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ABSTRACT 

Diffraction from the individual molecules of a molecular beam, aligned parallel to a single axis by a strong electric field 
or other means, has been proposed as a means of structure determination of individual molecules. As in fiber diffraction, 
all the information extractable is contained in a diffraction pattern from incidence of the diffracting beam normal to the 
molecular alignment axis. We present two methods of structure solution for this case. One is based on the iterative 
projection algorithms for phase retrieval applied to the coefficients of the cylindrical harmonic expansion of the 
molecular electron density. Another is the holographic approach utilizing presence of the strongly scattering reference 
atom for a specific molecule. 
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1. INTRODUCTION  
Due to very small X-ray atomic scattering cross-sections, usual diffraction methods for structure determination require 
measurement of scattered intensity from many identical copies of macromolecules. In conventional crystallography this 
is achieved by using crystals, where identically oriented macromolecules are located in regularly spaced positions. This 
gives an enhancement of the scattered signal by a factor of the squared ratio of the crystal volume to that of a unit cell. 
However, translational symmetry limits the scattered intensity sampling to reciprocal lattice of the crystal, which does 
not provide enough information for solution of the phase problem from the structure factors alone without sample 
modification and/or using anomalous scattering. Furthermore, large protein complexes and membrane proteins, vital for 
the function of a living cell, are difficult to crystallize, and therefore constitute a major challenge for structural biology. 
In the opposite limit of small angle scattering, the incoherent sum of solution scattering from macromolecules in random 
orientations is recorded, resulting in the spherically averaged diffraction pattern. Then a low resolution structure can be 
recovered by the Monte Carlo search of a model that provides a best fit to experimental data. In this type of simulation 
the problem of uniqueness of the recovered structure is intrinsically present. It was proposed to overcome difficulties of 
crystallography and of solution scattering by replacing intermolecular forces, orienting macromolecules in a crystal, by 
interaction of individual isolated molecules with an external field.1 In this method, scattered intensity is collected from a 
stream of aligned molecules, and a weak diffraction pattern of the individual molecule is multiplied by the total number 
of molecules interacting with the incident X-rays. A limited spatial coherence width of the X-ray beam is assumed to 
prevent interference between X-rays scattered by different molecules. Absence of translational periodicity allows 
arbitrary sampling of the diffraction pattern and subsequent use of well-developed iterative projection algorithms2 to 
solve the phase problem. Three-dimensional alignment of small molecules can be achieved by interaction of their 
polarizability anisotropy with the electric field of an intense elliptically polarized laser pulse,3 while interaction of the 
induced dipole moment with the electric field of a linearly polarized laser aligns the molecule’s axis of easy polarization 
along the electric field,3 if the induced dipole – electric field interaction energy is large compared to the thermal energy 
of the molecule. In this field configuration, rotation of the molecule with respect to the alignment axis is not restricted. In 
many cases realization of the single axis alignment is easier to achieve, and for some systems, such as symmetric-top 
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molecules, the rotational dynamics about their symmetry axis cannot be constrained with the elliptically polarized light. 
The alternatives to the laser alignment include strong electric or magnetic fields and a shear flow. It has been 
demonstrated that the moderate electric field of 2 kV/cm is sufficient for the perfect alignment of single wall nanotube 
(SWNT) ethanol suspensions.4 The dipole moment of a peptide bond is ~3.6 D, and their alignment in α-helices results 
in buildup of the macroscopic dipole moment roughly in proportion to the number of residues.5 Thus, large proteins can 
have dipole moments of 103-104 D, which is sufficient for alignment in a strong electric field. 

Apparently, information is inevitably lost upon rotational averaging of scattering data from the molecules aligned in one 
direction. The aim of this work is to demonstrate that under some circumstances, in particular for high degree or known 
molecular cylindrical symmetry, the structural information on an individual molecule can be deduced from a single 
diffraction pattern produced by a large number of the single-axis aligned molecules randomly rotated about the 
alignment axis. Such a diffraction pattern is similar in character to a fiber diffraction pattern. However, fibrous 
molecules studied by fiber diffraction display a helical symmetry, and therefore they are characterized by some repeat 
distance along their long axis. That restricts scattering to the layer planes perpendicular to the direction of the molecular 
alignment. Unlike fibrous molecules, molecules aligned by an external field do not have periodicity in any direction, and 
corresponding diffraction patterns are continuous. This allows an oversampling of the scattered intensity with respect to 
the Shannon sampling interval as determined by the molecular size. Then a two-dimensional iterative projection 
algorithm, which alternatively applies constraints in real and reciprocal space, can be applied to reconstruct at least 
azimuthally averaged electron density of the sample.6 In the special cases, when a molecule contains a strongly 
scattering reference atom, the diffraction pattern can be treated as a hologram, and the azimuthal projection of the 
molecular electron density about the alignment axis may be directly obtained by the corresponding transform of the 
diffraction pattern.7 

2. STRUCTURE DETERMINATION FROM CYLINDRICALLY AVERADED 
DIFFRACTION PATTERN 

2.1 Fourier transform in cylindrical coordinates for non-periodic object 

In this section we establish relationship between the electron density of an individual particle and the diffraction pattern 
produced by a large number of aligned identical particles, different only in angle of rotation about alignment axis. The 
derivation closely follows that for fiber diffraction,8 with an important difference arising from the fact that we do not 
have periodicity in the alignment direction. That results in a continuous diffraction pattern as opposed to layer lines 
observed in fiber diffraction, and allows direct application of iterative projection algorithms for phase retrieval. Since 
there is no interference between molecules, scattered intensity from a large ensemble of aligned molecules at random 
azimuthal angles is equivalent to the diffraction pattern of an individual molecule averaged over all possible rotations. 
Due to cylindrical averaging it is convenient to introduce cylindrical coordinates ),,( zr ϕ  in real space, and 
corresponding coordinates ( ςψ ,,R ) in reciprocal space, where z and ζ  are parallel to the alignment axis. Any single 

valued and continuous function ( )zrf ,,ϕ  can be expanded in a Fourier series in terms of the orthogonal set of basis 

functions ( )ϕimexp  defined on the unit circle in the plane perpendicular to rotation axis. Then electron density of the 
molecule can be written as the cylindrical harmonic expansion 

    ( ) ( ) ( )∑=
m

m imzrgzrf ϕϕ exp,,, ,      (1) 

where the two-dimensional function ( )zrmg ,  is determined as 

    ( ) ( ) ( ) ϕϕϕ
π

dimzrfzrgm ∫ −= exp,,
2
1

, .     (2) 

In the same fashion, the scattering amplitude of the molecule can be represented in reciprocal space as 

    ( ) ( ) ( )∑=
m

m imRGRA ψςςψ exp,,, .     (3) 

The scattered intensity is 
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ψψ

ψςςςψςψςψ exp,,,,*,,,, * ,   (4) 

where angle brackets stand for angular average over azimuthal angle. The cross terms in the angle brackets <…> in 
Eq. (4) vanish, leaving only diagonal terms: 

     ( ) ( )∑
∞

−∞=
=

m
m RGRI 2,, ςς ,      (5) 

where there is no dependence on the azimuthal angle ψ. Thus, in the general case the scattered intensity from the 
multiple molecules aligned parallel to a single axis is a sum of independent contributions from different cylindrical 
harmonics. Eq. (5) also elucidates how the information content of the full three-dimensional diffraction pattern is 
reduced by cylindrical averaging. If the cylindrical harmonic expansion is terminated at the term mmax, then the right 
hand side of Eq. (5) can be regarded as the squared norm of the 4mmax vector, with each coefficient ( )ς,RGm  
contributing two dimensions corresponding to its real and complex parts. If scattered intensity from a fixed molecule is 
measured in a given point of reciprocal space, then modulus constraint for this point is determined by a two-dimensional 
sphere of radius equal to square root of measured intensity. For the cylindrically averaged scattered intensity at a given 
pixel, modulus constraint is set by a sphere in 4mmax dimensions. 

Since the X-ray scattering cross section is small, scattering can be described in the Born approximation, and in the far 
field the scattering amplitude is given by the Fourier transform of the molecular electron density: 

     ( )
( )

( ) ( ) rqrrq 3exp
32

1
difA ∫=

π
.     (6) 

Substituting here scattering vector q and radius-vector r expressed in cylindrical coordinates, and using Jacobi-Anger 
expansion9 

     ( ) ( ) ( )∑
∞

−∞=
=

m
m

m imzJiiz θθ expcosexp ,     (7) 

where ( )zJm  is the mth order Bessel function of the first kind, and using Eq. (2) we arrive to the expression 

   ( ) ( ) ( ) ( )[ ]drdzmzirRJzrgriRA m
m

m
m ψς

π
ςψ += ∑ ∫ exp,

2

1
,, .    (8) 

From comparison of Eq. (8) and Eq. (3) the relationship between the coefficients of the cylindrical harmonic expansions 
of the molecular electron density and its scattering amplitude can be identified as 

   ( ) ( ) ( ) ( )∫= drdzizrRJzrrg
i

RG mm

m

m ς
π

ς exp,
2

, . (9) 

The relation inverse to Eq. (9) can be derived in the same way from the inverse Fourier transform of the molecular 
scattering amplitude as follows: 

   ( ) ( ) ( ) ( ) ( )∫ −
−

= drdzizrRJRRG
i

zrg mm

m

m ςς
π

exp,
2

, . (10) 

Eqs. (9) and (10) represent a combination of a Hankel transform in radial direction and a Fourier transform in the 
direction of alignment, which we term a Fourier-Hankel transform. These coupled two-dimensional equations relate the 
cylindrical harmonic expansion coefficients of the scattering amplitude with those of the electron density of the 
molecule. These relationships are analogous to the Fourier transform and its inverse, which relate scattering amplitude 
and corresponding electron density in a standard scattering problem. In a case where the magnitudes of ( )ς,RGm  are 

known, but not their phases, and the spatial extent of ( )zrgm ,  is finite, it would be expected that a two-dimensional 
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iterative phasing algorithm with appropriate constraints in reciprocal and real space will allow the simultaneous 
determination of the unknown phases and of ( )zrgm , . 

 

2.2 Analogy with fiber diffraction 

Due to periodicity of the helical structure in fiber diffraction with repeat distance c along axis z, function ( )zrgm ,  can 
be expanded in Fourier series with respect to argument z, and Eq. (1) becomes 

    ( ) ( ) ( )[ ]∑ ∑ −=
l m

ml clzmirgzrf πϕϕ 2exp,, .    (11) 

Component ( )rgml  and its counterpart in reciprocal space ( )RGml  are related by the Fourier-Bessel transform 

    ( ) ( ) ( )∫= drrRJRRGrg mmlml .      (12) 

The quantity measured in fiber diffraction is scattered intensity of the layer line 

    ( ) ( ) ( )∑===
m

mll RGclRIRI
2

2, πς .     (13) 

Eqs. (11)-(13) of fiber diffraction8 correspond to Eqs. (1), (10), and (5), respectively, for continuously scattering aligned 
non-periodic objects. As soon as components ( )RGml  and their phases are determined, electron density of fibrous 
molecule can be found from Eqs. (11) and (12). 

 

2.3 Algorithm for phase retrieval 

As in fiber diffraction, electron density reconstruction in our case is equivalent to the problem of deconvolution the 
individual contributions in Eq. (5) and determination of their phases. The number of m-components which should be 
kept in Eq. (5) depends on the sample and required resolution. It has been noted10 that a Bessel function of order m has 
negligible values if its argument x is smaller than m. Therefore, it would be expected that for a given rRx =  
contribution of all cylindrical harmonics with m > x to the diffraction pattern intensity vanishes. The maximum value of 
x is defined by the maximum radial coordinate of any atom of the molecule relative to the molecular rotation axis, which 
can be approximated by the molecule radius a, and required resolution d = 2π/Rmax. Then all terms with m > 2πa/d in Eq. 
(5) can be neglected. If the molecule is characterized by M-fold rotational symmetry, then cylindrical harmonic 
expansion of its electron density contains only terms of modulo M, i.e. m = 0, M, 2M, … Provided M > 2πa/d, the term 
with m = 0 is the overwhelmingly dominant contributor to scattered intensity, and ( )ς,0 RG  can be approximated by 

the square root of the measured diffraction pattern. The phases of ( )ς,0 RG  can be determined by iteratively solving 
Eqs. (9) and (10) for m = 0 to find the solution that simultaneously belongs to the set of objects, whose transform (9) of 
azimuthal projection results in the measured diffraction pattern, and the set of objects, satisfying available constraints in 
the real space, such as support constraint, which sets the electron density outside the known object boundaries to zero. In 
a more general case, it might be necessary to find a few terms in Eq. (5) beyond m = 0. Note that for a real object only 
terms with m ≥ 0 need to be considered. Expansion of the real electron density in cylindrical harmonics (1) can be 
written as 

    ( ) ( ) ( ) ( )[ ]∑+=
≥1

0 exp,Re2,,,
m

m imzrgzrgzrf ϕϕ .    (14) 

Using identity ( ) ( ) ( )ςς −−=− ,1, * RGRG m
m

m  for expansion coefficients of the scattering amplitude for a real valued 
object, we obtain in place of Eq. (5) 

    ( ) ( ) ( ) ( )( )∑+
≥

−+=
1

222
0 ,,,,

m
mm RGRGRGRI ςςςς .   (15) 
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Figure 1. Block diagram of the phasing algorithm. 

The expansion coefficients of scattering amplitude are independent, however they can be related by the positivity or 
other constraints in real space after their transform (10). The standard modulus projection which keeps the phases of 
current iterate ( )ς,' RG m of scattering amplitude and replaces magnitudes by the measured intensities in diffraction 
pattern, is modified to the form  

   ( ) ( ) ( )
( ) ( ) ( )( )∑ −++

=

m
mm

mm
RGRGRG

RI
RGRG

22
0 ,','

2
,'

,
,',

ςςς

ς
ςς , (16) 

where summation is performed over all non-vanishing positive m. This is the same projection that was used in phasing 
powder diffraction pattern to separate overlaps of non-equivalent reflections having the same magnitudes of scattering 
vector,11 originating from spherical averaging of powder diffraction patterns. The method has been generalized by Elser 
and Millane12 for the reconstruction problem in the case of diffraction pattern incoherently averaged over a discrete 
symmetry group. It was shown that with positivity constraint available, reconstructions are successful for up to 
symmetry group order of 4. Applied to our problem, that implies that just one component corresponding to non-zero m 
can be included in Eq. (14). However, it can be expected that this condition will be relieved if additional constraints are 
available in real space. Block diagram of the phasing algorithm is presented in Fig. 1. As a starting point, the scattered 
intensity is equally distributed among N expansion coefficients included in the diffraction pattern decomposition, with 
each of those coefficients assigned a value of ( ) ( ) NRIRGm ςς ,, = , and a set of random phases ( )ςχ ,R  is 
generated for them. After transform (10) for each m-component, they have been combined via Eq. (14) to obtain a first 
estimation of electron density. This estimate is a real function which generally contains both positive and negative 
values. A suitable object-domain operation utilizing projection on the set restricted by object support and positivity is 
applied, and subsequent inverse Fourier-Hankel transform (9) gives a new estimate of scattering amplitude expansion 
coefficients. Their phases and relative values for different m-components are retained, but amplitudes are renormalized 
according to projection (16). The algorithm iterates between two constrained sets until convergence occurs. 
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2.4 Holographic approach 

If a molecule contains a strong scatterer, an alternative approach to reconstructing an azimuthal projection of the 
molecule can be applied. In this case diffraction pattern can be treated as a hologram, consisting of the square modulus 
of a superposition of a relatively large reference wave of known form and an unknown object wave. Then, the scattered 
intensities become linear in the unknown object wave and its conjugate, thus allowing the reconstruction of the object 
giving rise to object wave. This method was employed to reconstruct a simulated laser aligned symmetric top molecule 
CF3Br.7 The form factor of the Br atoms located on the rotation axis of the molecule dominates over those of F and C. It 
was demonstrated that application of the transform (10) with m = 0 directly to the diffraction pattern gives the azimuthal 
projection of the CF3Br molecule, along with a twin image, mirror symmetric relative to the plane perpendicular to the 
rotation axis, as shown in Fig. 1. 

 
Figure 2. (a) X-ray diffraction pattern from CF3Br molecules perfectly aligned with respect to horizontal axis 
perpendicular to the X-ray beam. (b) The same for imperfect alignment due to the thermal oscillations at 1 K. 
Green area corresponds to the non measurable missing edge due to the Ewald sphere curvature; (c)-(d) The 
azimuthally projected electron density holographically reconstructed from the simulated diffraction patterns (a) 
and (b), respectively. 

3. NUMERICAL EXAMPLE 
As the test object for our simulations we choose the E. coli chaperonin GroEL14–GroES7–(ADP·AlFx)7 protein complex, 
constituted of 59,276 non-hydrogen atoms. The length of the complex is 20 nm, and diameter 14.5 nm. GroEL contains 
14 identical subunits of molecular mass 58 kDa, and GroES contains 7 subunits of molecular mass 10 kDa. They form a 
structure consisting of three distinctive rings. The atomic coordinates have been obtained from the Protein Data Bank 
(entry 1SVT) and converted to cylindrical coordinates (rk, φk, zk), where the subscript specifies atom k. Contributions of 
different cylindrical harmonics into diffraction pattern can be computed from the discrete counterpart of Eqs. (2) and (9): 
    ( ) ( )[ ]{ } ( )km

k
kkkm RrJmzifRG ∑ −−= 2exp, πϕςς ,    (17) 

where fk is the form factor of atom k. Azimuthal projection of the protein complex computed by inverse Fourier-Hankel 
transform (10) of ( )ς,0 RG  is shown in Fig. 3(a). Since the structure of GroEL–GroES complex is characterized by a 7-
fold rotational symmetry about a long molecular axis, only expansion coefficients for m = 0, ±7, ±14… will have non-
vanishing values. A diffraction pattern was calculated on a regular 128×64 grid to the maximum scattering vector in both 
R and ζ directions of 5 nm-1. Incident X-ray beam polarization and grid distortion due to the Ewald sphere curvature are 
not considered, since these effects can be accounted for during data post-processing. The presence of the wedge with 
missing data is also ignored, because it is small for low resolution diffraction pattern (3 pixels at the detector edge for 
incident X-ray energy of 10 keV), and the values of the data in the missing wedge can be estimated by allowing them to 
float in the iterative phasing algorithm. With molecular radius of 7.25 nm, cylindrical harmonics of the order up to m = 
35 should be included in the sum (13), but for the test purposes we truncate the expansion at m = 14. The diffraction 
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Figure 3. (a) Azimuthal projection ( )zrg ,0  of the GroEL-GroES protein complex. (b) Cylindrically averaged 
diffraction pattern for the GroEL-GroES macromolecule simulated from the atomic coordinates. 

 

 
Figure 4. Azimuthal projection of the GroEL-GroES electron density reconstructed from the diffraction pattern in 
Fig. 3(b) using (a) m = 0 cylindrical harmonics only, and (b) m = 0, ±7 harmonics of scattering amplitude to 
represent scattered intensity. (c) Real space root mean square error for the phasing algorithm for different number 
of cylindrical harmonics included in the diffraction pattern decomposition. (d) Contributions of the basis functions 
with m = 0 and m = 7 (solid black and gray lines, respectively) into the total molecular scattering amplitude in the 
plane ζ = 0, simulated from atomic coordinates. Symbols of corresponding colors show reconstructed 
contributions. 
 

pattern computed from Eqs. (15) and (17) using tabulated atomic form-factors13 is shown in Fig. 3(b). For the iterative 
scheme, we employed combination of the hybrid input-output (HIO) algorithm (20 cycles), based on the negative 
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feedback, and the error reduction algorithm (200 cycles), which simply projects back and forth between two constrained 
sets. Cylindrical support of the height of 23 nm and radius of 13 nm has been used, providing required oversampling. 
Convergence of the iterative procedure was monitored by error metric in real space, equal to the normalized amount of 
charge-density remaining outside the support. Fig. 4 compares algorithm performance for two cases: (1) the azimuthal 
projection m = 0 only is included in the algorithm, and (2) the m = ±7 terms are additionally used to synthesize the three-
dimensional electron density map and diffraction pattern. The first procedure converges to a solution with high 
probability for a hypothetical exercise when only the 0th term of the scattering amplitude expansion contributes to 
diffraction pattern. However, after the higher degree terms are added to the diffraction pattern simulation, the 
performance of the algorithm drastically deteriorates. In particular, the success rate drops to 6%, and even then the final 
image significantly deviates from a true solution, as comparison of Fig. 3(a) and Fig. 4(a) reveals. Including terms m = 
±7 in the reconstruction algorithm results in increase of success rate to 49% in 200 trials with random initial phases. The 
reconstructed image of the molecular azimuthal projection after one run is shown in Fig. 4(b), and demonstrates much 
higher similarity to the original image than that in Fig. 4(a). The difference in the behavior of the two variants of the 
algorithm is also manifested in the behavior of the error metrics, illustrated in Fig. 4(c). When harmonics m = ±7 are 
taken into account, the final error is twice as small as compared to the case when m = 0 only is included. Additionally, 
error spikes during HIO cycles become much smaller. Relative values of the m = 0 and m = 7 contributions of the 
scattering amplitude at ζ = 0 as determined by the algorithm are shown in Fig. 4(d) by black circles and grey squares, 
respectively. They agree well with corresponding curves directly simulated from atomic structure, and shown by solid 
lines. Unfortunately, the algorithm was unable to separate correctly contributions from the m = 7 and m = -7 expansion 
coefficients for ζ ≠ 0, which prevented us from reconstructing a three-dimensional molecular envelope. However, the m 
= 0 component was still properly extracted, allowing for the reconstruction of the azimuthal molecular projection. Note 
that the resulting decomposition of the scattering amplitude into components originated from different m is not sensitive 
to the input initial guesses for their contributions into the measured diffraction pattern. 

4. DISCUSSION 
The theory of fiber diffraction is applied to fibrous molecules with helical structure, characterized by a repeat distance 
along the helical axis. The periodicity along this direction results in the appearance of the ‘layer lines’ in the diffraction 
pattern, separated in reciprocal space by an inverse repeat distance. An ensemble of the isolated molecules, aligned 
parallel to a single molecular axis, lacks a translational periodicity inherent to a fiber structure. Therefore, the composite 
diffraction pattern produced by an incoherent sum of diffraction patterns from these molecules, is continuous in all 
directions. This property allows for oversampling of the measured scattered intensity, required for application of iterative 
projection phase retrieval algorithms. We have shown that for molecules with high degree of the known rotational 
symmetry, when a three-dimensional scattering amplitude can be modeled by a few terms of expansion in cylindrical 
harmonics, such algorithms are capable of extracting a 0th term in this expansion, corresponding to the cylindrically 
averaged scattering amplitude. This is in turn related to the azimuthally averaged electron density by a two-dimensional 
transform, comprised by a Fourier transform in the direction of molecular alignment, and a Hankel transform of order 
zero in the radial direction. Then iterations of the Fourier-Hankel transform between two constrained sets allow 
reconstruction of the azimuthally projected electron density. This scheme is directly applicable to the scattering 
geometry, where only alignment along a single axis is achieved, and molecular rotation about this axis and translation 
motion are not restricted. This situation could be realized in the laser alignment, alignment by electric and magnetic 
field, or flow alignment. 
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