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Abstract

The circle map and its basic properties as non-linear oscilla-
tor are discussed and related to other iterative mappings as
proposed in the literature. The circle map is the simplest it-
erative generator for sustained periodic and chaotic sounds
and is easy to interpret as a basic sine oscillator with a non-
linear perturbation.

1 Introduction

Circle maps are a particularly simple yet rather general
example of a mapping that exhibits many important aspects
of complex dynamical behavior. A circle map is capable
of demonstrating such behaviors as mode and phase-locking,
period doubling and subharmonics, quasi-periodicity as well
as routes to chaos via repeated period doubling or via disrut-
pion to quasi-periodicity (Glazier and Libchaber 1988).

Circle maps are also attractive because they have served
as an important “simplest case” example of iterated dynam-
ics in the study of these dynamics among mathematicians and
physicists. They also are related to already proposed sound
synthesis methods that worry about introducing functional in-
terations or non-linearities.

The circle map is particularly suitable for the study and
generation of sustained undamped sounds as the map confines
the space of possible iterations exactly to functions of this
nature by construction.

The purpose of this paper is to discuss the circle map and
its properties and to describe how the knowledge of its pa-
rameters can be utilited for synthesis. At the same time it is
an attempt to bring together existing work on iterated func-
tions and connect it to the body of literature that discusses
the dynamics of the circle map from a mathematical perspec-
tive. Then it also becomes possible to identify the place of
such methods within the larger body of works of complex and
symbolic dynamics as already present in literature and allows
for a systematic extension of synthesis methods within these
approaches.

2 Background

Non-linearities have played an ongoing important role since
very early. Risset introduced waveshaping (Risset 1969). Arfib
and Le Brun refined this method(Arfib 1979; Le Brun 1979).
In waveshaping, a pre-existing signal would be fed through a
non-linear function, hence modifying the sound. The method
is able to create complex though generally only perfectly non-
chaotic, periodic signals and the control is well understood.

Chaos itself became a focus of attention in the late 80s
and early 90s. The use of iterated functions in computer mu-
sic exploiting the rich non-linear and chaotic behavior falls
into to broad categories: (1) The use of periodic pattern in
the generation of music structure and (2) for direct sound
synthesis purposes. Within the first category Pressing stud-
ied logistic maps (Pressing 1988). Gogins (Gogins 1991) in-
vestigated randomly switched sets of functions in his itera-
tions. Bidlack introduced physically motivated maps of ei-
ther dissipative or conservative character using Lorenz-type
and Henon-Heiles type iterations(Bidlack 1992). The sec-
ond category was developed by Truax (Truax 1990) and Di
Scipio (Di Scipio 1990; Di Scipio 1999) motivated directly
by iterated maps. DiScipio considers what he calls the sine
map, an iterated sinusoid without coupling to a linear func-
tion. Rodet considered Chua’s network and its time-delayed
extension for sound synthesis and he also draws connections
to nonlinearities in a physical context (Rodet 1993, and ref-
erences therein). Dobson and Fitch considered iterated com-
plex quadratic maps (Dobson and Fitch 1995) experimentally.
Manzolli et al consider a set of two-variable interations which
are variations of the so-called standard map which in turn
is related to the circle map (Manzolli, Damiani, Tatsch, and
Maia 2000). Recently Valsamakis and Miranda consider a
family of two variable coupled oscillator with sine waves in
the feedback loop (Valsamakis and Miranda 2005). The most
widely cited reference of chaos theory in the computer music
literature is (Lauterborn and Parlitz 1988). It does contain a
description of the circle map but gives little interpretation or
motivation of the map. Maybe for the lack of emphasis of the
specific properties of the circle map, it has not been widely
considered as a desirable model for interative synthesis and



sequence construction in the above mentioned literature.

3 Iterated Maps from the Circle to It-
self

The most general form of the circle map is

Yn+1 = ¢(yn) (1)

where the defining property is that ¢ is a mapping from
a bounded interval to a bounded interval of the same size.
Typically one takes the unit interval and notates ¢ : [0,1) —
[0, 1), which alternatively can be interpreted as being period-
ically closed. This is achieved by taking the quotient of the
real numbers by the integers, repeating the reals within the in-
terval [0, 1) and we notate ¢ : R/Z — R/Z (Milnor 2006, p.
161). Topologically this is equivalent to saying that ¢ maps
points on the circle back onto a circle.

If we want to model a perfectly sinusoidal oscillator that
is perturbed by some coupled non-linear function, this turns
nto:

Yn+1 = <yn + Q— ;j_(_f(yn)> mod 1 (2)

where () is a constant that is the fixed angular progression
of the sinusoidal oscillator, and k is the coupling strength of
the non-linear perturbation f(-). yo is the starting phase. In
principle, the choice of f(+) is very flexible and examples of
discontinuous functions can be found in the literature as well
as smooth cases. The canonical theoretical example is the
standard circle map:

k
Ynt1 = (yn + Q- o sin(Qﬂ'yn)) mod 1 3)
T

In order to study the long-term behavior of the iterated
map ¢(-) we can look at the winding number

W = lim Yn "%

n— o0 n

“

which measures the average angle added in the long term.
If this added angle notated over the interval [0, 1) is a rational
number p/q with p,q € N then after ¢ interations we will
have a recurrence and hence the map is periodic. Irrational
winding numbers are called quasi-periodic.

Q) of course is essentially the frequency of the unperturbed
oscillator which is calculated as ¢ = €2 - S where S is the
sampling rate, or time interval between two time steps for
Q€ [0,0.5]. If @ > 0.5 we get aliasing and the effective
frequency decreases again, with opposite phase sign.

1.0
_"/-,,
.—"/—
e
w _/
P
v
yd
Z/_
e
.-"/
0.0 ’
0.0 Omega 1.0I

Figure 1: Devil’s staircase rendered numerically for the stan-
dard circle map.

4 Perturbation of the Simple Oscilla-
tor

The parameter k defines the strength of the influence of
the non-linear term is on the overall iteration. For k << 1
we should expect behavior that is very close to the simple
sine oscillator. For £ >> 1 we should expect that the behav-
ior is converging to a map which is essentially just f(y,) =
sin(27yy, ).

For non-zero k one can observe that oscillations tend to
link to rational winding numbers. As one increases ) for a
fixed k the observed frequency of the circle map will stay
constant in a neighborhood of rational winding numbers and
hence form successions of ascend and flat areas. This ascend-
ing line (see Figure 1) is an example of the so-called “devil’s
staircase” (Katok and Hasselblatt 1995; Glazier and Libch-
aber 1988). The width of the flat plateaus increases with in-
creasing coupling constant k. Tracing the boundaries of the
flat areas with increasing k over {2 yields curved triangular
shapes, with their single-point tips at & = 0. These shapes
are called “Arnold tongues” (Glazier and Libchaber 1988).
These shapes are illustrative of the transition of the behav-
ior of the circle map with increasing k. First off, as k in-
creases, the area of constant frequency increases. This means
that a wider range of original frequencies will lock to the par-
ticlar resulting frequency. This phenomenon is called “mode-
locking”. Hence mode-locking becomes stronger with in-
creasing k. This is interesting for musical purposes, as it
means that the resulting sound is generically stable in the
neighborhood of frequencies corresponding to rational wind-
ing numbers. This means that small perturbations of both 2
and k do not typically perturb a locked frequency. As k is in-
creased even more, eventually these “mode-locking plateaus”



start to overlap. This is equivalent to the condition that for
k > 1 the circle map becomes non-invertible. The circle
map forms an inflection point and hence introducing hys-
teretic effects and eventually chaotic behavior (Glazier and
Libchaber 1988). At k = 1 the inflection point emerges with
0 slope. This state is called critical. A practically relevant
result about the transition through the critical case is that the
choice of the non-linear function in the generic circle map (2)
is not very senstive. As long as the inflection points that oc-
cur are of the same order, as for example the inflection point
of the sine is cubic, the behavior stays the same (Cvitanovic,
Gunaratne, and Vinson 1990, and references therein). Very
roughly speaking, one can expect similar transitional behav-
ior of period doubling and chaos even with rather widely var-
ied non-linear functions in the circle map.

Intuitively, coupling constants k¥ << 1 will lead to defor-
mation of the oscillation, associated with additional mode-
locking. At k ~ 1 for some frequency the behavior transi-
tions to increasingly multi-periodic pattern, which at k >> 1
are chaotic. The pattern at very large & sound essentially like
noise, whereas patterns those for low k are essentially pe-
riodic, with specral additions comparable to wave-shaping.
Just above k = 1 is an interesting region with unstable peri-
ods. A main feature of the increase of k is period doubling,
which will in simple cases lead to amplitude-modulation like
responses (Glazier and Libchaber 1988, for another example).

S Basic Numerical Example

Some implications of these properties for wave-forms can
be seen in Figure 2. The phase increase of the linear oscil-
lator is fixed at {2 = 0.33 and K is successively increased.
For values K below 1 we see two effects. One is a change
in frequency and the other is a deformation of the waveform.
The overall waveform stays, however, perfectly periodic. As
K is increased beyond 1 the pattern shows non-periodic dis-
ruptions, alongside further influence on the overall frequency.
While even for K close to 2 the signal has a strong self-
similar look, the pattern has deviated significantly from a pe-
riodic signal, showing irregular ad-hoc disruptions to the reg-
ular pattern.

6 Relation to Other Maps

Some maps that appeared in literature are circle maps. For
example Di Scipio considered what he called the sine map
(Di Scipio 1999):

Ynt+1 = sin(27ryy,) 5)

Figure 2: Wave forms for increasing coupling strength K. ()
is set to 0.33 in all cases. K is 0, 0.5, 0.8, 1.0, 1.2, 1.58, 1.8,
1.98 from left to right, top to bottom.

where 7 is a scaling constant. This is a reduced form of
the standard circle map (3) with both the linear oscillator fre-
quency €2 removed and the linear self-increment omitted.

Manzolli and co-workers (Manzolli, Damiani, Tatsch, and
Maia 2000) consider variations of the standard map (Glazier
and Libchaber 1988; Katok and Hasselblatt 1995):

k

Yna1 =Yyi +Q— o sin(27y;) + ex; (6)
k.

Tpal = €T; — 7 sin(27y;) @)

This simplifies to the circle map if the cross-coupling con-
stant € vanishes.

Outside the computer music literature the circle map has
been used in various domains. It is particularly popular in the-
oretical physiology where it is used to develop models of the
behavior of heart rates and other cyclic body states and their
coupled influence (Glass, Guevara, and Shrier 1983; Glass
2001). As a recent example McGuinness and Hong consider
a piece-wise linear function for f(-) in (2) to model the cou-
pling between heart rate and respiratory system (McGuinness
and Hong 2004). It has also been considered for modeling
physical phenomena, for example the Belousov-Zhabotinsky
reaction which describes peculiar periodic or chaotic patterns



as response to chemical mixing in a uniformly stirring tank
(Bagley, Mayer-Kress, and Farmer 1986). They too consider
piece-wise linear functions to model the observed behavior.

7 Conclusion

We discussed well-known basic properties of the circle-
map and discussed their implication for sound synthesis. The
circle map is a particularly interesting iterative mapping as
it can be easily interpreted as a perturbed pure sinusoid, ex-
hibiting many of the well-known properties of non-linear in-
terations that exhibit regular and chaotic behavior.

This work is part of a larger project to place synthesis al-
gorithms in a systematic context (Essl 2005). This too drives
the desire to emphasize the circle map as an important case as
it, by construction, contains both the linear and the non-linear
case as extremes of a one-parameter perturbation. In addition
the circle map stands in close relation to proposed methods
in the literature. Its simplicity and history offers a wealth of
insight into its properties.

It is planned to extend this work in two directions. One
is to define the controllability of such algorithms with respect
to parameter change, and the other is to study variations of
the specific non-linear function within the circle map and its
perceptual implications.
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