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Chapter Preview . This chapter introduces the reader to credibility and related regression modeling. The first section

provides a brief overview of credibility theory, regression-type credibility, and discusses historical developments. The

next section shows how some well-known credibility models can be embedded within the linear mixed model framework.

Specific procedures on how such models can be used for prediction and standard ratemaking are given as well. Further, in

Section 3, a step-by-step numerical example, based on the widely-studied Hachemeister’s data, is developed to illustrate

the methodology. All computations are done using the statistical software package “R”. The fourth section identifies some

practical issues with the standard methodology. In particular, its lack of robustness against various types of outliers

is mentioned. Possible solutions that have been proposed in the statistical and actuarial literatures are discussed.

Performance of the most effective proposals is illustrated on the Hachemeister’s data set and compared to that of the

standard methods. Suggestions for further reading are made in Section 5.

1 Introduction

1.1 Early Developments

Credibility theory is one of the oldest but still most common premium ratemaking techniques in insur-

ance industry. The earliest works in credibility theory date back to the beginning of the 20th century,

when Mowbray (1914) and Whitney (1918) laid the foundation for limited fluctuation credibility the-

ory . It is a stability-oriented form of credibility, the main objective of which is to incorporate into

the premium as much individual experience as possible while keeping the premium sufficiently stable.

Despite numerous attempts, this approach never arrived at a unifying principle that covered all special

cases and that opened new venues for generalization. Its range of applications is quite limited and

thus it never became a full-fledged theory.
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Instead of solely focusing on the stability of the premium, the modern and more flexible approach to

credibility theory concentrates on finding the most accurate estimate of an insured’s pure risk premium.

This is accomplished by striking a balance between the individual’s risk experience and the average

claim over all risk classes. While initial contributions to this area can be traced back to the 1920s (see

Keffer, 1929), it is generally agreed that the systematic development of the field of greatest accuracy

credibility started in the late 1960s with the seminal paper of Bühlmann (1967). A few years later,

Bühlmann and Straub (1970) introduced a credibility model as a means to rate reinsurance treaties,

which generalized previous results and became the cornerstone of greatest accuracy credibility theory.

The model is one of the most frequently applied credibility models in insurance practice, and it enjoys

some desirable optimality properties. For more historical facts and further discussion about credibility,

see the classic textbook of Klugman, Panjer, Willmot (2012, Chapters 17–18).

1.2 Regression-Type Credibility

The first credibility model linked to regression was introduced by Hachemeister (1975) who employed

it to model U.S. automobile bodily injury claims classified by state and with different inflation trends.

Specifically, Hachemeister considered 12 periods, from the third quarter of 1970 to the second quarter

of 1973, of claim data for bodily injury that are covered by a private passenger auto insurance. The

response variable of interest to the actuary is the severity average loss per claim, denoted by yit. It

is followed over the periods t = 1, . . . , ni for each state i = 1, . . . ,m. Average losses were reported for

n1 = · · · = nm = 12 periods and from m = 5 different states (see Appendix, Table A).
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Figure 1: Multiple time series plot of the variable average loss per claim, yit,

and the logarithmic average loss per claim, ln(yit).

A multiple time series plot of the observed variable average loss per claim, yit, and of the average

loss per claim in logarithmic units, ln(yit), is provided in Figure 1 (log-claim modeling will be consid-
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ered in Section 4). The plots indicate that states differ with respect to their within-state variability

and severity. For instance, State 1 reports the highest average losses per claim, whereas State 4 seems

to have larger variability compared to other states. For all five states we observe a small increase

of severity over time. Since the response variable yit grows over time t and varies from one state to

another, this provides a hint about possible structure of explanatory variables. Therefore, Hachemeis-

ter originally suggested to use the linear trend model—a regression model—which can be viewed as a

special case of the linear mixed models of Chapter 8 (mixed):

yit = x′
itβ + z′itui + εit,

where x′
it = z′it = (1, t)′ are known designs for the fixed effects (parameter β) and the subject-specific

random effects (parameter ui), respectively, and εit denotes within-subject residuals.

Later in this chapter, more details and examples will be provided about the link between the linear

mixed models and most popular credibility models (see Section 2.1). Also, as will be shown in Section

2.2, the general linear prediction problem for linear mixed models is closely related to credibility

ratemaking. It turns out that generalized least squares and best linear unbiased predictors correspond

to the well-known pricing formulas of credibility theory.

1.3 Recent Developments

Frees, Young, Luo (1999) have provided a longitudinal data (see Chapter 7 (panel)) analysis in-

terpretation for the aforementioned and other additive credibility ratemaking procedures, which also

remains valid in the framework of linear mixed models. The flexibility of linear mixed models for

handling simultaneously within-risk variation and heterogeneity among risks makes them a powerful

tool for credibility (see Chapter 8 (mixed) for details and generalizations of linear mixed models).

As is the case with many mathematical models, credibility models contain unknown structural

parameters (or in the language of linear mixed models, fixed effects and variance components) that have

to be estimated from the data. For statistical inference about fixed effects and variance components,

likelihood-based methods such as (restricted) maximum likelihood estimators, (RE)ML, are commonly

pursued. However, it is also known that while these methods offer most flexibility and full efficiency

at the assumed model, they are extremely sensitive to small deviations from hypothesized normality

of random components as well as to the occurrence of outliers. To obtain more reliable estimators for

premium calculation and prediction of future claims, various robust methods have been successfully

adapted to credibility theory in the actuarial literature (see, for example, Pitselis, 2002, 2008, 2012,

Dornheim and Brazauskas, 2007, 2011b).

In the remainder of the chapter, we first present the standard likelihood-based procedures for

ratemaking, then provide a step-by-step numerical example, and conclude with a brief review of

robust techniques and compare their performance to that of the standard methods. All computations

are done using the statistical software package “R” and are based on Hachemeister’s data.
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2 Credibility and the LMM Framework

In this section, we start by briefly describing how some popular (linear) credibility models are expressed

as linear mixed models, or LMM for short. The problem of prediction in linear mixed models and its

application to standard credibility ratemaking are discussed in Section 2.2.

2.1 Credibility Models

Here we demonstrate that some well-known additive credibility models can be interpreted as linear

mixed models which enjoy many desirable features. For instance, they allow the modeling of claims

across risk classes and time as well as the incorporation of categorical and continuous explanatory

characteristics for prediction of claims. The following descriptions are taken, with some modifications,

from Bühlmann and Gisler (2005), Frees (2004), and Frees, Young, Luo (1999). The basic credibility

models such as Bühlmann and Bühlmann-Straub can also be found in Klugman, Panjer, Willmot

(2012, Chapter 18). The notation we use is similar to that of other chapters in this book (especially,

Chapter 8 (mixed)), but may differ from the notation used elsewhere in the literature.

2.1.1 The Bühlmann Model

Let us consider a portfolio of different insureds or risks i, i = 1, . . . ,m. For each risk i we have a vector

of observations yi = (yi1, . . . , yini
)′, where yit represents the observed claim amount (or loss ratio) of

risk i at time t, t = 1, . . . , ni, where ni’s are allowed to be unequal. Then, by choosing p = q = 1 and

Xi = Zi = 1ni
in equation (17) of Chapter 8 (mixed), we arrive at

yi = 1ni
β + 1ni

ui + εi,

where β = E(yit) = E(E(yit|ui)) is the overall mean or collective premium charged for the whole

portfolio, ui denotes the unobservable risk parameter characterizing the subject-specific deviation

from the collective premium β, and 1ni
represents the ni-variate vector of ones. From the hierarchical

formulation of linear mixed models (see Section 2.1 of Chapter 8 (mixed)), the risk premium

µi = E(yit|ui) = β + ui is the true premium for an insured i if its risk parameter ui were known. In

addition, we obtain G = Var(ui) = σ2
u and the variance-covariance matrices

Σi = Var(yi|ui) = Var(εi) = σ2
ε Ini×ni

.

Note that, in general, the structural parameters β, σ2
u and σ2

ε are unknown and must be estimated from

the data. Also, viewing the Bühlmann model from this broader perspective provides insight about the

explanatory variables for claims (or loss ratios) and possible generalizations.

Note 1 (The Balanced Bühlmann Model): When the number of observation periods is the same for

all risks, i.e., n1 = · · · = nm, the basic credibility model becomes the Balanced Bühlmann Model. �
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2.1.2 The Bühlmann-Straub Model

The credibility model of Section 2.1.1 can be easily extended to the heteroscedastic model of Bühlmann

and Straub (1970) by choosing the variance-covariance matrix as follows:

Σi = Var(yi|ui) = Var(εi) = σ2
ε diag

(
υ−1

i1 , . . . , υ−1

ini

)
,

where υit > 0 are known volume measures. These weights represent varying exposures toward risk for

insured i over the period ni. Practical examples of exposure weights include number of years at risk

in motor insurance, sum insured in fire insurance, annual turnover in commercial liability insurance,

among others (see Bühlmann and Gisler, 2005).

2.1.3 The Hachemeister Regression Model

Hachemeister’s simple linear regression model is a generalization of the Bühlmann-Straub Model,

which includes the time (as linear trend) in the covariates. To obtain the linear trend model, in

equation (17) of Chapter 8 (mixed) we choose p = q = 2 and set Xi = (xi1, . . . ,xini
)′ and Zi =

(zi1, . . . , zini
)′, where xit = zit = (1, t)′. This results in the random coefficients model of the form

yi = Xi (β + ui) + εi,

with the diagonal matrix Σi defined as in Section 2.1.2. It is common to assume that (unobservable)

risk factors u1 and u2 are independent with the variance-covariance matrix G = diag(σ2
u1

, σ2
u2

).

2.1.4 The Revised Hachemeister Regression Model

Application of the Hachemeister’s model to bodily injury data (see Section 1.2) results in unsatisfying

model fits which are due to systematic underestimation of the credibility regression line. To overcome

this drawback, Bühlmann and Gisler (1997) suggested to take the intercept of the regression line at

the “center of gravity” of the time variable, instead of the origin of the time axis. That is, choose

design matrices Xi = (xi1, . . . ,xini
)′ and Zi = (zi1, . . . , zini

)′ with xit = zit = (1, t − Ci•)
′, where

Ci• = υ−1

i•

ni∑

t=1

t υit

is the center of gravity of the time range in risk i, and υi• =
∑ni

t=1
υit. This modification ensures that

the regression line stays between the individual and collective regression lines; and the model is called

the revised Hachemeister regression model.

From a practical point of view, volumes are often equal enough across periods for a single risk

to be considered constant in time, which yields similar centers of gravity between risks. Then, it is

reasonable to use the center of gravity of the collective, which is defined by C•• = υ−1
••

∑m
i=1

∑ni

t=1
t υit,

where υ•• =
∑m

i=1

∑ni

t=1
υit (see Bühlmann and Gisler, 2005, Section 8.3).
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2.2 Prediction and Ratemaking

In the linear mixed model defined by (17) of Chapter 8 (mixed), let β̂GLS and θ̂ be the likelihood-

based estimates of the grand mean β and the variance component vector θ = (σ2
u1

, . . . , σ2
uq

, σ2
ε),

respectively. Then, the minimum mean square error predictor of the random variable

Wi = E(yi,ni+1|ui) = x′
i,ni+1β + z′i,ni+1ui

is given by the best linear unbiased predictor

ŴBLUP,i = x′
i,ni+1 β̂GLS + z′i,ni+1 ûBLUP,i , i = 1, . . . ,m, (2.1)

where x′
i,ni+1 and z′i,ni+1 are known covariates of risk i in time period ni + 1, and β̂GLS and ûBLUP,i

are computed using equations (26) and (29) of Chapter 8 (mixed), respectively. (See also the

discussion following equation (29).)

In the actuarial literature, ŴBLUP,i is called a homogeneous estimator of Wi (Dannenburg, Kaas,

Goovaerts, 1996) and it is used to predict the expected claim size µi,ni+1 = E(yi,ni+1|ui) of risk i for

time ni + 1. This estimator is even optimal for non-normally distributed claims (Norberg, 1980).

Recall that the central objective of credibility is to price fairly heterogeneous risks based on the

overall portfolio mean, M , and the risk’s individual experience, Mi. This relation can be expressed by

the general credibility pricing formula

Pi = ζi Mi + (1 − ζi) M = M + ζi (Mi − M), i = 1, . . . ,m, (2.2)

where Pi is the credibility premium of risk i, and 0 ≤ ζi ≤ 1 is known as the credibility factor. Note, a

comparison of equation (2.1) with (2.2) implies that x′
i,ni+1

β̂GLS can be interpreted as estimate of M ,

and z′i,ni+1
ûBLUP,i as predictor of the weighted, risk-specific deviation ζi (Mi −M). This relationship

will be illustrated for the Bühlmann-Straub model and the revised Hachemeister regression model.

2.2.1 Example 1: The Bühlmann-Straub Model

In Section 2.1.2, we have seen that the Bühlmann-Straub Model can be formulated as random coeffi-

cients model of the form E(yi|ui) = 1ni
β + 1ni

ui. Then, for future expected claims µi = E(yi,ni+1|ui)

of risk i, Frees (2004) finds the best linear unbiased predictor µ̂i = β̂GLS + ûBLUP,i with:

β̂GLS = ȳζ and ûBLUP,i = ζi

(
ȳi − β̂GLS

)
(2.3)

where ȳζ = (
∑m

i=1
ζi)

−1 ∑m
i=1

ζi ȳi , ȳi = υ−1

i•

∑ni

t=1
υit yit, and ζi = (1 + σ2

ε/(υi•σ
2
u))−1. To

compute formulas (2.3), one needs to estimate the structural parameters σ2
u and σ2

ε . The estimators

σ̂2
u and σ̂2

ε are obtained from (RE)ML (i.e., as byproduct from Henderson’s Mixed Model Equations)
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and coincide, when assuming normality, with the following nonparametric estimators:

σ̂2
ε =

∑m
i=1

∑ni

t=1
υit(yit − ȳi)

2

∑m
i=1

(ni − 1)
and

σ̂2
u =

υ••
υ2
•• −

∑m
i=1

υ2
i•

(
m∑

i=1

υi•(ȳi − ȳ)2 − σ̂2
ε(m − 1)

)
,

where ȳ = υ−1
••

∑m
t=1

υi• ȳi (see also Klugman, Panjer, Willmot, 2012, Section 19.2).

2.2.2 Example 2: The Revised Hachemeister Regression Model

Here, we provide the necessary details for estimators in the revised Hachemeister regression model. For

risk i one can estimate the expected claim amount µi,ni+1 = E(yi,ni+1|ui) by the credibility estimator

µ̂i,ni+1 = (1, ni + 1) (β̂GLS + ûBLUP,i) = (1, ni + 1)
(
(I2×2 − ζi) β̂GLS + ζi bi

)
, with:

β̂GLS =

(
m∑

i=1

ζi

)−1 m∑

i=1

ζibi and ûBLUP,i = ζi

(
bi − β̂GLS

)
,

where

bi = A−1

i

[ ∑ni

t=1
υit yit∑ni

t=1
υit yit (t − Ci•)

]

is the estimated individual claim experience of risk i,

ζi = diag

[ (
1 + σ2

ε / (σ2
u1

ai1)
)−1

(
1 + σ2

ε /
(
σ2

u2
ai2

))−1

]

is the credibility factor for risk i, and Ai = diag(ai1, ai2) with ai1 = υi•, ai2 = υ̃i• =
∑ni

t=1
υit(t−Ci•)

2,

and Ci• = υ−1

i•

∑ni

t=1
t υit is the center of gravity. We still have to estimate the process variance σ2

ε and

variances of hypothetical means σ2
u1

and σ2
u2

. It is reasonable to estimate σ2
ε by the natural variance

estimator σ̂2
ε = m−1

∑m
i=1

σ̂2
ε,i, where σ̂2

ε,i = (ni−2)−1
∑ni

t=1
υit(yit− µ̂it)

2 is a (conditionally) unbiased

estimator of the within-risk variance σ2
ε,i, and µ̂it is the fitted value of the ith regression line in time

t. The structural parameters σ2
u1

and σ2
u2

are estimated by

σ̂2
u1

= c1

[
m

m − 1

m∑

i=1

υi•

υ••
(bi,1 − b̄1)

2 −
m σ̂2

ε

υ••

]
and

σ̂2
u2

= c2

[
m

m − 1

m∑

i=1

υ̃i•

υ̃••
(bi,2 − b̄2)

2 −
m σ̂2

ε

υ̃••

]
,

where

c1 =
m − 1

m

{
m∑

i=1

υi•

υ••

(
1 −

υi•

υ••

)}−1

, b̄1 = υ−1
••

m∑

i=1

υi• bi,1 ,

c2 =
m − 1

m

{
m∑

i=1

υ̃i•

υ̃••

(
1 −

υ̃i•

υ̃••

)}−1

, and b̄2 = υ̃−1
••

m∑

i=1

υ̃i• bi,2.
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3 Numerical Examples

In this section, we revisit Section 1.2 and model the Hachemeister’s data set which, over the years, has

been extensively analyzed by a number of authors in the actuarial literature. For example, Dannen-

burg, Kaas, Goovaerts (1996), Bühlmann and Gisler (1997), Frees, Young, Luo (1999), Pitselis (2008),

and Dornheim and Brazauskas (2011b), among others, used this data set to illustrate the effectiveness

of various regression-type credibility ratemaking techniques.

To get a feel for how things work, let us study a detailed example that shows how to fit and make

predictions based on the Hachemeister model and the revised Hachemeister model. All computations

are done using the statistical software package “R”. Parts of the computer code are available in actuar,

an R package for actuarial science, which is described in Dutang, Goulet, Pigeon (2008).

In order to fit the linear trend regression model of Section 2.1.3 to the Hachemeister’s data set, we

employ the following R-code:

> fit <- cm(~state, hachemeister, regformula = ~time,

+ regdata = data.frame(time = 1:12), ratios = ratio.1:ratio.12,

+ weights = weight.1:weight.12)

> fit

> summary(fit, newdata = data.frame(time = 13))

The label hachemeister in the first line of the code reads the data set which is available in the

actuar package. The last line produces predictions which are based on formula (2.1). The R-code

yields the following credibility-adjusted parameter estimates and predictions for the five states:

State Parameter Estimates Prediction

i β̂0 + ûi,0 β̂1 + ûi,1 µ̂i,12+1

1 1693.52 57.17 2436.75

2 1373.03 21.35 1650.53

3 1545.36 40.61 2073.30

4 1314.55 14.81 1507.07

5 1417.41 26.31 1759.40

In addition, the grand parameters are found by taking the average across all states; they are: β̂0 =

1468.77 and β̂1 = 32.05. Also, within-state variance is σ̂2
ε = 49, 870, 187, and the other estimates of

variance components are: σ̂2
u1

= 24, 154.18 and σ̂2
u2

= 301.81. Note that the numerical values in the

table above differ from the ones reported by Dutang, Goulet, Milhaud, Pigeon (2012), who used the

same R-code but applied the reversed time variable, that is, time = 12:1 instead of time = 1:12.

Fitting and predictions based on the revised Hachemeister model (see Sections 2.1.4 and 2.2.2)

are much more involved. The complete program for running these tasks is presented in Appendix.
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Comments explaining the formulas or a block of the program are listed between the signs # and #. To

run the program, download the R-code to your computer and use the following command lines:

> source("HachemRevised.R")

> HachemRevised(5,12, hachemeister[,2:13], hachemeister[,14:25], 1:12,13)

Let us go through the main blocks of the program and review the numerical output of each block.

The first group of commands (which is labeled “Program Initialization”) defines the variables used in

computations and sets their intial values, if necessary. The second group of commands, labeled “Center

of Gravity & Recentered X”, computes the collective center of gravity (the outcome is C•• = 6.4749),

and re-centers the design matrix X, which results in



1 −5.4749

1 −4.4749

1 −3.4749

1 −2.4749

1 −1.4749

1 −0.4749

1 0.5251

1 1.5251

1 2.5251

1 3.5251

1 4.5251

1 5.5251




The third group of commands, labeled “Volume Measures & Other Constants”, computes the constants

required for further calculations. The results of this step are: υ̃•• = 2, 104, 688; c1 = 1.3202; c2 =

1.3120; b̄1 = 1865.4040; b̄2 = 44.1535. The fourth and fifth groups of commands, labeled “Variance

Components” and “Parameters & Prediction”, respectively, yield estimates of the structural parame-

ters and deliver next-period predictions. The summarized results of these two program blocks are:

State Estimates of Structural Parameters Prediction Std. Error

i ûi,0 ûi,1 β̂0 + ûi,0 β̂1 + ûi,1 σ̂2
ε,i µ̂i,12+1 σ̂bµi,12+1

1 385.71 27.06 2058.85 60.70 121, 484, 314 2847.94 110.13

2 −157.67 −12.60 1515.48 21.04 30, 175, 637 1789.01 123.15

3 127.71 6.58 1800.85 40.22 52, 560, 076 2323.70 195.49

4 −283.51 −2.40 1389.63 31.25 24, 362, 730 1795.83 242.22

5 −72.24 −18.63 1600.90 15.01 21, 075, 078 1796.00 76.39

Note that the grand parameters are found by taking the average across all states for β̂0 + ûi,0, β̂1 + ûi,1,

and σ̂2
ε,i; they are: β̂0 = 1673.14, β̂1 = 33.64, and σ̂2

ε = 49, 931, 567. In addition, the estimates of
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variance components are: σ̂2
u1

= 93, 021.43 and σ̂2
u2

= 665.48. The last line of the code screen-prints

the results of the program.

Note 2 (Potential Outliers): A careful examination of Figure 1 reveals that the quarterly observa-

tions #6 in State 1, #10 in State 2, #7 in State 4, and maybe #6 in State 5 are somewhat apart from

their state-specific inflation trends. This suggest the topic for the next section. That is, we would like

to know how to identify outliers and, if they are present, what to do about them. �

4 Theory versus Practice

The modeling approach of Section 3 is well-understood and widely used, but it is not very realistic in

practice. In particular, insurance loss data are often highly-skewed, heavy-tailed and contain outliers.

While complete treatment of these issues is beyond the scope of this chapter, in the following we

will present some insights on how to modify and improve the standard methodology. First of all, in

Section 4.1, we formulate heavy-tailed linear mixed models. Note that ‘heavy-tailed’ models are also

known as ‘long-tailed’ or ‘fat-tailed’ (see Chapter 9 (fat-tailed)). Then, Section 4.2 introduces a

three-step procedure for robust-efficient fitting of such models. Robust credibility ratemaking based

on heavy-tailed linear mixed models (which are calibrated using the robust-efficient fitting procedure

of Section 4.2) is described in Section 4.3. Finally, in Section 4.4, we revisit the earlier examples and

illustrate performance of the robust methods using Hachemeister’s data.

4.1 Heavy-Tailed Linear Mixed Models

Suppose we are given a random sample (xi1, zi1, yi1, υi1), . . . , (xini
, zini

, yini
, υini

), where xit and zit

are known p- and q-dimensional row-vectors of explanatory variables and υit > 0 some known volume

measure. Assume the claims yit follow a log-location-scale distribution with cdf of the form:

G(yit) = F0

(
log(yit) − λit

σε υ
−1/2

it

)
, yit > 0, i = 1, . . . ,m, t = 1, . . . , ni,

defined for −∞ < λit < ∞, σε > 0, and where F0 is the standard (i.e., λit = 0, σε = 1, υit = 1) cdf of

the underlying location-scale family F (λit, σ
2
ε/υit). Following regression analysis with location-scale

models, we include the covariates xit and zit only through the location parameter λit. Then, the

following linear mixed model may be formulated:

log(yi) = Xiβ + Ziui + εi = λi + εi, i = 1, . . . ,m,

where log(yi) =
(
log(yi1), . . . , log(yini

)
)′

and λi is the ni-dimensional vector of the within-subject

locations λit that consist of the population location β and the subject-specific location deviation ui.

While normality of ui is still assumed, the error term εi now follows the ni-dimensional multivariate cdf

with location-scale distributions F (0, σ2
ε/υit) as margins. Examples of such marginal log-location-scale
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families F include lognormal, log-logistic, log-t, log-Cauchy, and Weibull, which after the logarithmic

transformation become normal, logistic, t, Cauchy, and Gumbel (extreme-value), respectively. Special

cases of the ni-dimensional distributions Fni

(
λi, Σi) are the well-known elliptical distributions such

as multivariate normal and the heavy-tailed multivariate t.

4.2 Robust-Efficient Fitting

For robust-efficient fitting of the linear mixed model with normal random components, Dornheim

(2009) and Dornheim and Brazauskas (2011a) developed adaptively truncated likelihood methods.

Those methods were further generalized to log-location-scale models with symmetric or asymmetric

errors and labeled corrected adaptively truncated likelihood methods, CATL (see Dornheim, 2009, and

Dornheim and Brazauskas, 2011b). More specifically, the CATL estimators for location λi and variance

components σ2
u1

, . . . , σ2
uq

, σ2
ε can be found by the following three-step procedure:

1. Detection of Within-Risk Outliers.

Consider the random sample

(
xi1, zi1, log(yi1), υi1

)
, . . . ,

(
xini

, zini
, log(yini

), υini

)
, i = 1, . . . ,m.

In the first step, the corrected re-weighting mechanism automatically detects and removes outly-

ing events within risks whose standardized residuals computed from initial high breakdown-point

estimators exceed some adaptive cut-off value. This threshold value is obtained by comparison

of an empirical distribution with a theoretical one. Let us denote the resulting “pre-cleaned”

random sample as

(
x∗

i1, z
∗
i1, log(y∗i1), υ

∗
i1

)
, . . . ,

(
x∗

in∗
i
, z∗in∗

i
, log(y∗in∗

i
), υ∗

in∗
i

)
, i = 1, . . . ,m.

Note that for each risk i, the new sample size is n∗
i (n∗

i ≤ ni).

2. Detection of Between-Risk Outliers.

In the second step, the procedure searches the pre-cleaned sample (marked with ∗) and dis-

cards entire risks whose risk-specific profile expressed by the random effect significantly deviates

from the overall portfolio profile. These risks are identified when their robustified Mahalanobis

distance exceeds some adaptive cut-off point. The process results in

(
x∗∗

i1 , z∗∗i1 , log(y∗∗i1 ), υ∗∗
i1

)
, . . . ,

(
x∗∗

in∗
i
, z∗∗in∗

i
, log(y∗∗in∗

i
), υ∗∗

in∗
i

)
, i = 1, . . . , i∗,

a “cleaned” sample of risks. Note that the number of remaining risks is i∗ (i∗ ≤ m).

3. CATL estimators.

In the final step, the CATL procedure employs traditional likelihood-based methods, such as

11



(restricted) maximum likelihood, on the cleaned sample and computes re-weighted parameter

estimates β̂CATL and θ̂CATL = (σ̂2
u1

, . . . , σ̂2
uq

, σ̂2
ε). Here, the subscript CATL emphasizes that the

maximum likelihood type estimators are not computed on the original sample, i.e., the starting

point of Step 1, but rather on the cleaned sample which is the end result of Step 2.

Using the described procedure, we find the shifted robust best linear unbiased predictor for location:

λ̂i = X∗∗
i β̂CATL + Z∗∗

i ûrBLUP, i + ÊF0
(εi), i = 1, . . . ,m,

where β̂CATL and ûrBLUP, i are standard likelihood-based estimators but computed on the clean sample

from Step 2. Also, ÊF0
(εi) is the expectation vector of the n∗

i -variate cdf Fn∗
i
(0, Σ̂i). For symmetric

error distributions we obtain the special case ÊF0
(εi) = 0.

4.3 Robust Credibility Ratemaking

The re-weighted estimates for location, λ̂i, and structural parameters, θ̂CATL = (σ̂2
u1

, . . . , σ̂2
uq

, σ̂2
ε), are

used to calculate robust credibility premiums for the ordinary but heavy-tailed claims part of the

original data. The robust ordinary net premiums

µ̂ordinary

it = µ̂ordinary

it (ûrBLUP,i), t = 1, . . . , ni + 1, i = 1, . . . ,m

are found by computing the empirical limited expected value (LEV) of the fitted log-location distri-

bution of claims. The percentile levels of the lower bound ql and the upper bound qg used in LEV

computations are usually chosen to be extreme, e.g., 0.1% for ql and 99.9% for qg.

Then, robust regression is employed to price separately identified excess claims. The risk-specific

excess claim amount of insured i at time t is defined by

Ôit =





−µ̂ordinary

it , for yit < ql.

(yit − ql) − µ̂ordinary

it , for ql ≤ yit < qg.

(qg − ql) − µ̂ordinary

it , for yit ≥ qg.

Further, let mt denote the number of insureds in the portfolio at time t and let N = max
1≤i≤m

ni, the

maximum horizon among all risks. For each period t = 1, . . . ,N, we find the mean cross-sectional

overshot of excess claims Ô•t = m−1
t

∑mt

i=1
Ôit, and fit robustly the random effects model

Ô•t = otξ + ε̃t, t = 1, . . . ,N,

where ot is the row-vector of covariates for the hypothetical mean of overshots ξ. Here we choose

ot = 1, and let ξ̂ denote a robust estimate of ξ. Then, the premium for extraordinary claims, which

is common to all risks i, is given by

µextra

it = otξ̂.
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Finally, the portfolio-unbiased robust regression credibility estimator is defined by

µ̂CATL

i,ni+1(ûrBLUP,i) = µ̂ordinary

i,ni+1
(ûrBLUP,i) + µextra

i,ni+1, i = 1, . . . ,m.

From the actuarial point of view, premiums assigned to the insured have to be positive. Therefore,

we determine pure premiums by max
{

0, µ̂CATL

i,ni+1
(ûrBLUP,i)

}
.

4.4 Numerical Examples Revisited

For Hachemeister’s regression credibility model and its revised version, we use log(yit) as response

variable and fit it using the CATL method. In Table 1, we report loss predictions for individual states,

which were computed using CATL and compared to those obtained by other authors. Specifically,

the base method, which is the linear trend model used by Goovaerts and Hoogstad (1987), and the

M-RC, MM-RC, GM-RC procedures which were studied by Pitselis (2002, 2008, 2012).

As discussed by Kaas, Dannenburg, Goovaerts (1997) and Frees, Young, Luo (2001), in practice

it is fairly common to observe situations where risks with larger exposure measure exhibit lower

variability. As one can infer from Table A (see Appendix), the number of claims per period , denoted by

υit, significantly affects the within-risk variability. Also, State 4 reports high average losses per claim,

which in turn yields to increased within-state variability (see Figure 1). Thus, to obtain homoscedastic

error terms, we fit models using υit as subject-specific weights. This model can be written as

log(yit) = xitβ + zitui + εit υ
1/2

it ,

where εit is a sequence of independent normally distributed noise terms.

To assess the quality of credibility predictions, µ̂i,12+1, we also report their standard errors. These

can be used to construct prediction intervals of the form BLUP (credibility estimate µ̂i,12+1) plus and

minus multiples of the standard error. We estimate the standard error of prediction, σ̂bµi,12+1
, from the

data using the common nonparametric estimator

σ̂bµi,12+1
=
[
M̂SE(µ̂i) − b̂ias

2

(µ̂i)
]1/2

=


υ−1

i•

12∑

t=1

ωitυit(yit − µ̂it)
2 −

(
υ−1

i•

12∑

t=1

ωitυit(yit − µ̂it)

)2



1/2

,

where µ̂it denotes the credibility estimate obtained from the pursued regression method, υi• is the

total number of claims in state i, and ωit is the hard-rejection weight for the observed average loss

per claim yit when employing the CATL procedure. For non-robust REML where no data points are

truncated we put ωit = 1 as special case.
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Table 1: Individual state predictions for Hachemeister’s bodily injury data based on various

model-fitting procedures (if available, estimated standard errors are provided in parentheses).

Fitting Prediction for State

Procedure 1 2 3 4 5

base 2436 1650 2073 1507 1759

m-rc (c = 1.5) 2437 1650 2073 1507 1759

gm-rc (k = 1) 2427 1648 2092 1505 1737

mm-rc 2427 1648 2092 1505 1737

reml 2465 (109) 1625 (122) 2077 (193) 1519 (248) 1695 (77)

catl 2471 (111) 1545 (74) 2065 (194) 1447 (174) 1691 (57)

reml∗ 2451 (109) 1661 (123) 2065 (193) 1613 (242) 1706 (78)

catl∗ 2450 (113) 1552 (74) 2049 (195) 1477 (172) 1693 (57)

∗ Based on the revised Hachemeister model (see Section 2.2.2).

Several conclusion emerge from Table 1. First, we note that the REML and REML∗ estimates

(predictions) are based on Henderson’s Mixed Model Equations and thus they slightly differ from

those of Section 3. Second, for States 1, 3, and 5, all techniques, standard and robust, yield similar

predictions. For the second and fourth states, however, CATL produces slightly lower predictions. For

instance, for State 4 it results in 1447 whereas the base model finds 1507. This can be traced back to

the truncation of the suspicious observations #6 and #10 in State 2 and #7 in State 4. Third, CATL

also identifies claim #4 in State 5 as outlier and, as a result, assigns a small discount of −1.47 to each

risk. For the revised model (i.e., for REML∗ and CATL∗), prediction patterns are similar.

Table 2: Individual state predictions for contaminated Hachemeister’s data based on various

model-fitting procedures (if available, estimated standard errors are provided in parentheses).

Fitting Prediction for State

Procedure 1 2 3 4 5

base 2501 1826 2181 1994 2596

m-rc (c = 1.5) 2755 1979 2396 1841 2121

gm-rc (k = 1) 2645 1868 2311 1723 1964

mm-rc 2649 1870 2315 1724 1943

reml 2517 (119) 1852 (150) 2206 (204) 1987 (255) 2542 (829)

catl 2477 (111) 1550 (74) 2071 (194) 1452 (174) 1689 (60)

reml∗ 2455 (110) 1949 (166) 2229 (204) 2141 (275) 2629 (818)

catl∗ 2459 (112) 1559 (74) 2057 (195) 1484 (172) 1694 (60)

∗ Based on the revised Hachemeister model (see Section 2.2.2).

To illustrate robustness of regression credibility methods that are based on M-RC, MM-RC, and

GM-RC estimators for quantifying individual’s risk experience, Pitselis (2002, 2008) replaces the last
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observation of the fifth state, 1690, by 5000. We follow the same contamination strategy and summarize

our findings in Table 2. As one can see from Table 2, the choice of the model-fitting methodology has

major impact on predictions. Indeed, in the presence of a single outlier, we find that robust procedures

provide stability and reasonable adjustment to predictions whereas standard methods overreact. For

example, in the contaminated State 5 the REML and base credibility estimates get inflated by the

outlying observation and increase from 1695 to 2542 and from 1759 to 2596, respectively. Further, since

outliers usually distort the estimation process of variance components and thus yield too low credibility

weights, predictions across all states increase significantly. Note also a dramatic explosion of standard

errors (e.g., the standard error of REML in State 5 jumps from 77 to 829), which is due to increased

within-risk variability that was caused by the contaminating observation. Furthermore, not all robust

credibility predictions react equally to data contamination. The CATL based predictions change only

slightly when compared to the non-contaminated data case, but those of M-RC, GM-RC, and MM-

RC shift upwards by 10%-20%. For instance, predictions for State 5 change from: 1691 to 1689 (for

CATL), 1759 to 2121 (for M-RC), 1737 to 1964 (for GM-RC), 1737 to 1943 (for MM-RC). This can

be explained by the fact that the latter group of procedures does not provide protection against large

claims that influence the between-risk variability. Note also that in all but contaminated State 5 the

CATL predictions slightly increase while the corresponding standard errors remain unchanged. On

the other hand, State 5 prediction is practically unchanged, but the CATL method “penalizes” the

state by increasing its standard error (i.e., the standard error has changed from 57 to 60). An increase

in standard error implies a credibility reduction for State 5.
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Figure 2: Selected point and interval predictions for contaminated Hachemeister’s data.

The thin lines connecting ‘o’ denote one-, two-, and three-step predictions using REML.

The corresponding CATL predictions are marked by ‘∗’.

As the last point of this discussion, Figure 2 illustrates the impact of data contamination on the
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ratemaking process. The left panel plots claim severity over time for two non-contaminated states,

State 1 and State 3, with the last three time periods representing the point and interval predictions.

The right panel plots corresponding results for the contaminated State 5. In both cases the REML

based inference leads to elevated point predictions and wider intervals (which are constructed by

adding and subtracting one standard error to the point prediction). As one would expect, the REML

and CATL predictions are most disparate in State 5.

5 Further Reading

The regression-type credibility models of this chapter have been extended and generalized in several

directions. To get a broader view of this topic, we encourage the reader to consult other papers and

textbooks. For example, to learn how to model correlated claims data, we recommend reading Frees,

Young, Luo (1999, 2001) and Frees (2004). Further, to gain a deeper understanding of and appreciation

for robust credibility techniques, the reader should review Garrido and Pitselis (2000), Pitselis (2002,

2004, 2008, 2012), and Dornheim and Brazauskas (2007, 2011a,b). If the reader is not familiar with

the philosophy and methods of robust statistics, then the book by Maronna, Martin, Yohai (2006)

will provide a gentle introduction into the subject. Finally, an introduction to and developments of

hierarchical credibility modeling can be found in Sundt (1979, 1980), Norberg (1986), Bühlmann and

Jewell (1987), and Belhadj, Goulet, Ouellet (2009).
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Appendix

Table A. Hachemeister’s bodily injury data set comprising average loss per claim, yit,

and the corresponding number of claims per period, υit.

Period Average loss per claim in State Number of claims per period in State

1 2 3 4 5 1 2 3 4 5

1 1738 1364 1759 1223 1456 7861 1622 1147 407 2902

2 1642 1408 1685 1146 1499 9251 1742 1357 396 3172

3 1794 1597 1479 1010 1609 8706 1523 1329 348 3046

4 2051 1444 1763 1257 1741 8575 1515 1204 341 3068

5 2079 1342 1674 1426 1482 7917 1622 998 315 2693

6 2234 1675 2103 1532 1572 8263 1602 1077 328 2910

7 2032 1470 1502 1953 1606 9456 1964 1277 352 3275

8 2035 1448 1622 1123 1735 8003 1515 1218 331 2697

9 2115 1464 1828 1343 1607 7365 1527 896 287 2663

10 2262 1831 2155 1243 1573 7832 1748 1003 384 3017

11 2267 1612 2233 1762 1613 7849 1654 1108 321 3242

12 2517 1471 2059 1306 1690 9077 1861 1121 342 3425

Source: Hachemeister (1975), Figure 3.
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The R-code for the revised Hachemeister’s model (for details, see Sections 2.1.4, 2.2.2, and 3):

HachemRevised <- function(number of states, timeline number, Y,W,t, time to predict) {

########## PROGRAM INITIALIZATION #####

I = number of states # number of rows in each matrix #

N = timeline number # number of columns in each matrix #

k = time to predict # prediction horizon #

X = matrix(nrow=12,ncol=2); X[,1] = rep(1,12); X[,2] = t

ivector = seq(from=1,to=I,by=1)

tvector = seq(from=1,to=N,by=1)

WYear = vector(length=N); WTilda = 0; WTotal = 0

WS = vector(length=I); WSTotal = 0

c1 = 0; c2 = 0

b1 = vector(length=I); b2 = vector(length=I)

b1bar = 0; b2bar = 0

b = matrix(nrow=2,ncol=5)

mu = matrix(nrow=5,ncol=12)

XCent = matrix(nrow=12,ncol=2) # X centered #

SigmaTemp = matrix(nrow=5,ncol=12)

SigmaTemp1 = matrix(nrow=5,ncol=12)

SigmaTemp2 = vector(length=I)

SigmaTemp3 = vector(length=I)

StdError = vector(length=I); SigmaSq = 0

Tau1Temp1 = vector(length=I); Tau2Temp1 = vector(length=I)

Tau1Sq = 0; Tau2Sq = 0; Tau1Sq1 = 0; Tau2Sq1 = 0

k0 = 0; k1 = 0

A11 = vector(length=I); A22 = vector(length=I)

cred = matrix(nrow=2,ncol=2)

sumcred = vector(length=2); sumcredwt = vector(length=2)

halpha = matrix(nrow=2,ncol=5); hbeta = matrix(nrow=2,ncol=5)

paramet = matrix(nrow=2,ncol=5)

cred prem = matrix(nrow=1,ncol=5)

########## CENTER OF GRAVITY & RECENTERED X #####

for (t in tvector) {

WYear[t] = sum(W[,t])

WTilda = WTilda + (WYear[t] * t)

WTotal = WTotal + WYear[t] } # collective center of gravity W.. #

XCent = as.matrix(cbind(rep(1,12),X[,2] - WTilda/WTotal)) # X at center of gravity #

########## VOLUME MEASURES & OTHER CONSTANTS #####

for (i in ivector) {

WS[i] = sum(XCent[,2]^2 * W[i,])

WSTotal = WSTotal + WS[i] }

for(i in ivector) {

c1 = c1 + (sum(W[i,])/WTotal) * (1 - sum(W[i,])/WTotal)

c2 = c2 + (WS[i]/WSTotal) * (1 - WS[i]/WSTotal)

b1[i] = sum(Y[i,] * t(W[i,]))/sum(W[i,])

b2[i] = sum(t(W[i,]) * (Y[i,] - b1[i]) * XCent[,2])/WS[i]

b[1,i] = b1[i]; b[2,i] = b2[i]

b1bar = b1bar + (b1[i] * sum(W[i,])/WTotal)

b2bar = b2bar + (b2[i] * WS[i]/WSTotal)
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HachemData = data.frame(Y=Y[i,],X=XCent[,2])

Reg = lm(Y~X, data=HachemData) # Individual Regression #

mu[i,] = Reg$fitted.values }

c1 = 1/c1 * (I-1)/I; c2 = 1/c2 * (I-1)/I

########## VARIANCE COMPONENTS #####

SigmaTemp = Y-mu; SigmaTemp1=(Y-mu)^2

for(i in ivector) {

SigmaTemp2[i] = sum(SigmaTemp1[i,] * t(W[i,]))

SigmaTemp3[i] = sum(SigmaTemp[i,] * t(W[i,]))/sum(W[i,])

StdError[i] = sqrt((SigmaTemp2[i]/sum(W[i,])) - (SigmaTemp3[i])^2) }

SigmaTemp2 = SigmaTemp2/(N-2); SigmaSq = sum(SigmaTemp2)/I

Tau1Temp1 = (b1-b1bar)^2; Tau2Temp1 = (b2-b2bar)^2

for(i in ivector) {

Tau1Sq1 = Tau1Sq1 + sum(W[i,]) * Tau1Temp1[i]

Tau2Sq1 = Tau2Sq1 + WS[i] * Tau2Temp1[i] }

Tau1Sq = (I*c1/WTotal) * (Tau1Sq1/(I-1) - SigmaSq)

Tau2Sq = (I*c2/WSTotal) * (Tau2Sq1/(I-1) - SigmaSq)

k0 = SigmaSq/Tau1Sq; k1 = SigmaSq/Tau2Sq

########## PARAMETERS & PREDICTION #####

for (i in ivector) {

A11[i] = sum(W[i,])/(sum(W[i,])+k0)

A22[i] = WS[i]/(WS[i]+k1)

cred = as.matrix(rbind(c(A11[i],0),c(0,A22[i])))

sumcredwt = sumcredwt + (cred% * %b[,i])

sumcred[1] = sumcred[1] + A11[i]; sumcred[2] = sumcred[2] + A22[i] }

hbeta = sumcredwt/sumcred

for (i in ivector) {

cred = as.matrix(rbind(c(A11[i],0),c(0,A22[i])))

halpha[,i] = cred% * %(b[,i] - hbeta); paramet[,i] = halpha[,i] + hbeta }

cred prem = t(as.matrix(c(1, k)))% * %paramet

########## RESULTS #####

result1 = list(collective center of gravity=WTilda/WTotal, X at center of gravity=XCent)

result2 = list(vtilda double dot=WSTotal, c1=c1, c2=c2, b1bar=b1bar, b2bar=b2bar)

result3 = list(alpha=halpha, beta plus alpha=paramet, sigmasq=SigmaTemp2)

result4 = list(result1, Volume Measure and Other Components=result2, Structural Parameters=result3,

Prediction=cred prem, Std. Error=StdError); return(result4) }

20


