Live Coding the Audience Participation

Sang Won Lee Gerog Essl
University of Michigan University of Michigan
snaglee@umich.edu gessl@umich.edu
ABSTRACT

In this paper, we discuss live coding in the context of audience participation performances. A live-coder can modify the
distributed musical instruments that large numbers of audience members use by sending executable code text to each
participant using cloud-based messaging mechanisms. We discuss how this idea was realized as part of the web-based
mobile audience participation piece Crowd in C[loud] (Lee, Carvalho Jr, and Essl 2016). We introduce basic probabilistic
schemes to allow sectioning off large scale audiences through live coding. While the demonstrated realization of this
idea is simple, we believe that not only this structure can support a wide range of large-scale audience participation
pieces under the control of live coding performers but also the concept of live coding the array of multiple machines
can push the boundary of live coding music.

1 Introduction

The combination of live-coding and audience participation offers a novel and exciting playground for rich artistic ex-
pression. In this paper we introduce this concept from the example of a concrete piece called Crowd in C[loud] where
a live coder interactively codes the large-scale structure and evolution of an audience participation piece using mobile
devices through web technology, leveraging a cloud service for messaging. The piece distributes a simple and limited
musical instrument to an audience, and they can play it in a web browser that supports Web Audio API. We then discuss
how the performer of the piece uses live coding to improvise on the crowd-powered musical instruments. We stretch
our previous work of live coding the mobile music instrument (Lee and Essl 2013) in which live coding musician(s)
changing the sound, the interface and mapping of the musical instrument on the fly by sending the code text over a
wireless network. This work is a scaled version of the previous work where a programmer can change the instruments
that are being played by participants on the fly to shape the music. We briefly review the related works of audience
participation and live coding and introduce how we live-coded the audience participation piece.

2 Audience Participation and Mobile Phones.

It has been a long-standing endeavor for musicians to create musical performances which involve the audience as
part of the music making process. For example, in popular music, audiences also often participate by making sounds
directly such as singing, clapping, or stomping feet (e.g. We will rock you by Queen). In Jean Hasse’s Moths, the
audience was instructed to whistle along to a conductor’s gestures and a graphical score (Hasse 1986). In contemporary
computer music, additional forms of audience participation have been explored. For example, the audience can play
the role of a composer who influences the piece on stage collectively (e.g. voting, averaging). Another example would
be that separate groups of instrumentalists play music that influenced by the live audience. Freeman’s works fall into
this category, where the outcome of participation is a real-time music notation (Freeman 2008; Freeman and Godfrey
2010). In these pieces, the audience influences the composition indirectly, rather than generates sound directly. Having
audience as a composer requires one or more intermediate steps to structure the diversity of audience input and to
make the resulting music coherent to the composition. This approach makes the audience comfortable in participating
in the music performance without any musical background.

The emergence of mobile smartphones has made audience participation easier. Audience members already have partic-
ipatory technology in their possession which offers networking and rich sensor capabilities. Levin (2001)’s Dialtones
used mobile network dial-up to let a concert hall filled with ringtones of cell phones that the audience has, allow-
ing the audience members to indirectly participate in the performance. As smartphones offer greater computational
power with network capability, numerous projects have contributed to building mobile-based infrastructure to sup-
port smartphone-based audience participation, such as TweetDreams (Dahl, Herrera, and Wilkerson 2011), massMobile
(Weitzner et al. 2013) or Swarmed (Hindle 2013).

mailto:snaglee@umich.edu
mailto:gessl@umich.edu

Mobile phones can be used for sound generation. Hence, mobile phones serve a role that is rather close to a traditional
instrument, where the performance interface and the sounding mechanism are co-located. Hence, using smartphones
audience members can participate as performers of mobile phone instruments. The author’s previous work, echobo
exemplifies this approach where the sound of the piece is coming from the audience seats (Lee and Freeman 2013a).
This participation model has the advantages that each participant has individual outcome coming from their hands so
that it is clear how their participation is contributing to the music.

3 Live Coding Something Else: The Audience Participation

A long-standing research program of the authors is the expansion of the way of live coding is utilized. Traditionally, live
coding of music is concerned with writing code that generates sound on the fly. In a series of projects, we attempted
to apply the idea of live coding to “something else” other than generative music. We proposed live patching on a
touchscreen of a smartphone (Essl 2010), live coding the real-time notation (Lee and Freeman 2013b), live coding the
musical instrument (Lee and Essl 2013), live sketching the graphical user interface (Yang and Essl 2015) and live writing
(instead of programming) (Lee and Essl 2015; Lee, Essl, and Martinez 2016).

In particular, we introduced a live coding performance practice where an instrument performer played a mobile music
instrument while the mobile music instrument application was being live coded on the fly by on-stage programmers
(Lee and Essl 2013). In this case, the outcome of live coding is not generative music, but a dynamically changing mobile
phone instrument that is performed at the same time by a mobile phone musician. The sonic result of the performance
can be drastically different from typical live coding music given that the mobile phone musician can inject immediate
expressive gestures into the performance. A related performance idea uses a glove-based interface (Baalman 2015). The
solo performance engages both in live coding sound synthesis and dynamically developing a mapping of the glove-
based instrument while performing the instrument by hand gestures. Combining ideas from live coding the NIME, we
realized an audience participation music piece. Or the existing work has been expanded to the scale of audience. We
already proposed earlier that scaling this kind of performance practice to a larger number of participants could be an
exciting next step (Lee and Essl 2014). The project discussed in this paper is a direct outgrowth of tackling this challenge.
The technical detail of how the performer changes the scale will be discussed in the later sections.

4 Crowd in C[loud]: Audience Playing Largely in C

We summarize the audience participation piece, Crowd in C[loud], which is a networked music piece composed and
developed for audience participation at a music concert (For more detailed motivation regarding the aesthetic of the
piece, see (Lee, Carvalho Jr, and Essl 2016)). It draws on the idea of the piece, In C by Terry Riley, where musicians
(with various instruments) were guided to play pre-composed melodic variations based around the C chord (Riley 1964).
In Crowd in C[loud], each participant uses web browsers (typically on their smartphones) that support Web Audio API.
They are instructed to play a short snippet (or tune) composed by other audience members (including themselves) for
a random amount of time, which follows the basic concept of In C. The aggregated result of each playing a short tune
creates a heterophonic texture of chance, largely in centered around the C chord. The mobile phones that audience
members use are connected via a wireless network using a cloud service (PubNub') to a laptop that is controlled by an
on-stage performer. For more detail regarding the network structure that utilizes a cloud service, see (Carvalho Jr, Lee,
and Essl 2016).

Accessibility in audience participation is especially essential to motivate people to participate in the piece with clarity
and musicality regardless of musical backgrounds. Crowd in C[loud] incorporates two design decisions to achieve this
goal. First, the interaction design in the instrument is loop-based where a participant needs to place musical notes on
the screen, and the pattern of five musical notes will create a tune that is looped indefinitely based on where the notes
are. Thus a user does not need to make playing gesture constantly to generate tones and the instrument will produce
sound automatically. This concept is useful for a live coder to change the instrument itself while the musician can
ensure that the instruments are constantly being played. Besides, the musician need not worry about overall sound
too sparse (or silent) due to low participation. Second, the piece uses the metaphor of online dating for browsing the
composed tunes of others. A tune composed by a participant serve as a personal profile on an online dating website.
At the beginning of the performance, once a participant finishes the composition, he or she can browse, and play, what
other audience members have composed. Browsing tunes composed by others mimics an online-dating website (such as
Tinder®) where a user creates a personal profile and then scans other member profiles that include pictures and written
descriptions about themselves. The networked instrument creates a temporary social media that lasts until the end of

‘http://www.pubnub.com
*http://www.gotinder.com

the performance where each tune is a musical profile of a participant. Also, the collection of each tune composed by
individuals serves as musical phrases found in Riley’s In C. The metaphor of online dating profiles promotes collective
creativity as browsing other profiles inspires participants to enhance their compositions with new ideas, which may be
musical or visual.

Figure 1: Loop-based Instrument in Crowd in C[loud] (Left) Browsing a composition (or an musical profile)of a participant.
(Right) Mingle Mode : playing two tunes at the same time

The model of performance in Crowd in C[loud] is musician-audience pairing. In this model, there is a separate musician
performing the piece on stage, at the same time with the audience members. The stage performer is a live coder who
serves the role of a meta-performer who can control the progression of the music by changing the sound synthesis
algorithm, the interface and the mapping of the distributed musical instruments. For example, the meta performer can
alter the scale in which the instrument tuned to a different chord scale (e.g. C Minor, Pentatonic Scale) on the fly. This
will be the chord progression of the music. In the meantime, this performer cannot generate sound at all on his/her end.
Rather, the performer only controls the harmonic flow of the piece produced by the crowd. The performer’s laptop and
the audience’s smartphones are connected via a cloud service, of which latency is typically around 100ms. The typical
challenge of synchronizing clocks of connected machines for network music is less of its concern as the piece has no
strict tempo.

We decided to live code to apply such changes to the audience’s mobile musical instruments from the performer’s laptop.
While there can be multiple ways for the artist to control the instrument remotely such as GUI elements on a web page
or MIDI Controller, live coding the audience participation expands the expressivity that the performer can have and
enables algorithmic ways to control the large-scale audience.

We successfully presented Crowd in C[loud] in two public performances. The piece was, premiered at the University of
Michigan’s Mobile Phone Ensemble Concert 2015 and the presented at the Web Audio Conference 2016, Atlanta. The
performance video footages of the latter are available online at the following links

Video 1: https://youtu.be/8nnrKJ4Ap0Oc
Video 2: https://youtu.be/gtgdp75-7wY

In the next section, we discuss the live coding aspect of Crowd in C[loud] in detail.

5 Live Coding the Audience Participation in Crowd in C[loud]

5.1 Code Text Transmitted over Cloud Service.

As briefly mentioned, the piece utilizes a cloud service for a performer to communicate with audience smartphones or
vice versa. For example, if an audience member composed a tune, the data will be submitted to the performer’s laptop
by publishing a message with data to the particular channel (“performer” in this case) via the cloud service. Similarly,

https://youtu.be/8nnrKJ4Ap0c
https://youtu.be/8nnrKJ4Ap0c

the live-coded text is transferred from the performer’s laptop to the audience mobile phones using the cloud service.
For example, the following message entered on a performer’s web browser javascript console will send the code text to
all the smartphones of the audience.

publishMessage("audience”,{type:"script”,script:”console.log('hello world’')"});

The web application on the audience’s side is written to take the value of the property with the key “script” and evaluate
the string value whenever the message type is “script”; in this case, it will print 'hello world’ message in the console
of audience mobile phones. The first argument of the function publishMessage represents the channel that the message
should be published to, which is audience channel that the whole audience devices are subscribed to. Therefore, remote
live coding is enabled as if the code text that the performer enters runs in the javascript console of the audience’s web
browser. For example, the instrument is initially tuned to C Major scale with the base note of middle C (midi:60), but
the scale can be changed by sending code message since it is going to refer a global variable named baseNote.

publishMessage("audience”,{type:"script”,script:"baseNote = 72;"});

Note that this does not trigger any sound by itself, but after the code sent is evaluated in an audience’s smartphones,
all sound will have a base note of high C (midi: 72) from that point, which will change the overall sound of the music
immediately. In this way, the performer not just uses audience’s smartphone as an array of speakers to generate sound
but enable interactivity of audience participation with the power of live coding. Another interesting global variable
that we often utilized in Crowd in C[loud] is the scale. By default, it uses the major scale specified in a javascript array.
The following codes will change the scale to minor scale or pentatonic scale respectively.

publishMessage("audience”,{type:"script"”,script:"scale=[0,2,3,5,7,8,10,121;"});
publishMessage("audience”,{type:"script”,script:"scale=[0,2,4,7,91;"});

The combination of baseNote and scale will determine the chord scale that each audience member plays the instrument
so that the performer can live-code in a way that overall aggregated texture sounds in one chord (or even one note
when scale=[0]). These scale changes were the major musical gesture to structure the music and to allow a coherent
progression of the piece throughout the performance.

One caveat here is that the performer needs to know what kinds of code text can quickly change the mapping of the
musical instruments, hence necessitating rehearsal and preparation. While we believe this is still live coding, we realize
that what can be live-coded should be understood in advance to the performance over the practice and rehearsals.
The examples introduced above are simple but efficient for a performer to change the chord progression of the piece,
sustaining the interaction scheme of the instrument for the audience. Potentially code text can be any javascript code
that can be evaluated remotely and a performer will be able to run more interesting algorithms or interaction. Here’s
an example code:

setTimeout (function(){
alert(”Are you having fun?");
}, 5000 * Math.random());

This code snippet set a timeout for alerting a message with random interval (between 0 and 5 seconds). The code
will create an alert message on the web page that audience plays and the way that the warning message will halt the
synthesis of Web Audio API until it is cleared. This can create a fade-out effect when the alert message appears with the
random interval and the fade-in effect as each participant clears the alert message. This is only one example that how
live coding on the audience participation can be useful to make the participation engaging and interactive as well as
to use it to shape the music, especially as a product of both live coding and user interaction. With enough preparation
on the web application in advance, the on-the-fly interaction with the performer and the audience can be dynamic.
This typing process can be minimized by having a separate code input editor that will be published to the audience
automatically with a shortcut (e.g. shift-enter) as a typical live coding editor (instead of web browser console). In this
setup, the performer can just type the value of script property (without publishMessage call), and the audience can
better read the code on projection.

5.2 Orchestrating the Crowd using Live Coding.

Live coding the whole audience’s musical instruments at the same time and in the same way, is not any different from
live coding one musical instrument (Lee and Essl 2013). Embracing the large-scale of the group, it will be more exciting
to have fine controls over as if the audience was an ensemble which plays various instruments. Using simple probability
embedded in the code text, one can split the whole audience into groups. For example, consider the following code:

if (Math.random() < 0.7)
{

baseNote = 64;
scale = [0,4,7,12];

If this code snippet was sent to an audience member’s smartphones, the instrument would be in F Major Scale with
the 70% probability (because Math.random() will generate a random number between 0 and 1). This is useful to apply
a certain change to the portion of the audience. As largely, approximately 70% of the audience will run the if-block
while the others will not, one can split the audience into two groups that play different tunes. The portion will be
determined by the number that is inside the if-condition parenthesis (0.7 in the above example). This probability is one
of the optional property in the publishMessage function so that any code text can have a certain probability of that code
text being evaluated. For example, the following code can be used to have half of the audience to be silent by changing
the value of the flag(sound) that is used in the instrument application to determine whether to run sound synthesis.

publishMessage("audience”,{type:"script”,script:"sound=false;",probability:0.5});

Once this kind of code with probability value runs, the whole audience will be split into two groups based on the state
of the musical instrument, the one in which the code text is executed, and the other which the received code text is
not evaluated. This is useful to be musically expressive in a way that a performer can assign certain musical roles to
certain groups; one group playing background chord sound, the other group playing a monophonic melody. Besides,
often, a performer wants to keep track of the specific group that is in a certain state to keep the group to run a series
of code text. This cannot be done just by specifying the probability because it will keep choosing a new subset of the
audience each time regardless of previous states. For example, suppose a musician runs code that changes the program
to state A with 0.5 probability. The audience is then split into two groups, one group in state A and the other group still
in the previous state (let’s say S). If the liver coder runs another code B with 0.5 probability, there will be three groups:
A (approx. 25%), S (approx.25%) and B(approx. 50%) as the group B will be randomly selected from the whole audience.
In fact, what the performer actually wanted could be the group who was in state A to be in state B (50:50 of B and S).
This can be done by randomly assigning a device a group in advance and then a performer can run code text only if the
group matches. More specifically, one publishMessage can be used to split the audience into N groups in a certain ratio
using the random number and create a variable that specifies a group number. See the following example.

if (Math.random() < 0.3){
groupNumber = 0;

}
else{

groupNumber = 1;
}

As that particular variable is a global variable, the variable groupNumber can be later used t run code text for the devices
that belongs to the group with simple if statement (e.g. if (groupNumber == @) { // run something }). While using
probability 0.3 will pick new devices each time, using groupNumber after that will allow the specific set of devices can
only run the code text multiple times.

5.3 Challenges of Live Coding in Numerous Remote Machines

The way we employed live coding to perform an audience participation in Crowd in C[loud] is simple: code text is sent to
smartphones and evaluated to make changes in the application that the audience is using at the moment. This approach
was effective enough to successfully realize the piece in practice. However, this approach poses some challenges. One

challenge for a live coder is that the code text sent is going to be evaluated in remote machines, not the one that the live
coder is in control. The immediate problem is that the error will also be remote. Syntax error messages can be collected
as responses from mobile phones and be presented to the live coding musician. In the case of semantic errors that do
not necessarily give an error message, the dislocated sound may make it difficult to hear the error due to the collective
nature of the sound that each smartphone makes. One practical choice a live coder can have is to “preview” the code
result in one device dedicated for testing so that a live coder can monitor sound and see(or hear) potential errors.

More difficult challenges come from the scale of the code run. If a musician sends code text to hundreds of devices,
there is no guarantee that the code will run without problems on all one hundred devices consistently. Many factors
are not in a live coder’s control, including browser compatibility, the difference in its versions, different form factors,
the difference in the state coming from the individual user interactions, all of which can cause diverse results if not
carefully written. While, typically, it is almost impossible for an audience participation music piece to have no flaw, it
will be beneficial to design the system as inclusive as possible and to have measures to mediate the responses from the
remote machines. At this moment, we do not have an easy solution to this other than a simple case of syntax errors by
collecting error messages from the devices and present the list of unique error messages (with its count) to the live coder.
However, it will be beneficial to develop the mediation strategy to give the live coder brief one summarized message
that monitors remote machines so that one can understand any unwanted consequence of code run.

5.4 Opportunities Beyond Sending Code Text

The current idea is based on the performer-audience pairing model where audience playing the musical instruments and
the musical instruments are live-coded by one performer. In this case, the collaboration between the audience and the
musician is mediated with an interactive music application. However, it should be clear that the approach of live coding
the musical instrument is not the only way to have the expressive power of programming language in the audience
participation music. New models can be developed depending on the interaction scheme, the networked structure, the
devices that the live algorithms run, and the sound source. Here we suggest a few performance concepts, drawing ideas
from the existing works of live coding.

The most naive idea may be live coding text can be broadcasted to the mobile devices so that mobile phones will play
generative music controlled by the live coder. In this case, the mobile phones are used as an array of speakers and the
audience’s participation will be minimal. The synchronization between devices may be necessary based on the style of
music but often the composition is written to be tolerant to the asynchrony. Although not live coding was involved, the
piece Fields well represent the style of music that can be accomplished with this model (Shaw, Piquemal, and Bowers
2015).

The second model that will be particularly exciting for the live coding communities is the shared editor where audience
members can access to the editor and live-code together. This is exactly opposite to the current model in a way that
code-text is from the audience and sound is coming from a central computer. In the performance of Shared buffer, the
shared editor was open to the audience and some audience members were able to pick up the syntax quickly and made
changes in the share text buffer(Ogborn et al. 2015). This model, however, will not scale well enough when the increase
in the number of participants can cause conflicts and errors. Also, it will be challenging to ask for the audience to
live-code in general, outside the live coding communities.

Lastly, we believe the audience themselves can be the live-coded machines; to read the code text on the projection
screen, to run the code and to perform the piece. This is the scaled version of the piece Encoding the Marimbist by
(Magnusson and Eacott 2015) where a marimba player was asked to read the code on projection and interpret the code
text and play as instructed. For example, maybe ICLC audience will be able to read the following code on the editor
and perform a piece?

bpm = LISTEN_TO_THE_METRONOME;

while (true) {
if(Math.random() < 0.5)
clapYourHands();
else
stompYourFeets();
beat(1);

if(MyFirstNameContains([“g”, “s”]1))
whistle.seq([60,62,67,69], [1/2]).loop(nearestBeat);

In this case, a live coder plays a role of a conductor and code text is the conducting gesture. The gesture does not make
any directive sound by itself but it guides the participants to perform. Besides, each machine that interprets the code
will inherently have randomness in an interpretation of the same code due to various reasons: the ambiguity of the
code, malicious behaviors of the participants, social barriers in doing something in public, and mob psychology.

6 Conclusion

In this paper, we introduced a new live coding performance practice to perform an audience participation music piece,
Crowd in C[loud]. The way we accomplish the piece includes an onstage performer live coding the instruments that the
audience is playing. Both the style of programming and music are drastically different from what one would expect in
a live coding music. However, it takes the full expressivity of programming language can take and shares the aesthetic
of live-algorithmic manipulation of the control. We wish that this idea of live coding the audience participation will
keep challenging the live coding community to push the boundary of what live coding does.

References

Baalman, Marije. 2015. “Embodiment of Code.” In Proceedings of the First International Conference on Live Coding, 35-40.
ICSRiM, University of Leeds. doi:10.5281/zenodo.18748.

Carvalho Jr, Antonio Deusany de, Sang Won Lee, and Georg Essl. 2016. “Understanding Cloud Service in the Audience

Participation Music Performance of Crowd in c[loud]” Proceedings of the International Conference on New Interfaces for
Musical Expression (NIME) 1001: 48109-42121.

Dahl, Luke, Jorge Herrera, and Carr Wilkerson. 2011. “TweetDreams: Making Music with the Audience and the World
Using Real-Time Twitter Data” In NIME, 272-75. Citeseer.

Essl, Georg. 2010. “UrMus-an Environment for Mobile Instrument Design and Performance.” In In Proceedings of the
International Conference on New Interfaces for Musical Expression (NIME). Citeseer.

Freeman, Jason. 2008. “Glimmer: Creating New Connections.” In Transdisciplinary Digital Art. Sound, Vision and the
New Screen, 270-83. Springer.

Freeman, Jason, and Mark Godfrey. 2010. “Creative Collaboration Between Audiences and Musicians in Flock” Digital
Creativity 21 (2). Taylor & Francis: 85-99.

Hasse, Jean. 1986. “Moths.” Visible Music, Euclid, OH.

Hindle, Abram. 2013. “SWARMED: Captive Portals, Mobile Devices, and Audience Participation in Multi-User Music
Performance” In In Proceedings of the International Conference on New Interfaces for Musical Expression (NIME), 174-79.

Lee, Sang Won, and Georg Essl. 2013. “Live Coding the Mobile Music Instrument” Proceedings of the International
Conference on New Interfaces for Musical Expression 1001: 48109-42121.

———. 2014. “Models and Opportunities for Networked Live Coding” In Live Coding and Collaboration Symposium,
1001:48109-42121.

———. 2015. “Live Writing: Asynchronous Playback of Live Coding and Writing” In Proceedings of the First International
Conference on Live Coding, 74-82. ICSRiM, University of Leeds. do0i:10.5281/zenodo.19322.

Lee, Sang Won, and Jason Freeman. 2013a. “Echobo: A Mobile Music Instrument Designed for Audience to Play”
Proceedings of the International Conference on New Interfaces for Musical Expression 1001: 48109-42121.

———. 2013b. “Real-Time Music Notation in Mixed Laptop-acoustic Ensembles” Computer Music Journal 37 (4). MIT
Press: 24-36.

Lee, Sang Won, Antonio Deusany de Carvalho Jr, and Georg Essl. 2016. “Crowd in ¢ [Loud]: Audience Participation
Music with Online Dating Metaphor Using Cloud Service” In Proceedings of the 2nd Web Audio Conference (WAC-2016),
Atlanta.

Lee, Sang Won, Georg Essl, and Mari Martinez. 2016. “Live Writing : Writing as a Real-Time Audiovisual Performance.”
Proceedings of the International Conference on New Interfaces for Musical Expression (NIME) 1001: 48109-42121.

Levin, Golan. 2001. “Dialtones-a Telesymphony.”
Magnusson, Thor, and Greta Eacott. 2015. “Encoding the Marimbist.” Performance.

Ogborn, David, Eldad Tsabary, Ian Jarvis, Alexandra Cardenas, and Alex McLean. 2015. “Extramuros: Making Music in

https://doi.org/10.5281/zenodo.18748
https://doi.org/10.5281/zenodo.19322

a Browser-Based, Language-Neutral Collaborative Live Coding Environment” In Proceedings of the First International
Conference on Live Coding, 163—69. ICSRiM, University of Leeds. d0i:10.5281/zenodo.19349.

Riley, Terry. 1964. “In ¢.” Composition.

Shaw, Tim, Sébastien Piquemal, and John Bowers. 2015. “Fields: An Exploration into the Use of Mobile Devices as a
Medium for Sound Diffusion” In Proceedings of the International Conference on New Interfaces for Musical Expression,
edited by Edgar Berdahl and Jesse Allison, 281-84. Baton Rouge, Louisiana, USA: Louisiana State University. http:
/Iwww.nime.org/proceedings/2015/nime2015_196.pdf.

Weitzner, Nathan, Jason Freeman, Yan-Ling Chen, and Stephen Garrett. 2013. “MassMobile: Towards a Flexible Frame-
work for Large-Scale Participatory Collaborations in Live Performances” Organised Sound 18 (01). Cambridge Univ

Press: 30-42.

Yang, Qi, and Georg Essl. 2015. “Representation-Plurality in Multi-Touch Mobile Visual Programming for Music” In In
Proceedings of the International Conference on New Interfaces for Musical Expression (NIME), 1001:48109-42121.

https://doi.org/10.5281/zenodo.19349
http://www.nime.org/proceedings/2015/nime2015_196.pdf
http://www.nime.org/proceedings/2015/nime2015_196.pdf

	Introduction
	Audience Participation and Mobile Phones.
	Live Coding Something Else: The Audience Participation
	Crowd in C[loud]: Audience Playing Largely in C
	Live Coding the Audience Participation in Crowd in C[loud]
	Code Text Transmitted over Cloud Service.
	Orchestrating the Crowd using Live Coding.
	Challenges of Live Coding in Numerous Remote Machines
	Opportunities Beyond Sending Code Text

	Conclusion
	References

