. Clients are allowed to send no more that 10 mes-
sages per second and will be disconnected from the service
when they exceed this limit. This limitation is due to the over-
head on distributing messages among a thousand users. Every
message has a size limit of 10 kilobytes, but it is possible to
request an upgrade in order to send larger messages.

The requirement to exchange messages between users is to
create a channel and have users connected to the same chan-
nel. The API supports public, private, and presence chan-
nels. Public channels are used only to send messages from
the server to the users connected, like a feed. Private channels
need a prefix “private-”, require server authentication, and of-
fer the option to accept messages from its users. The pres-
ence channel is similar to the private channel, and includes
the feature of requesting information about connected users.
The channels may have different events that can be bound by
clients, e.g. a client can bind the event “client-event” and re-
ceive notifications when a new event with the same name is
sent to the channel. On private and presence channels, client
events must have the “client-” prefix. An example code used
to send and receive messages through the Pusher cloud ser-
vice using a private channel is presented on Listing 1.

In this piece of code we have omitted some information that
depends on the application. The first is the “AUTH PAGE”,
that needs to be configured to give a unique authentication
code to every socket connection. The “PUSHER API KEY”
is the key received when creating an application on Pusher.
After creating the channel, we need to bind an event with
an event listener. The event listener requires the code that
is expected to run every time the event occurs. The “MES-
SAGE” is a string with any values defined to be sent, e.g.
numbers need to be converted directly to string or through
Base64 binary-to-text encoding schema.

Pusher can send any type of data through the cloud respect-

ing plan limits. For instance, one might share codes from
computer music languages like CSound 2 , ChucK 3 , and Su-
perCollider 4 . Cloud services can also share symbolic data
or control signals between any mobile applications, allowing
one to make use of any computer music synthesis engines
available in tandem with Cloud services. On the next section
we are going to present the evaluation proposed to verify the
utility of push notifications on computer music in a large scale
context.

Pu sh e r p u s h e r ;
P r i v a t e C h a n n e l c h a n n e l ;

H t t p A u t h o r i z e r a u t h o r i z e r =
new H t t p A u t h o r i z e r (AUTH PAGE) ;

P u s h e r O p t i o n s o p t i o n s = new P u s h e r O p t i o n s () ;
o p t i o n s . s e t A u t h o r i z e r (a u t h o r i z e r) ;
p u s h e r = new Pu sh e r (PUSHER API KEY , o p t i o n s) ;
p u s h e r . c o n n e c t () ;

S t r i n g channelName = ” p r i v a t e−c h a n n e l ” ;
c h a n n e l = p u s h e r . s u b s c r i b e P r i v a t e (channelName) ;
S t r i n g eventName = ” c l i e n t−e v e n t ” ;
c h a n n e l . b ind (eventName ,

new P r i v a t e C h a n n e l E v e n t L i s t e n e r () { . . . }) ;
JSONObject j s o n O b j e c t = new JSONObject () ;
S t r i n g message = MESSAGE;
j s o n O b j e c t . p u t (” message ” , message) ;
c h a n n e l . t r i g g e r (eventName , j s o n O b j e c t . t o S t r i n g ()) ;

Listing 1: Example of Java code from Pusher API

5. EVALUATION

Our core metric for evaluation of push-notification-based ser-
vices in large scale computer music application is round-trip
time (RTT). The Pusher.com cloud service has been chosen
due to its popularity and hard limits on the free plan. For
comparison, another available option would be the PubNub 5

service, which at this time offers a free plan that has a limit
of one million messages per month and messages up to 2KB.

Some pilot tests performed before the full evaluation pre-
sented an intermittent loss of connection when exactly 10
messages were sent per second, which represent the nomi-
nal maximum allowed. To avoid this issue a 150ms delay
between messages was used, and we established 10 cycles of
100 messages per test with a delay of 500ms between each
cycle during the tests. Each test represented a performance of
approximately 3 minutes with these definitions.

Six tests were defined based on the number of floats sent as
arguments inside the messages. We selected to evaluate mes-
sages with 1, 50, 100, 150, 200, and 250 floats. In this case,
the evaluation simulated messages in a range from 7 to 1750
floats per second. The messages had five divisions: a unique
device id; message number with cycle number on the range
of thousands; the total number of messages; a random inte-
ger as a key for message identification; and a block of floats.

2 CSound: http://www.csounds.com/
3 ChucK: http://chuck.cs.princeton.edu/
4 SuperCollider: http://supercollider.github.io/
5 PubNub: http://www.pubnub.com/

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 228 –

http://www.csounds.com/
http://chuck.cs.princeton.edu/
http://supercollider.github.io/
http://www.pubnub.com/

An example of a message used during the tests is presented
below:

23.0.1.A87422113 1001 1000 76 [0.28506452]

We created an Android application based on the loop-back
concept, so one device would send messages, the “sender”,
while the other device, the “loopback”, would need to answer
the message as soon as possible, simulating a loop-back cir-
cuit. The first device registered all messages sent and received
on a report file with millisecond time-stamp precision. The
method used to register the events on the report was System-
Clock.elapsedRealtime(). We also run AsyncTask invoking
executeOnExecutor() with THREAD POOL EXECUTOR in
order to have parallel execution on Android. An activity di-
agram is presented on Figure 1. The loopback device also
registered sent messages on report with the same precision.

Figure 1: Activity diagram of the test from the sender point of
view.

Two mobile devices were used for this evaluation: LG D685
G Pro Dual Lite (D685) and Sony Xperia Z3 Compact (Z3) 6 .
The tests were performed between three different universities
on the American continent. The mobile device D685 was se-
lected to be the loopback device at the Federal University of
Paraı́ba (João Pessoa, PB, Northeastern Brazil). On the other
hand, the Z3 was defined as sender from two different univer-
sities. The first evaluation was performed from the Univer-
sity of São Paulo (São Paulo, SP, Southeastern Brazil), and
the second from the University of Michigan (Ann Arbor, MI,

6 Comparison between the devices: http://www.gsmarena.com/
compare.php3?idPhone1=5736&idPhone2=6538

USA). We decided to use the Z3 as the sender due to its quad
core processor that could reduce the problems with system
latency.

The routes between the universities and the cluster used by
the cloud service are presented on Figure 2. It is important
to notice that every message needs to be sent to the cluster
before being pushed to its final destination. This means that
every message exchanged between São Paulo and João Pes-
soa passes twice through São Paulo before going back to São
Paulo.

Figure 2: Routes between the universities with linear distance
in kilometers

6. RESULTS

The geographic configuration imposes physical restrictions
on the lower bounds of networked performance. We made
use of the broadband Internet connection between the uni-
versities, whose actual medium of interconnection is optical
fiber, and the speed of light in this medium is about 200,000
km/s. If we consider the distances on the map at Figure 2,
we have the light RTT as 174ms on the first evaluation, be-
tween São Paulo and João Pessoa (SAO-JPA) 7 , and 104ms
on the second evaluation, between Ann Arbor and João Pes-
soa (ARB-JPA) 8 .

The RTT for each message sent is presented in the charts
of Figure 3. Some values overshoot the chart limit to main-
tain the scale of all charts. The results that reach the ground

7 The route between São Paulo and João Pessoa is 34,800km.
8 The route between Ann Arbor and João Pessoa is 20,940km.

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 229 –

http://www.gsmarena.com/compare.php3?idPhone1=5736&idPhone2=6538
http://www.gsmarena.com/compare.php3?idPhone1=5736&idPhone2=6538

represent a loss of message or connection during evaluation.
Table 1 and Table 2 show a summary with the main results
extracted from these measurements.

Floats 1 50 100 150 200 250
Lost msgs 14 26 25 3 21 38
Msg size 41 614 1190 1782 2355 2950
Minimum 342 332 332 329 332 352
Maximum 2430 3916 4371 1595 3014 1700
Average 515 578 563 486 536 543
Std. dev. 224 366 394 181 305 168

Table 1: SPA-JPA tests: Results from RTT evaluation using
cloud services between São Paulo and João Pessoa. RTT is in
milliseconds and average message size is presented in bytes
consisting of 1 byte per character.

Floats 1 50 100 150 200 250
Lost msgs 3 0 0 17 5 0
Msg size 43 613 1189 1784 2378 2935
Minimum 166 172 172 182 199 190
Maximum 1953 1052 898 3100 1869 951
Average 243 230 273 316 348 329
Std. dev. 138 83 103 317 143 101

Table 2: ARB-JPA tests: Results from RTT evaluation using
cloud services between Ann Arbor and João Pessoa. RTT
is in milliseconds and average message size is presented in
bytes consisting of 1 byte per character.

We can see in the charts that the RTT is better on ARB-JPA
evaluation. Another point from ARB-JPA evaluation is that
the more floats we have on a message, the higher RTT we
find. The SAO-JPA evaluation presented some instability re-
garding the average RTT and there was no discernible pattern
linking the number of floats to the average RTT.

Although we have had some high RTT values during the
tests, the concentration of high RTT values appear to be more
frequent in clustered sequential messages than when mes-
sages are isolated (meaning musical algorithms based on spo-
radic communication would suffer less). Furthermore, it was
relatively common for the service to lose at least one message
after a high RTT value.

The results summarized in the Table 1 present a minimum
RTT of 329ms with 150 floats and average RTT values be-
tween 486-578ms for all message sizes. On the other hand,
we have a minimum RTT of 166ms with 1 float on Table 2,
and average RTT values between 230-348ms. We sent 1000
messages on each test and lost no more than 4% of the mes-
sages in the worst case, and we lost more messages in the
SAO-JPA evaluation than we lost in ARB-JPA. Moreover,
ARB-JPA evaluation had tests with zero message loss.

7. DISCUSSION

A common scenario for network music performance expects
minimum latency when synchronization is at stake. Partici-
pants’ locations are an important factor in this case. When
participants are in the same place, technologies for local net-
works might offer the best solutions, whereas if we want par-
ticipants from different places or continents, the Internet would
be the obvious choice. Despite the fact that those are easy
choices, the merging of solutions for handling simultaneously
both scenarios may not be easy to achieve. Moreover, de-
pending on the technology used, some participants will have
difficulties to engage in the performance due to technical re-
strictions. In our work we decided to evaluate a cloud com-
puting solution for handling both situations at once.

We evaluated the communication between mobile devices
from different locations using the Pusher cloud service and
WiFi connection. We expected some differences due to the
length of the route connecting the cities, the time to process
the messages in all endpoints, and delays caused by any net-
work congestion, since those personal devices were not using
a dedicated connection. Notwithstanding, we got good results
that are going to be discussed on this section.

First of all, the location of the clusters used by the cloud
servers might be known or better selected beforehand. During
our tests, we found out that we were taking redundant routes
as a consequence of the specific cluster for the free plan used
on Pusher. The paid plan allow the definition of the cluster,
and we recommend a previous verification of the possibilities
before signing up to any cloud service.

The advantages of the cloud service offered by Pusher are
many: we can exchange messages through a robust cloud
computing structure with just a few lines of code; we do not
need to care about any other cloud computing configuration
(e.g. virtual machines, web server); they have libraries for
many languages used on desktop computers and mobile de-
vices, and the same application can interact using both plat-
forms at the same time; and we can also send any kind of
data using any string conversion or encoding, for instance,
any Base64 encoding schemes.

Although the free plan fitted our evaluations, it has some
disadvantages for music performances. The users are restricted
to one cluster localization and they need to upgrade to the
paid plans, in case a performance requires lots of users and
messages. We have reached daily limits with our evaluations
when we tried to repeat some tests, and we had to wait 24h
to restart everything. Another disadvantage is that apparently
we can only use one cluster location per application, but it is
possible to transit between clusters under some special con-
ditions (e.g. on presence channels we can’t have clients con-
nected during transitioning).

Despite of that, computer music performances can experi-
ence new possibilities for collaborative works using this cloud
service and taking everything into account. Audience partic-
ipation is also a good target for users of cloud services due to
its easy integration with WebAudio applications that can run
on browsers of both mobile devices and computers. In this

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 230 –

(a) One float (b) 50 floats (c) 100 floats

(d) 150 floats (e) 200 floats (f) 250 floats

Figure 3: RTT for each message.

case, the audience will only need an Internet connection to
access the application through a compatible browser.

The use of symbolic data reduce the costs of data transmis-
sion for participants, and might be better accepted than an au-
dio application that can result in an expensive bill in the end
of the month considering the prices of current 4G plans (par-
ticularly in Brazil at this point). Moreover, the audio synthe-
sis is becoming less problematic while most of actual mobile
devices are multi-core enabled and support any programming
language with libraries to mitigate problems in audio process-
ing.

Considering half of RTT as latency, we got a minimum of
83ms and averages between 115 and 289ms in our tests, even
with large messages, and we expect that better results can
be achieved in places near the clusters. The advantages of
using cloud computing in musical performances are also re-
lated to reliability in message distribution. We lost just a few
messages, less than 4% on each test, and we had many tests
without losing any messages.

We also took advantage of HTTP Keep-Alive feature to re-
duce the overhead of TCP connections. We can infer that
cloud computing is a reliable alternative when compared to
UDP, which is one of the most used solutions for collabo-
rative musical performances but cannot be easily adapted to
multiple mobile devices hidden under many widespread local
networks.

Even though these results may suggest that the free plan of
this particular cloud service is not suited for a highly syn-
chronized performance across the continent, or a performance
highly sensitive to data losses, in other contexts latency and
losses may be absorbed in musical settings with user inter-
action without being perceived as flaws or problems. Some

compositions or performances could rely on sounds with long
attacks or with very smooth variations so as to minimize (or
even overcome) latency issues during music performance. An-
other interesting approach to handle latency is to work with
two time-lines: one for preparing and composing and another
for sharing and performing, so that participants can spend
time creating short music sequences on their devices before
sending, without worrying about getting it wrong somehow.

8. CONCLUSION

The delay between messages is an important setting on the
Pusher cloud service. Message loss may have occurred in
our evaluations due to overhead on the network buffer. In
the event that at least two packets are grouped by a network
buffer at any point before being sent to Pusher, we will proba-
bly have more than 10 messages per second even if we decide
to use 150ms delay between packets. Pusher will disconnect
the user at this moment, and will try to reconnect the socket
as soon as possible. Although some messages might be lost
in this situation, the application developer can bind the dis-
connection event and stop sending messages until the device
gets connected again.

Paid plans offer different clusters that can be selected de-
pending on routes between performers or application users.
Although we have lots of clusters available around the world
on Pusher cloud service, it may be necessary to try another
cloud service if the localization of these clusters are not suit-
able. At the time of writing this paper, Pusher still does not
have clusters in Brazil, and we would suggest other cloud
services like PubNub in the case that all participants are from
this country.

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 231 –

We have showed that the computer music community may
use cloud services as a new way of intercommunication in
musical applications, a way that facilitates implementation
and improves scalabity of previous musical ideas that were
conceived for small groups of participants. The delay and
reliability of the service has proven to be suitable for many
applications and opportunities, and we may expect improve-
ments in a near future. Push-notifications help users to send
and receive data from any part of the world and control the
final sound from their own mobile devices, using other users’
inputs to influence their music creation in a collaborative way.
We expect that many musical works aimed at local networks
may now be extended to cloud-based services.

Acknowledgments

This research would not be possible without the support of
CAPES 9 , RNP 10 , Computer Music Research Group 11 and
NuSom Research Centre on Sonology 12 at USP, the Digi-
tal Video Applications Lab (LAViD) 13 at UFPB, the mobile
music group at the University of Michigan, and Internet2 14 .

9. REFERENCES

[1] C. Bartlette, D. Headlam, M. Bocko, and G. Velikic, “Ef-
fect of Network Latency on Interactive Musical Perfor-
mance,” Music Perception: An Interdisciplinary Journal,
vol. 24, no. 1, pp. 49–62, 2006.

[2] C. Chafe and M. Gurevich, “Network Time Delay and
Ensemble Accuracy: Effects of Latency, Asymmetry,” in
Audio Engineering Society Convention 117, Oct 2004.
[Online]. Available: http://www.aes.org/e-lib/browse.
cfm?elib=12865

[3] A. Harker, A. Atmadjaja, J. Bagust, and A. Field, “World-
scape laptop orchestra: Creating live, interactive digital
music for an ensemble of fifty performers,” in Interna-
tional Computer Music Conference, 2008.

[4] J.-P. Cceres and C. Chafe, “JackTrip: Under the Hood
of an Engine for Network Audio,” Journal of New Music
Research, vol. 39, pp. 183–187, 2010.

[5] J. W. Kim and G. Essl, “Concepts and Practical Consider-
ations of Platform-Independent Design of Mobile Music
Environments,” in International Computer Music Confer-
ence, 2011, pp. 726–729.

[6] A. J. Bianchi and M. Queiroz, “On the performance of
real-time DSP on Android devices,” in Sound and Music
Computing Conference, 2012, pp. 113–120.

9 CAPES: www.capes.gov.br
10 RNP: www.rnp.br
11 Computer Music Research Group: compmus.ime.usp.br
12 NuSom Research Centre on Sonology: www.eca.usp.br/nusom
13 LAViD: www.lavid.ufpb.br
14 Internet2: www.internet2.edu

[7] G. Weinberg, “The aesthetics, history, and future chal-
lenges of interconnected music networks,” in Interna-
tional Computer Music Conference, 2002, pp. 349–356.

[8] G. Levin, “Dialtones - A telesymphony, Septem-
ber 2001,” Brucknerhaus Auditorium, Linz, Aus-
tria, 2001. [Online]. Available: http://www.flong.com/
projects/telesymphony

[9] G. Geiger, “PDa: Real time signal processing and sound
generation on handheld devices,” in International Com-
puter Music Conference, 2003.

[10] M. Rohs, G. Essl, and M. Roth, “CaMus: live music per-
formance using camera phones and visual grid tracking,”
in New Interfaces for Musical Expression, 2006, pp. 31–
36.

[11] G. Essl and M. Rohs, “ShaMus: A sensor-based inte-
grated mobile phone instrument,” in International Com-
puter Music Conference, 2007, pp. 200–203.

[12] A. D. de Carvalho Junior, “Sensors2PD: Mobile sensors
and WiFi information as input for Pure Data,” in Joint
Conference: 40th International Computer Music Confer-
ence and 11th Sound and Music Computing Conference,
2014.

[13] G. Wang, G. Essl, and H. Penttinen, “Do mobile phones
dream of electric orchestras,” in International Computer
Music Conference, 2008.

[14] I. I. Bukvic, “A Behind-the-Scenes Peek at World’s First
Linux-Based Laptop Orchestra The Design of L2Ork In-
frastructure and Lessons Learned,” in Linux Audio Con-
ference, 2012.

[15] H. Choi and J. Berger, “Waax: Web audio api extension,”
in New Interfaces for Musical Expression, 2013, pp. 499–
502.

[16] C. Roberts, G. Wakefield, and M. Wright, “The Web
Browser as Synthesizer and Interface,” in New Interfaces
for Musical Expression, 2013, pp. 313–318.

[17] F. L. Schiavoni, M. Queiroz, and M. Wanderley, “Alterna-
tives in network transport protocols for audio streaming
applications,” in International Computer Music Confer-
ence, 2013, pp. 193–200.

[18] N. Weitzner, J. Freeman, S. Garrett, and Y.-L. Chen,
“massMobile - an Audience Participation Framework,” in
New Interfaces for Musical Expression, 2012.

[19] J. Allison, Y. Oh, and B. Taylor, “NEXUS: Collaborative
Performance for the Masses, Handling Instrument Inter-
face Distribution through the Web,” in New Interfaces for
Musical Expression, 2013, pp. 1–6.

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 232 –

http://www.aes.org/e-lib/browse.cfm?elib=12865
http://www.aes.org/e-lib/browse.cfm?elib=12865
www.capes.gov.br
www.rnp.br
compmus.ime.usp.br
www.eca.usp.br/nusom
www.lavid.ufpb.br
www.internet2.edu
http://www. flong. com/projects/telesymphony
http://www. flong. com/projects/telesymphony

[20] A. Hindle, “SWARMED: Captive Portals, Mobile De-
vices, and Audience Participation in Multi-User Music
Performance,” in Proceedings of the International Con-
ference on New Interfaces for Musical Expression, 2013,
pp. 174–179.

[21] ——, “CloudOrch: A Portable SoundCard in the
Cloud,” in Proceedings of the International Conference
on New Interfaces for Musical Expression, B. Caramiaux,
K. Tahiroglu, R. Fiebrink, and A. Tanaka, Eds., London,

United Kingdom, Jun. 2014, pp. 277–280.

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 233 –

